| τῶν ἰσχίων , λάσιον ἐγκηρώσας , ὅκως καὶ τὰ ἔξωθεν περιέξει , καὶ διαλιπὼν πυρία τοῖσιν ἀσκίοισι , θερμὸν ὕδωρ | ||
| δύο κανονίων τοῦ τε τῆς Ἀφροδίτης καὶ τοῦ τοῦ Ἑρμοῦ περιέξει τὰς ὑπὸ τῶν μεγίστων λοξώσεων τῶν ἐπικύκλων αὐτῶν , |
| μὲν οὖν καὶ ἐπισινεῖς ἢ ἐμπαθεῖς γενόμενοι βίαιον τὸ τέλος ἐφέξουσι . Κρόνος Ἄρης Ἀφροδίτη περὶ μὲν τὰς πράξεις καὶ | ||
| τὸν Λέοντα : οἱ γὰρ ἡγούμενοι τῶν ἐν τῷ πλινθίῳ ἐφέξουσι κατὰ τὴν προειρημένην διαίρεσιν Λέοντος μοίρας ιηʹ . δῆλον |
| τῷ συναμφοῖν ἀριθμῷ χρῆσθαι ἐπὶ τῶν ἐτῶν . οἷον ἔστω ὡροσκοπικὴν μοῖραν ἐκπεπτωκέναι Καρκίνου μοίρᾳ ηʹ , ἥτις σημαίνει τόπον | ||
| Ἡλίου μοίρας : καὶ αὕτη μὲν οἴσει τὸ ἀπογώνιον ἤτοι ὡροσκοπικὴν μοῖραν : ἢ καὶ ταύτην ἐπιπροσθέντα ἢ καὶ ἀφαιρεθέντα |
| ἐναντιωτάτης περ ὄντων φύσεως , ἐναρμόνιον καὶ συμφυεστάτην σύζευξιν , ἐκθετέον στιχηδὸν καὶ παραλλήλως ἑκατέρους ἀπὸ τῆς οἰκείας ἀρχῆς , | ||
| δὴ καὶ ἐννέα Μούσας προσηγορεύκασιν . Ἀλλὰ πρὸς ἀπόδειξιν ἀληθεστέραν ἐκθετέον καὶ τὰ ὄργανα οὕτως . Ἔστω τετράγωνον ἰσόπλευρον τὸ |
| εἰ δὲ βούλει προσοδιακὸν δίμετρον καταληκτικὸν ἐκ χοριάμβου καὶ Ἰωνικοῦ καταληκτικοῦ . Τὸ θʹ προσοδιακὸν τρίμετρον ἀκατάληκτον : ὁ αʹ | ||
| τοῦ βʹ χοριάμβου , τοῦ γʹ Ἰωνικοῦ ἀπ ' ἐλάσσονος καταληκτικοῦ . τοῦτο καὶ ἀναπαιστικόν ἐστι δίμετρον ἀκατάληκτον , σπονδείου |
| μεʹ . τὸ δὲ μέτρον καλεῖται εὐπολίδειον : ἔστι δὲ ἐπιχοριαμβικόν , οὗ τὸ τροχαϊκὸν μέρος οὐ κατὰ τάξιν δέχεται | ||
| ἀντίστροφος κώλων θʹ . τὸ αʹ τροχαϊκὸν ἐπίτριτον , ἢ ἐπιχοριαμβικόν . τὸ βʹ ἰωνικὸν ἀπ ' ἐλάσσονος , τρίτου |
| τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν | ||
| τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ |
| τροχαϊκῆς βάσεως . ὁ δὲ νεʹ ἐξ ἰαμβικοῦ πενθημιμεροῦς καὶ ἀναπαιστικῆς βάσεως . ἐπὶ τῷ τέλει κορωνὶς ἐξιόντων τῶν ὑποκριτῶν | ||
| ἐν ἐπεισθέσει , ὧν τὸ πρῶτον ἐκ τροχαϊκῆς βάσεως καὶ ἀναπαιστικῆς , καὶ ἑφθημιμερὲς ἢ Ἰωνικόν , ἀπὸ μὲν τριμέτρου |
| μονάδες ὡς ὅλον ταῖς δυσὶ δυάσιν , ἢ ἑκατέρα τῶν δυάδων ταῖς τέσσαρσι μονάσι καθάπαξ οὐκ ἴσαι . καὶ πάλιν | ||
| δὲ προστάγμασι τούτοις πάλιν ἀπὸ ἰσότητος πρῶτον ἐκ μονάδων εἶτα δυάδων εἶτα τριάδων καὶ ἐφεξῆς : πρῶτον ἐκ πρώτου καὶ |
| τὸ δʹ ἰωνικὸν ἡμιόλιον , ἐκ τροχαϊκῆς συζυγίας ἤτοι ἐπιτρίτου βτέρου καὶ ἰάμβου . τὸ εʹ ὅμοιον καθαρόν , ἐξ | ||
| ἀκατάληκτον ὅμοιον τῷ γʹ , ἐκ παίωνος γʹ καὶ ἐπιτρίτου βτέρου ἤτοι τροχαϊκῆς συζυγίας : εἰ δὲ βούλει , ἰαμβικὸν |
| διτροχαίου καὶ κρητικοῦ . τὸ μεʹ παιωνικὸν τρίμετρον καταληκτικὸν ἐκ παιώνων τετάρτων δύο καὶ μολοττοῦ . τὸ μϚʹ ὅμοιον τῷ | ||
| κώλων ιηʹ . τὸ αʹ παιωνικὸν τρίμετρον ἀκατάληκτον , ἐκ παιώνων τετάρτων : κατὰ μονοπεδίαν γὰρ μετρεῖται τὰ τοιαῦτα μέτρα |
| δὲ τὸ κοινὸν καὶ τὸ ἴδιον καὶ τὸ ὅλον καλὸν ἀδιαφόρου τοῦ κοινοῦ ὄντος . Λέγεται δὲ οὐδ ' ὁ | ||
| τῆς αʹ μακρᾶς ἀναλυομένης . τὸ εʹ ἰωνικὸν δίμετρον ἀκατάληκτον ἀδιαφόρου τῆς ἀρχούσης . τὸ Ϛʹ ἰωνικὸν τρίμετρον βραχυκατάληκτον . |
| δὲ οβʹ γίνεται σιϚʹ , τὰ δὲ ξδʹ τρὶς γίνεται ρϞβʹ . τούτων ἐπίτριτα τὰ σνϚʹ , ἅτινα πρὸς σμγʹ | ||
| τοῖς ποδαγρικοῖς : λιθαργύρου ⋖ ϞϚʹ , ἐλαίου παλαιοῦ ⋖ ρϞβʹ , οἴνου παλαιοῦ καὶ κιρροῦ διαυγοῦς καὶ ἠρέμα γλυκέος |
| καλῶς ἐδεσμεύθη . διπλῆ καὶ ἕπεται δυὰς ὁμοία ἐκ στίχων ἑφθημιμερῶν τῇ πρώτῃ . Γ μέλλω γέ τοι θερίδδειν : | ||
| ἐξευρήματι καινῷ συμπτύκτοις ἀναπαίστοις . Καὶ τὸ ἐκ τῶν ἰαμβικῶν ἑφθημιμερῶν δικατάληκτον Καλλίμαχος Δήμητρι τῇ πυλαίῃ τῇ τοῦτον οὑκ / |
| ἰαμβέλεγος πλεονάζων συλλαβῇ . τὸ δʹ ἐπιχοριαμβικὸν Πινδαρικὸν , ἢ ἰαμβέλεγος . τὸ εʹ προσοδιακὸν δίμετρον ὑπερκατάληκτον . τὸ Ϛʹ | ||
| πενθημιμερές . τὸ Ϛʹ τροχαϊκὸν ἢ ἐπίτριτος . τὸ ζʹ ἰαμβέλεγος . τὸ ηʹ ἰαμβικὸν πενθημιμερές . τὸ θʹ ὅμοιον |
| γραμμάς . εἰ δὲ κατὰ ῥῖνας , εὐθυτενῆ τὴν τομὴν τάξομεν κατὰ τὸ μῆκος τῆς ῥινός . εἰ δὲ κατὰ | ||
| - νων ἁπάντων ἐντέχνως καὶ τὰς κατηγορίας καὶ τὰς ἀπολογίας τάξομεν . Τὸ δ ' ἐξεταστικὸν εἶδος αὐτὸ μὲν καθ |
| καταπλαϲμάτων καὶ ϲικυῶν Γαληνοῦ ροϚ Ἐκ τῶν Λύκου περὶ καταπλαϲμάτων ροζ Περὶ τοῦ ἐξ ἄρτου καταπλάϲματοϲ ροη Περὶ τοῦ ἐκ | ||
| . . . . . . . . . . ροζ η ∠ ʹ Σαίνου ποταμοῦ ἐκβολαί . . . |
| ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
| ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
| εἰ δὲ βούλει , ἰαμβικὸν τρίμετρον βραχυκατάληκτον τοῦ δευτέρου ποδὸς χορείου , τοῦ δὲ τρίτου δακτύλου . τὸ ναʹ ἀντισπαστικὸν | ||
| ἰωνικὸν ἀπ ' ἐλάττονος δίμετρον καταληκτικόν , ἐξ ἰωνικοῦ καὶ χορείου ἢ ἀναπαίστου διὰ τὴν ἀδιάφορον : τὸ εʹ ὅμοιον |
| δύο εὐθείας μείζους τῶν ἐκτὸς καὶ πάλιν ἄλλας μείζονα γωνίαν περιεχούσας τῆς ὑπὸ τῶν ἐκτὸς περιεχομένης . τούτου γὰρ δειχθέντος | ||
| ' ἡμᾶς θάλαττα τοιαύτη τις . Ὑπογραπτέον δὲ καὶ τὰς περιεχούσας αὐτὴν γᾶς , ἀρχὴν λαβοῦσιν ἀπὸ τῶν αὐτῶν μερῶν |
| ιβ , καὶ ἐφεξῆς τοῦτο εὑρήσεις . εἶτα μετὰ τοὺς ἡμιολίους εἰσὶν οἱ ἐπίτριτοι : οἱ γὰρ τοῦ τετάρτου στίχου | ||
| . τί δέ ἐστιν ἀντιπαρωνυμούντων ; ἀντὶ τοῦ εἰ θέλεις ἡμιολίους εὑρεῖν , τοὺς διπλασίους ζήτει , εἰ ἐπιτρίτους , |
| δάκτυλοι ιβ , ὥσπερ καὶ ἐπ ' αὐτῶν τῶν ἐκλειπτικῶν κανονίων ὡς τοῦ ἑνὸς δακτύλου περιέχοντος τὸ ιβʹ τῆς διαμέτρου | ||
| τῆς ἐμπτώσεως καὶ τῶν τῆς ἀνακαθάρσεως χωρὶς ἐξ ἑκατέρου τῶν κανονίων εἰσοίσομεν καὶ τὸν ἀπὸ τοῦ ἀπογείου κατὰ τὴν φαινομένην |
| ἀκατάληκτος . τὸ δʹ περίοδος καταληκτικὴ ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς : εἰ δὲ βούλει , χοριαμβικὸν δίμετρον καταληκτικὸν | ||
| Σαπφικοῦ ἑνδεκασύλλαβον , ἤτοι τρίμετρον καταληκτικόν . σύγκειται δὲ ἐκ τροχαϊκῆς συζυγίας , χοριάμβου καὶ Ἰωνικῆς καταληκτικῆς , ἤτοι ἀναπαίστου |
| γ ' οἱ δεξιοί : Κορωνὶς καὶ εἴσθεσις μέλους χοροῦ προῳδικὴ , διὰ τὸ προτίθεσθαι τῆς κορωνίδος , ἐκ κώλων | ||
| χορόν . . 〚 χωρεῖτε νῦν : Εἴσθεσις ἑτέρου μέλους προῳδικὴ διαιρεθέντος αὖθις τοῦ χοροῦ , καὶ τοῦ μὲν τὴν |
| καὶ ἡμιόλιον . Τὸ θʹ ἰαμβικὸν ἑφθημιμερές . Τὸ ιʹ ἐπιωνικὸν τρίμετρον βραχυκατάληκτον : τῆς γὰρ αʹ συζυγίας οὔσης ἰαμβικῆς | ||
| καὶ κατ ' ἀντιπάθειαν μέτρα δύο : ὧν τὸ μὲν ἐπιωνικὸν καλεῖται , ὅτε διποδίας ἰαμβικῆς προκειμένης ἰωνικὴν ἐπιφέρεσθαι συμβαίνει |
| λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
| ' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
| μὲν γὰρ ἀπεδείχθη ρμδ εἶναι τὰς προτάσεις , ἐνταῦθα δὲ σπη ἔσονται δι ' αἰτίαν τοιαύτην . ἀνάγκη γὰρ ἀμφοτέρους | ||
| γὰρ αὐτοῦ ἀπαρτίζοντα οὐχ εὑρίσκομεν , κατὰ ἄνεσιν ποιοῦμεν τοῦ σπη ὑπεπόγδοον τόνον . ἔστι δὲ ὑπεπόγδοος τοῦ σπη ὁ |
| Ϛ , τοῦ δὲ β τὰ δύο καὶ δ . πολλαπλασίασον τὴν ἐλάττονα πλευρὰν τοῦ Α μετὰ τῆς μείζονος πλευρᾶς | ||
| μῆκος τῆς Α . τὰ δὴ οὖν ε ια μϚ πολλαπλασίασον μετὰ τοῦ Ϛ , καὶ γίνονται μονάδες λ λεπτὰ |
| παίωνα δεύτερον ἔχει ἀντὶ ἰωνικοῦ . τὸ ηʹ τροχαϊκὸν καθαρὸν ἰθυφαλλικόν . ἐπὶ τῷ τέλει τῆς τε στροφῆς καὶ ἀντιστροφῆς | ||
| ἐκ παίωνος βʹ καὶ χοριάμβου : τὸ δὲ γʹ τροχαϊκὸν ἰθυφαλλικόν : τὸ εʹ ἰαμβικὸν πενθημιμερές : τὸ δὲ ζʹ |
| δύο : ὧν τὸ μὲν ἐπιωνικὸν καλεῖται , ὅτε διποδίας ἰαμβικῆς προκειμένης ἰωνικὴν ἐπιφέρεσθαι συμβαίνει , ἥτις οἰκειότητα πρὸς τροχαϊκόν | ||
| τὸν δεύτερον ἔχων πόδα πεντασύλλαβον . τὸ τρίτον περίοδος ἐξ ἰαμβικῆς καὶ τροχαϊκῆς βάσεως . τὸ δʹ ἀσυνάρτητον ἐξ ἀναπαιστικῆς |
| μδʹ ρκαʹ , πάλιν δὲ ἐκ τῆς ἐπιτετραμεροῦς ἢ τετράκις ἐπιπέμπτου τῆς κεʹ μεʹ παʹ γεννᾶται ἡ διπλασιεπιτετραμερὴς πέμπτων ἐν | ||
| διπλάσιος , ὡς προδέδεικται , ἐξ ἐπιτρίτου καὶ ἐπιτετάρτου καὶ ἐπιπέμπτου , λαμβάνω πάλιν ἀντὶ μὲν ἐπιτρίτου μονάδα μίαν καὶ |
| τὸ αʹ ἀντισπαστικὸν τρίμετρον καταληκτικὸν ἐκ διιάμβου , διτροχαίου καὶ κρητικοῦ . τὸ βʹ ἰωνικὸν δίμετρον καταληκτικὸν ἐκ παίωνος δʹ | ||
| καὶ δίδου ἐν ἀνέσει # λειότατον πλῆρες , μετὰ γλυκέως κρητικοῦ . Ἐπικαλεῖται δὲ τὸ φάρμακον θεοῦ χείρ . Τοῦτο |
| μοίρας ιεʹ γίνεται νεʹ ἡ διάστασις : εἰς τὰς ιεʹ ἀπολύω ἄλλα δύο δωδεκατημόρια ἕως Σκορπίου : γίνονται μοῖραι ιϚʹ | ||
| πείθονται αὐτοῖς . ἐγὼ μὲν οὖν , ἐγὼ μὲν οὖν ἀπολύω καὶ ὑμᾶς τῆς αἰτίας καὶ Ἀγασίαν , ἂν αὐτὸς |
| ἀνορεξίαι τε καὶ πυρώσεις καὶ ἀναξηρασμὸς τῶν γυναικείων τόπων , ἐκθησόμεθα τὴν ἐπιμέλειαν . ὅταν οὖν ἀρχήν τινα οἱ πόνοι | ||
| τετύχηκεν , ὧν τὰς πληκτικωτέρας διὰ τὸν τρόπον τῆς συγγραφῆς ἐκθησόμεθα μετὰ τῆς φαινομένης ἡμῖν ἐπικρίσεως . φασὶν οὖν τινες |
| μετὰ μέλιτος , θεῖον ἄπυρον μετὰ κηρωτῆς ἢ τερεβινθίνης . Ἔμπλαστρος παρ ' Εὐτυχιανοῦ διαφορητικὴ καὶ κολλητική . Ἐλαίου παλαιοῦ | ||
| τῶν ἐν ὀδύνῃ μερῶν καὶ τῶν ἐν κύκλῳ χαρασσομένων . Ἔμπλαστρος μετὰ τὰς ἐπιδόσεις ἁρμόζουσα παρηγορικὴ τῶν ἀλγημάτων . Κηροῦ |
| ἀπὸ τοῦ ΑΒ μεγέθους τὸ ΑΚ μέγεθος ἔλασσον ὂν τοῦ ἐκκειμένου ἐλάσσονος μεγέθους τοῦ Γ : ὅπερ ἔδει δεῖξαι . | ||
| τὸ Μουσεῖον ἀπιόντες αὕτη ἡ Ἄσκρη . τοῦ δὲ Ἑλικῶνος ἐκκειμένου τοῖς ἀνέμοις καὶ θαυμαστὰς μὲν ἀναπαύλας ἔχοντος ἐν θέρει |
| τοῖς ὑπὸ τοῦ Ἱππάρχου λεγομένοις . κατὰ ταύτας οὖν τὰς πηλικότητας σκεψώμεθα πρότερον , πόσον ἐστὶν τὸ πλεῖστον διάφορον τῆς | ||
| , τὰ δὲ δεύτερα τὰς τῶν παρακειμένων ταῖς περιφερείαις εὐθειῶν πηλικότητας ὡς τῆς διαμέτρου τῶν ρκ τμημάτων ὑποκειμένης , τὰ |
| ὁ ὑπὸ γου καὶ αου # Μο ι γίνεται ΔΥ σξϚ # Μο ι : ταῦτα ἴσα ⃞ῳ . καὶ | ||
| σξγ Λωτὸϲ ὁ ἥμεροϲ σξδ Λωτὸϲ τὸ δένδρον σξε Μάκερ σξϚ Μαλαβάθρου φύλλα σξζ Μαλάχη σξη Μανδραγόραϲ σξθ Μάραθρον σο |
| ἡμῖν ἀνωτέρω . ἐν οἷς καὶ ἡ παροῦσα πρᾶξις . Ἓξ δέ τινα κεφάλαια δεῖ προλαβεῖν τοῦ περὶ τῆς οὐσίας | ||
| τε συστατικαὶ καὶ αἱ διαιρετικαὶ ἐπὶ τοῦ αὐτοῦ λαμβανόμεναι . Ἓξ οὖν εἰσι συζυγίαι ἐπὶ ταύτης τῆς διαιρέσεως : λογικὸν |
| δὲ ὁ καιρὸς οὗτος Ἀμβληβήρ . Ἀπὸ τῆς ιγʹ τοῦ Δεκεμβρίου μέχρι καὶ τῆς ιγʹ τοῦ Μαρτίου : Χειμὼν , | ||
| ἀπὸ δὲ Σεπτεμβρίου τὸ φθινό - πωρον , ἀπὸ δὲ Δεκεμβρίου τὸν χειμῶνα . εἰ δέ κεν ἠελίοιο τροπῇς : |
| , τοῖς αὐτοῖς χρόνοις παράκεινται πη μγ ζ κθ καὶ σλε ι ι νγ , καὶ ια μγ μγ κθ | ||
| αὐτοὺς ἡμερῶν τξε καὶ ε ἐννεακαιδεκάτων . Ἐν δὲ τοῖς σλε μησὶ κοίλους ἔταξαν ρι , πλήρεις δὲ ρκε , |
| τε διμέτρου ἀκαταλήκτου καὶ τοῦ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ πενθημιμεροῦς . καὶ ἐν ἐκθέσει τὸ σύνηθες διστίχιον . φροντίζειν | ||
| τῷ γʹ τῆς ἐπῳδοῦ . τὸ ηʹ μικτὸν ἐκ τροχαίου πενθημιμεροῦς καὶ δακτυλικοῦ πενθημιμεροῦς . τὸ θʹ ἰαμβέλεγος , ὑπερτιθεμένου |
| καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι | ||
| ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν |
| ἐπὶ τὸ κέντρον , καὶ ἔσται ἡ ὀξεῖα γωνία τοῦ περιτρήτου . μετενέγκας οὖν ἐπὶ τὸν ἀναγραφέα τὴν ἐκ τοῦ | ||
| τοῖς παρ ' ἡμῖν ὁμοίους ὑπάρχειν , ἀντὶ δὲ τοῦ περιτρήτου παρ ' ἡμῖν ἐπικεῖσθαί τι καθάπερ ἐπιστύλιον , ὀρθὰς |
| καὶ φύλλου καὶ ἑψητοῦ ὀλίγον ἐμβάλλουσιν : ἄλλοι καὶ ἀλόης ἡπατίτιδος καὶ κυπείρου . Ἢ ἀλόης δραχ . βʹ ἀμώμου | ||
| . . . . . οὐγγ . αʹ ʹʹ ἀλόης ἡπατίτιδος . . . . . . . . οὐγγ |
| δευτέρου ὅρου καὶ τρίτου καὶ τετάρτου καὶ τὰ λοιπὰ τρία σελίδια ζʹ , ηʹ , θʹ , τῶν ἑξηκοστῶν , | ||
| σεληνιακῆς διαμέτρου λδ ἑξηκοστοῖς . τὰ δὲ τῶν δακτύλων τρίτα σελίδια τὸν αὐτὸν τρόπον περιέξει τοῖς ἡλιακοῖς καὶ ὁμοίως τὰ |
| . . . . . ρκη ∠ ʹ ἰσημερινός . Πρόκειται δὲ τῆς Ταπροβάνης στίφος νήσων , ἅς φασιν εἶναι | ||
| πρὸς τὴν ἀρχήν , οὕτως ἡ πᾶσα πρὸς πᾶν . Πρόκειται τῇδε τῇ συγγραφῇ ἐπιστήμην τινὰ πορίσασθαι τῆς τε φύσεως |
| τὸ κατὰ τὴν ἀνωμαλίαν ἀπέχειν τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας ρπα ιβ . συνάγεται δὲ καὶ ἡ ἀπὸ τῆς δευτέρας | ||
| ροη Καννάβεωϲ ὁ καρπόϲ ροθ Κάπνιοϲ ἢ καπνόϲ ρπ Κάππαριϲ ρπα Κάρδαμον ρπβ Καρδάμωμον ρπγ Καρῶον ρπδ Καϲϲία ρπε Καρύα |
| , μεγαλόδωρος , μεγάλαυχος , μεγαλόφρων . ἐκ δὲ τοῦ ἰσο τάδε σύνθετα ἰσόνομος , ἰσοτελής , ἰσότιμος , ἰσοπολίτης | ||
| πρὸς ΖΗ , οὕτως ἡ ΑΓ πρὸς ΓΗ διὰ τὸ ἰσο - γώνια εἶναι τὰ τρίγωνα ΑΓΕ ΓΖΗ : ἔστιν |
| δὲ τελευταῖον δι ' ἑνός . Ἐὰν δὲ καὶ τρεῖς τριάδας ποιήσωμεν τὴν μὲν πρώτην δίιον εὑρήσομεν : φιλόσοφος γὰρ | ||
| γὰρ ἦσαν παρ ' αὐτοῖς ἅπαντες πλὴν τοῦ μαθηματικοῦ : τριάδας δὲ καὶ πεμπάδας καὶ δεκάδας ἐν αὐτοῖς ἐθεώρουν κατὰ |
| καὶ δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος | ||
| κδʹ καὶ ἁρμονικὸς τῶν τελευταίων διαστημάτων : ὑπερέχει δὲ αὐτοῦ ͵αψκη . ὁ δ ' αὐτὸς κατ ' ἀριθμητικὰν μέσος |
| πολλὴν φθορὰν ἀβασίλευτος ἔμεινεν ἡ νῦν Ἀττικὴ μέχρι Κέκροπος ἔτη ρπθ : τὸν γὰρ μετὰ Ὤγυγον Ἀκταῖον ἢ τὰ πλασσόμενα | ||
| πολλὴν φθορὰν ἀβασίλευτος ἔμεινεν ἡ νῦν Ἀττικὴ μέχρι Κέκροπος ἔτη ρπθ : τὸν γὰρ μετὰ Ὠγυγὸν Ἀκταῖον ἢ τὰ πλασσόμενα |
| [ ] , ᾗ ἀρχὴν τῆς καθ ' ἡμᾶς οἰκουμένης ὑποτιθέμεθα , καθάπερ κατ ' ἄρκτους τὰ μετὰ τὸν ἀρκτικὸν | ||
| προτάσεις : ἐπὶ δὲ τῶν ὑποθετικῶν οὐκ ἀποφαινόμεθα ἀλλ ' ὑποτιθέμεθα εἰ τόδε ἐστίν , τόδε ἐστίν . ἡμεῖς δὲ |
| συλλογισμοῦ τὸ προσλαμβανόμενον , ἐξ ὑποθέσεως ἂν εἴη μόνον . Εἰπόντες δὲ περὶ τῶν ἐξ ὁμολογίας ὑποθετικῶν καὶ δείξαντες , | ||
| οἷς αἱ οὐσιώδεις καὶ αἱ ἐπουσιώδεις διαφοραὶ τῶν πυρετῶν . Εἰπόντες τοίνυν τὰς οὐσιώδεις καὶ ἐπουσιώδεις διαφορὰς τῶν πυρετῶν , |
| ἐνωμοτίας διμοιρίαν καὶ τὸν ἡγούμενον τούτου διμοιρίτην . Ξενοφῶν δὲ πόστον μὲν μέρος τοῦ λόχου ἡ ἐνωμοτία ἐστὶν οὐ διασαφεῖ | ||
| τῆς φιλοσοφίας πραγματείαν , ἵν ' εἰδῶμεν τί ἐστι καὶ πόστον μέρος αὐτῆς ἡ φυσικὴ διέξοδος . οἱ μὲν οὖν |
| ἔργων πλουτήσαντα , σπεύδει καὶ αὐτὸς πλουτῆσαι . . ΕΙΣ ἙΤΕΡΟΝ ΓΑΡ . Τίς γὰρ χρῄζων ἔργου , ἰδὼν εἰς | ||
| τῆς ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ |
| , ὥστε γενέσθαι πάντα τὸν ἐκ τῶν β ὀρθογωνίων ἀριθμὸν σνβ . τοσοῦτον δὲ φεν . . . . . | ||
| , ἃς ἐὰν ἀφέλωμεν ἀπὸ τῶν κατὰ τὴν τήρησιν μοιρῶν σνβ ζ , ἕξομεν ἐποχὴν εἰς τὸ αʹ ἔτος Ναβονασσάρου |
| τῆς συμπτώσεως τῶν ἐφαπτομένων ἀχθῇ εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν , διὰ δὲ τῆς διχοτομίας τῆς τὰς ἁφὰς ἐπιζευγνυούσης | ||
| διὰ τῆς συμπτώσεως ἀχθῇ τις εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν συμπίπτουσα ἑκατέρᾳ τῶν τομῶν , ἀχθῇ δέ τις ἑτέρα |
| . τἀνάφορον δὲ ξύλον ἀμφίκοιλον , ἐν ᾧ τὰ φορτία ἐξαρτήσαντες οἱ ἐργάται βαστάζουσι . μεταθέμενος τὸ ἐπὶ ὤμου φορτίον | ||
| δὴ πάθος ἀποπληξίαν παῖδες ἰατρῶν ὀνομάζουσι . λίθους τῶν ποδῶν ἐξαρτήσαντες ἔρριψαν ἐς τὸ πέλαγος ἀτέγκτως καὶ ἀφειδῶς . καὶ |
| . . . . . . . . . . ροθ ∠ ʹγ νότ . β Σάρατα . . . | ||
| ροϚ Περὶ καράβου ροζ Κάϲτοροϲ ὄρχιϲ ροη Κυνὸϲ ποταμίου ὄρχιϲ ροθ Κυνὸϲ χερσαίου ϲκύλαξ ρπ Κύκνου νεοττόϲ ρπα Κηρύκων ὄϲτρακα |
| ἰαμβικὸν δίμετρον ἀκατάληκτον τοῦ δευτέρου ποδὸς χορείου . τὸ εʹ παιωνικὸν δίμετρον ἀκατάληκτον ἐκ παίωνος δʹ καὶ κρητικοῦ : τὸ | ||
| : ζʹ ηʹ θʹ ἐν μὲν τῇ βʹ περικοπῇ ἐστι παιωνικὸν τρίρρυθμόν τε καὶ δίρρυθμα δύο , . . . |
| οἱ δεκαδάρχαι : ἐπὶ δὲ τούτοις ἐπιτετάχθων οἱ ἀπὸ τῆς εἴλης ἧιτινι Αὐριανοὶ ὄνομα . συντετάχθων δὲ αὐτοῖς οἱ τῆς | ||
| ' ἑαυτοῦ τὴν ἧτταν διορθώσασθαι τῶν ἰδίων μετὰ τῆς βασιλικῆς εἴλης καὶ τῶν ἄλλων τῶν ἐπιφανεστάτων ἱππέων ἐπ ' αὐτὸν |
| ἐπὶ τῷ τῆς Ἀθηνᾶς νόμῳ : προσληφθείσης γὰρ μελοποιίας καὶ ῥυθμοποιίας , τεχνικῶς τε μεταληφθέντος τοῦ ῥυθμοῦ μόνον αὐτοῦ καὶ | ||
| τὴν τοῦ ποδὸς δύναμιν φυλάσσοντα σημεῖα καὶ τὰς ὑπὸ τῆς ῥυθμοποιίας γινομένας διαιρέσεις : καὶ προσθετέον δὲ τοῖς εἰρημένοις , |
| συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε | ||
| ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη |
| καὶ τοῦ χειμερινοῦ τροπικοῦ ἓξ ὡριαίων διαστημάτων τὸ μὲν πρῶτον ὡριαῖον διάστημα ἐπὶ τοῦ περὶ μέσας τὰς Χηλὰς κύκλου ἀφορίζει | ||
| ἑπόμενος τῶν ἐπ ' εὐθείας τριῶν . Τὸ δὲ τρίτον ὡριαῖον διάστημα ἀφορίζει περὶ μέσον τὸν Ταῦρον τῶν ἐν τῇ |
| ὑποθέμενοι τὴν σελήνην κατὰ τὸ Λ ἀπέχειν τοῦ ἀπογείου μοίρας ροη μϚ , γίνεται ἡ ὑπὸ ΕΘΖ γωνία , τουτέστιν | ||
| : καὶ ὅλη ἄρα ἡ ὑπὸ ΒΕΓ τῶν αὐτῶν ἔσται ροη ιϚ . πάλιν , ἐπειδὴ τὸ μὲν Γ περίγειον |
| , ἐκ κώλων τροχαϊκῶν ἐπιμεμιγμένων χορείοις καὶ ἰάμβοις καὶ ἀναπαίστοις διμέτρων ὀκτωκαίδεκα : ὧν τὰ μὲν αʹ , βʹ , | ||
| τοῦ μακροῦ καὶ τῆς ἐκθέσεως τούτου παράγραφος . κώλων δέκα διμέτρων πλὴν τοῦ τελευταίου καταληκτικῶν . ἐπὶ πᾶσι παράγραφος . |
| βαλανείῳ . Λιβάνου γοαζʹ . ἤτοι οὐγ . α καὶ ἡμίσ . ψιμμυθίου πεπλυμένου , λιθαργύρου πεπλυμένου , ἀμύλου , | ||
| αὐτό . καρυοφύλλων γογζʹ . ἤτοι οὐγ . γ καὶ ἡμίσ . κασάμου γοζʹ . ἤτοι οὐγ . ἡμίσ . |
| δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
| καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
| ἐπινίκοις τοῖς ὑπὸ Πινδάρου γεγραμμένοις εἰς τοὺς Ὀλυμπιονίκας πρώτη ᾠδὴ ἐπῳδική ἐστι τριαδικὴ περικοπῶν δʹ . καὶ ἔστιν ἡ πρώτη | ||
| οἷς ὁμοίοις ἀνόμοιόν τι ἐπιφέρεται : γίνεται δὲ ὥσπερ τριὰς ἐπῳδική , οὕτω καὶ τετρὰς καὶ πεντάς , καὶ ἐπὶ |
| . καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι | ||
| μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ |
| , ἀληθῶς ἐλαττοῖ τὴν ἡμέραν ἐκτείνων πρὸς τὸ μέγεθος τὴν νύκταν πρὸς τὰς ὥρας τὰς δεκαπέντε λέγω δὴ τὰς ἀπὸ | ||
| ' ἔσχατον καὶ τέλειον ὁ Ζεὺς καλῶς διέπει . τὴν νύκταν δὲ τῆς ἕκτης τε πᾶσαν Ἄρης πολεύει , ὅστις |
| τπδ , ὑπὸ τοῦ δὲ ὑπερέχεται τοῦ ͵αφλϚ . ιγʹ ͵ασϘϚ ρμδ . ιδʹ ͵αυνη ρξβ . ιεʹ ͵αφλς οη | ||
| τὰ ἑξηκοστά : διῄρουν γὰρ οὕτως τὴν μονάδα εἰς μυριάδας ͵ασϘϚ . ἐπιστῆσαι οὖν ἐστιν ἐκ τούτων ὁ πᾶς κύκλος |
| πα Ϟ ρ ἐκ δὲ τῶν ἐπιμορίων οἵ τ ' ἐπιμερεῖς καὶ οἱ πολλαπλασιεπιμόριοι , πάλιν δ ' ἐκ τῶν | ||
| σπανιότητα τῶν ἐπιδεξομένων τὸ μόριον ἀριθμῶν καθ ' ὃ ἐπιμόριον ἐπιμερεῖς γενήσονται , πολὺ μᾶλλον σπανιώτεραι αἱ ἀναλογίαι γενήσονται διὰ |
| ἐπιδέσεως προκαταβεβλημένου ἀγκτῆρος τὰς ἀρχὰς κατὰ τὸν τῆς κορυφῆς τόπον ἁμματίσαι . Τελαμῶνα δεῖ λαβεῖν αὐτάρκη ὄντα πρὸς τὴν ἐπίδεσιν | ||
| τότε τὰς τῶν τελαμωνιδίων ἀρχὰς ἀναγαγεῖν καὶ κατὰ τὰς σφαγὰς ἁμματίσαι . οὗτος ὁ ἐπίδεσμος εὐθετεῖ πρὸς ἐπίδεσιν νώτου τε |
| τρίτον ἐξ ὑπερκαταλήκτου , ἀντὶ τᾶς ἐγὼ οὐδὲ Λυδίαν καὶ βραχυκαταλήκτου , πᾶσαν οὐδ ' ἐραννάν . Ἀνακρέων δὲ οὐκ | ||
| Πελέκεως ἡ ἀνάγνωσις . δύναται καὶ ἀπὸ τοῦ μέτρου τοῦ βραχυκαταλήκτου τις ἄρχεσθαι , εἶτ ' αὐτῷ ἀνταποδιδοὺς τὸ ἴσον |
| υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ | ||
| τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας |
| ζ . Γίνεται οὖν ὁ ἐνιαυτὸς κατ ' αὐτοὺς ἡμερῶν τξε καὶ ε ἐννεακαιδεκάτων . Ἐν δὲ τοῖς σλε μησὶ | ||
| ἐστιν ἡμερῶν τξε ἐννεακαιδεκάτων ε . Πλεονάζουσι δὲ αὗται τῶν τξε δʹ ἡμέρας οϚʹ . Δι ' ἣν αἰτίαν οἱ |
| μὲν δοχμιακά , ὧν τὸ μὲν συντίθεται ἐξ ἰάμβου καὶ παίωνος διαγυίου , τὸ δὲ δεύτερον ἐξ ἰάμβου καὶ δακτύλου | ||
| γʹ ὅμοιον τῷ αʹ : τὸ δʹ ὅμοιον ἡμιόλιον ἐκ παίωνος : τὸ εʹ δίμετρον ἐκ παλιμβακχείων : τὸ Ϛʹ |
| φάλαγξ φοβουμένη τοὺς ἱππεῖς ἀπεχώρησεν ἐκ τοῦ πεδίου πρὸς τὰς ὑπερκειμένας δυσχωρίας καὶ τῇ τῶν τόπων ὀχυρότητι τὴν ἀσφάλειαν περιεποιήσατο | ||
| . νεάτας δὲ ἄκριας εἴρηκεν τῶν Αἰθιόπων τὰς ἐσχατιὰς ὡς ὑπερκειμένας τῆς οἰκουμένης . οὐκ ὀρθῶς δὲ εἴρηκεν ὑπὲρ ἄκριας |
| γὰρ τῶν στάσεων αἱ μέν εἰσι μουσικαί , αἱ δὲ ἀριθμητικαί , αἱ δὲ πολιτικαί , προσθεὶς τὸ πολιτικοῦ πράγματος | ||
| περὶ αὐτὸν τὴν πραγματείαν ἔχοντα , ὁποῖαι τέχναι γεωμετρικαὶ καὶ ἀριθμητικαί , καὶ ὅσαις τὸ τέλος διανοητικόν , αὐτὸ τοῦτο |
| δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
| ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
| , δυάδα δὲ τῶν δυάδων μή , μηδὲ τριάδα τῶν τριάδων : τοῦ γὰρ αὐτοῦ λόγου πάντα ἐστίν . εἰ | ||
| εἶναι προτέρας καὶ ἄλλους ἀριθμοὺς ἄλλων ἀριθμῶν , οἷον τριάδας τριάδων προτέρας φαίνεσθαι . πῶς οὖν τοῦτο παρ ' αὐτῷ |
| τινα καὶ ἐξ ὁμοίων πεποιημένα , οἷον τὰ Ἑρμείου , παιωνικὰ ὄντα , ἐπτά μοι δὶς τριάκοντα βασιλεὺς σχεδόν καὶ | ||
| ὅμοιος . τὸ βʹ καὶ γʹ καὶ δʹ καὶ εʹ παιωνικὰ δίμετρα ἀκατάληκτα δίρρυθμα . ὁ Ϛʹ ὅμοιος τῷ αʹ |
| κεκολασμένην ἐς ῥυθμούς , νόημα γὰρ ἐκ νοήματος ἐς περιόδους ἰσοκώλους τελευτᾷ . Ἀκροαταὶ τοῦ ἀνδρὸς τούτου πολλοὶ μέν , | ||
| σχήματι τρίγωνος οὖσα , παραπλησίως τῆι Σικελίαι τὰς πλευρὰς οὐκ ἰσοκώλους ἔχει . παρεκτεινούσης δ ' αὐτῆς παρὰ τὴν Εὐρώπην |
| ὀβολοὺς μηʹ , θέρμους οβʹ , κεράτια ρμδʹ , χαλκοῦς τπδʹ , νομίσματα Ϛʹ . καλεῖται δὲ ἡ # τετρασάριον | ||
| καυθέντων καὶ σβεσθέντων ὕδατι καὶ διηθηθέντος τοῦ ὕδατος , ⋖ τπδʹ , τοῦτ ' ἔστι λι δʹ , κηροῦ ⋖ |
| ἀπὸ χειρὸς χρῆσθαι καὶ τοῖς ξίφεσι τῶν πολεμίων σφᾶς αὐτοὺς ὑποβάλλοντας ἐκδέχεσθαι τὰς καταφοράς . ὅ τε γὰρ σίδηρος τῶν | ||
| τοὺς Στωϊκοὺς οὐδὲ ζητεῖται τοῦτο [ , ] μίαν γε ὑποβάλλοντας ? εὐφύειαν ? πάσαις ? ? ? [ ] |
| γῆς κέντρῳ καὶ διασώζειν τὰς διοπτεύσεις καὶ τὰς τῶν σκιῶν περιαγωγὰς οὕτως ὁμολόγους ταῖς ὑποθέσεσι τῶν φαινομένων , ὡς ἂν | ||
| οὖν γε σύντονον κίνησιν τῆς ὀρχηστικῆς καὶ στροφὰς αὐτῆς καὶ περιαγωγὰς καὶ πηδήματα καὶ ὑπτιασμοὺς τοῖς μὲν ἄλλοις τερπνὰ εἶναι |
| γινομένων ρϘ κθ λα ἡ πλευρὰ τὰ ιγ μη ζ πολυπλασιασθέντα ἐπὶ τὸν ἐκκείμενον λόγον τῶν ΘΖ καὶ ΖΓ εὐθειῶν | ||
| γινομένων κβ λγ λθ ἡ πλευρὰ τὰ δ με # πολυπλασιασθέντα ἐπὶ τὸν ἐκκείμενον λόγον τῶν ΘΖ καὶ ΖΓ εὐθειῶν |
| Ἀντωνίνου Φαωφὶ ιʹ : εἰσὶ σμγʹ , καὶ γίνονται ὁμοῦ υλβʹ . ἀφαιρῶ τὰς τξʹ , λοιπαὶ οβʹ : ταύτας | ||
| . . . . . . . . . τπδʹ υλβʹ υπϚʹ φιβʹ φοϚʹ χμηʹ ψκθʹ λεῖμμα βπλάσιον τοῦ αʹ |
| Μο ια . καὶ ποιοῦσι τὸ πρόβλημα . ιη . Εὑρεῖν τρεῖς ἀριθμοὺς ὅπως σὺν δύο λαμβανόμενοι τοῦ λοιποῦ ὑπερέχωσι | ||
| Μο ε . καὶ ἡ ἀπόδειξις φανερά . ιθ . Εὑρεῖν τέσσαρας ἀριθμοὺς ὅπως ὁ ἀπὸ τοῦ συγκειμένου ἐκ τῶν |
| . πζʹ . Περὶ ἥλων καὶ μυρμηκίων καὶ ἀκροχορδόνων . πηʹ . Περὶ βελῶν ἐξαιρέϲεωϲ . πθʹ . Περὶ καταγμάτων | ||
| ἥμισυ , ἀπὸ δὲ ταύτης τῆς ἰσημερίας ἄχρι χειμερινῆς τροπῆς πηʹ , ἀπὸ δὲ χειμερινῆς τροπῆς ἐπὶ ἐαρινὴν ἰσημερίαν Ϙʹ |
| καὶ κιρρὸν καὶ παλαιόν . Τοὺϲ δὲ ἐπὶ λεπτοῖϲ χυμοῖϲ ϲυγκοπτομένουϲ θεραπευτέον ἐναντίωϲ τοῖϲ εἰρημένοιϲ : καὶ γὰρ τὰ διαγνωϲτικὰ | ||
| ταῖϲ τῶν παροξυϲμῶν ἀρχαῖϲ ϲυγκοπτομένουϲ . καὶ τοὺϲ διὰ ξηρότητα ϲυγκοπτομένουϲ ἐν ταῖϲ τῶν παρο - ξυϲμῶν ἀρχαῖϲ ἄριϲτον προγιγνώϲκειν |
| υπʹ , νομίσματα ζʹ ʂ . Τὸ τάλαντον ἄγει λίτρας ρκεʹ , νομίσματα ͵θ . Ἔστι δὲ ὁ κύαθος # | ||
| [ ἐκ στίχων ] ἀναπαιστικῶν τετραμέτρων καταληκτικῶν ⌈ καὶ ἀκαταλήκτων ρκεʹ , ὧν τελευταῖος διὰ τοὺς ἵππους τοὺς κοππατίας καὶ |
| ὃ τὴν μὲν πρώτην ἔχει ἰαμβικήν , ἤτοι ἑξάσημον ἢ ἑπτάσημον , τὴν δὲ δευτέραν ἰωνικὴν ἢ δευτέραν παιωνικήν , | ||
| καὶ τὴν τροχαϊκήν , ὁπόταν προτάττοιτο τῆς ἰωνικῆς , γίνεσθαι ἑπτάσημον [ τροχαϊκήν ] , τὸν καλούμενον δεύτερον ἐπίτριτον : |
| μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ | ||
| ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ |
| Σύναξον ταύτην τὴν βοτάνην ἀπὸ τῆς πρὸ ιϚʹ καλανδῶν τοῦ Ἰανουαρίου : Αἰγοκέρωτος βοτάνη λάπαθον . Αὕτη δυνάμεις μὲν οὐκ | ||
| τὰ δὲ ἐμβάμματα καὶ τὰς ὀπώρας ὡς τὰ προλεχθέντα τοῦ Ἰανουαρίου . ἐκ δὲ τῶν κοδιμέντων καὶ λαχάνων ὁμοίως ὡς |
| φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ | ||
| Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # # |
| τοῦ Κορωνοῦ πλευρὰν , ἀπὸ δὲ ἀνατολῶν Μαργιανῇ διὰ τῆς ἐπιζευγνυούσης τὰ εἰρημένα πέρατα ὀρεινῆς . Κατανέμονται δὲ τῆς Ὑρκανίας | ||
| τῆς περιεχομένης γωνίας ὑπό τε τῆς τὰς κορυφὰς τῶν τριγώνων ἐπιζευγνυούσης καὶ τῆς πρὸς ἀμβλεῖαν τῇ βάσει . κείσθω ἡ |
| θ καὶ θ ↑ ἐννάτων , καὶ γίνεται τὰ θ ἔννατα τῆς λείψεως τοῦ Ϟοῦ Ϟὸς εἷς , ↑ τῶν | ||
| τὸ ἔτος , εἰς ἐκεῖνον τὸν τόπον ἔνθα ἐπερατώθη τὰ ἔννατα . περὶ δὲ τῶν κατὰ μῆνα καὶ τῶν καθ |
| Περὶ χαλαζίων . ιζʹ . Περὶ ἀκροχορδόνων καὶ ἐγκανθίδων . ιηʹ . Περὶ πτερυγίων . ιθʹ . Περὶ ϲταφυλωμάτων . | ||
| ιβʹ ὦμοι , ἀπὸ ιγʹ ἕως ιζʹ κοιλία , ἀπὸ ιηʹ ἕως κʹ μηροί , ἀπὸ καʹ ἕως κγʹ μέσαι |