| ἰαμβικὸν δίμετρον ἀκατάληκτον τοῦ δευτέρου ποδὸς χορείου . τὸ εʹ παιωνικὸν δίμετρον ἀκατάληκτον ἐκ παίωνος δʹ καὶ κρητικοῦ : τὸ | ||
| : ζʹ ηʹ θʹ ἐν μὲν τῇ βʹ περικοπῇ ἐστι παιωνικὸν τρίρρυθμόν τε καὶ δίρρυθμα δύο , . . . |
| καὶ μέχρι πενταμέτρου χωρεῖ τὸ προσοδιακόν . Τὸ δʹ δίμετρον ὑπερκατάληκτον προσοδιακὸν ἀπὸ Ἰωνικοῦ ἀπὸ μείζονος καὶ χοριάμβου . τοῦτο | ||
| ἀπ ' ἐλάττονος καὶ συλλαβῆς . Τὸ εʹ ἀντισπαστικὸν δίμετρον ὑπερκατάληκτον : ἔχει δ ' ἐπιτρίτους δʹ ἀντὶ ἀντισπάστων . |
| Τὸ ηʹ ὅμοιον τῷ αʹ τῆς στροφῆς . Τὸ θʹ Στησιχόρειον ἐξ ἐπιτρίτων Στησιχόρου εὑρόντος αὐτό : δεύτεροι δὲ οἱ | ||
| συλλαβῇ τοῦ Ἀρχιλοχείου ἢ τοῦ Ἐρασμονίδη Χαρίλαε . τὸ ιαʹ Στησιχόρειον . Γέγραφε τὴν ᾠδὴν Ἡροδότῳ τῷ Θηβαίῳ , τινὲς |
| τε διμέτρου ἀκαταλήκτου καὶ τοῦ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ πενθημιμεροῦς . καὶ ἐν ἐκθέσει τὸ σύνηθες διστίχιον . φροντίζειν | ||
| τῷ γʹ τῆς ἐπῳδοῦ . τὸ ηʹ μικτὸν ἐκ τροχαίου πενθημιμεροῦς καὶ δακτυλικοῦ πενθημιμεροῦς . τὸ θʹ ἰαμβέλεγος , ὑπερτιθεμένου |
| καταληκτικοῦ , ὃς γίνεται δάκτυλος . Τὸ γʹ ἀντισπαστικὸν διπλοῦν Φερεκράτειον : σύγκειται γὰρ ἐκ βʹ κώλων Φερεκρατείων , ὧν | ||
| τὸ ζʹ τροχαικὸν δίμετρον ὅμοιον τῷ εʹ . τὸ ηʹ Φερεκράτειον λεῖπον μιᾷ συλλαβῇ . τὸ θʹ ἰαμβικὸν δίμετρον ὑπερκατάληκτον |
| ἰαμβέλεγος πλεονάζων συλλαβῇ . τὸ δʹ ἐπιχοριαμβικὸν Πινδαρικὸν , ἢ ἰαμβέλεγος . τὸ εʹ προσοδιακὸν δίμετρον ὑπερκατάληκτον . τὸ Ϛʹ | ||
| πενθημιμερές . τὸ Ϛʹ τροχαϊκὸν ἢ ἐπίτριτος . τὸ ζʹ ἰαμβέλεγος . τὸ ηʹ ἰαμβικὸν πενθημιμερές . τὸ θʹ ὅμοιον |
| τὸ δʹ ἰωνικὸν ἀπὸ μείζονος δίμετρον ἀκατάληκτον . τὸ εʹ προσοδιακὸν δίμετρον ἀπὸ χοριάμβου καὶ ἰωνικοῦ ἀπ ' ἐλάσσονος . | ||
| δευτέρῳ . τὸ ιʹ ἰαμβικὸν δίμετρον ἀκατάληκτον . τὸ ιαʹ προσοδιακὸν μιᾷ συλλαβῇ περιττεῦον , ὅμοιον τῷ Ἐρασμονίδη Χαρίλαε . |
| τὸ αʹ ἀντισπαστικὸν τρίμετρον καταληκτικὸν ἐκ διιάμβου , διτροχαίου καὶ κρητικοῦ . τὸ βʹ ἰωνικὸν δίμετρον καταληκτικὸν ἐκ παίωνος δʹ | ||
| καὶ δίδου ἐν ἀνέσει # λειότατον πλῆρες , μετὰ γλυκέως κρητικοῦ . Ἐπικαλεῖται δὲ τὸ φάρμακον θεοῦ χείρ . Τοῦτο |
| δίμετρον καταληκτικὸν ἐκ διτροχαίου καὶ παλιμβακχείου , καὶ ἔστιν [ ἑφθημιμερὲς ] φερεκράτειον : τὸ βʹ “ δι ' ἡμᾶς | ||
| τὸ Ϙʹ “ πρᾶγμ ' , ὃ τοῦτον ποιήσει ” ἑφθημιμερὲς [ ἐξ ] ἐπιτρίτου βʹ – ˘ – – |
| ἐννέα , καὶ ἡ ἐπῳδὸς κώλων ἐννέα . τὸ αʹ ἐγκωμιολογικὸν δίμετρον καταληκτικόν . τὸ βʹ προσοδιακὸν δίμετρον ἀκατάληκτον ἐκ | ||
| ἡ στροφὴ καὶ ἀντίστροφος κώλων ὀκτώ . τὸ αʹ Πινδαρικὸν ἐγκωμιολογικὸν , τὴν τελευταίαν συλλαβὴν μεταθὲν εἰς τὴν πρώτην . |
| ὅμοιον εἴη τῷ τῆς ἀντιστροφῆς ἤτοι δίμετρον : τὸ Ϙʹ ἀντισπαστικὸν ἐξ ἀντισπάστου καὶ κρητικοῦ ἤτοι ἀμφιμάκρου : τὸ ζʹ | ||
| καταληκτικόν . τὸ ηʹ ἰαμβικὸν δίμετρον βραχυκατάληκτον . τὸ θʹ ἀντισπαστικὸν δίμετρον βραχυκατάληκτον . τὸ ιʹ τὸ αὐτό . τὸ |
| δίμετρον ἀκατάληκτον παίωνα ἔχον ἀντὶ ἰωνικοῦ : τὸ δʹ δακτυλικὸν πενθημιμερές : τὸ αὐτὸ δὲ καὶ χοριαμβικὸν δύναται εἶναι δίμετρον | ||
| τῆς ἀμφήκης . λάμπων πρόβολος ἐμός ] τὸ ηʹ ἀναπαιστικὸν πενθημιμερές . πρόβολος ] τεῖχος , ἀσφαλὴς προστάτης . πρόβολος |
| ζʹ ἐξ ἀντισπάστου καὶ τροχαϊκῆς κατακλεῖδος . τὸ ηʹ ἐκ χοριαμβικοῦ εἰς ἀντισπαστικόν . τὸ θʹ ἐξ ἰωνικῆς βάσεως καὶ | ||
| , ἢ περίοδος . τὸ δʹ προσοδικὸν ἀπὸ ἰωνικοῦ καὶ χοριαμβικοῦ . τὸ εʹ τὸ αὐτὸ τῷ γʹ . τὸ |
| διτροχαίου καὶ κρητικοῦ . τὸ μεʹ παιωνικὸν τρίμετρον καταληκτικὸν ἐκ παιώνων τετάρτων δύο καὶ μολοττοῦ . τὸ μϚʹ ὅμοιον τῷ | ||
| κώλων ιηʹ . τὸ αʹ παιωνικὸν τρίμετρον ἀκατάληκτον , ἐκ παιώνων τετάρτων : κατὰ μονοπεδίαν γὰρ μετρεῖται τὰ τοιαῦτα μέτρα |
| , διότι μὴ πεφυκὸς ἡνώθη . τὸ δὲ ἐν κώλοις ἀσυνάρτητον τοῦτο ἀντιπαθές , ἐναντίοις ποσὶν ἡνωμένον . Τὸ βʹ | ||
| καὶ εʹ ὅμοια τῷ αʹ καὶ βʹ : τὸ Ϛʹ ἀσυνάρτητον ἐκ δύο τροχαικῶν πενθημιμερῶν συγκείμενον . ἐπὶ τῷ τέλει |
| Δεῖ δὲ τὸ ἐλεγεῖον τέμνεσθαι πάντως καθ ' ἕτερον τῶν πενθημιμερῶν : εἰ δὲ μή , ἔσται πεπλημμελημένον , οἷον | ||
| λειπούσης συλλαβῆς . τὸ γὰρ ἐγκωμιολογικὸν ἐκ δακτυλικοῦ καὶ ἰαμβικοῦ πενθημιμερῶν σύγκειται . Τὸ εʹ ὅμοιον τῷ βʹ , δακτυλικὸν |
| τὸ ηʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον . τὸ θʹ ἀντισπαστικὸν δίμετρον βραχυκατάληκτον . τὸ ιʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον : ἰδίως δὲ | ||
| τὸ βʹ τροχαϊκὸν μονόμετρον ὑπερκατάληκτον . τὸ γʹ Ἰωνικὸν δίμετρον βραχυκατάληκτον . τὸ δʹ χοριαμβικὸν δίμετρον ὑπερκατάληκτον . τὸ εʹ |
| συζυγίας τροχαϊκῆς ἤτοι ἐπιτρίτου βʹ , τῆς δὲ βʹ Ἰωνικῆς καταληκτικῆς . Τὸ ιϚʹ , ὡς ἐμοὶ δοκεῖ , ἀναπαιστικόν | ||
| τὸ γʹ περίοδος καταληκτική , ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς . τὸ δʹ χοριαμβικὸν καθαρὸν ἡμιόλιον . τὸ εʹ |
| καὶ πρέπον ἥρωσιν , ἡ κωμῳδία δὲ συνέσταλται εἰς τὸ τρίμετρον ἡ νέα . Τὰ πολλὰ οὖν κώλοις † τριμέτροις | ||
| , ὅ ἐστι Φερεκράτειον παρὰ συλλαβήν . τὸ ζʹ ἐπιωνικὸν τρίμετρον καταληκτικόν . ἡ αʹ συζυγία ἰωνική : ἡ βʹ |
| τὰ τροχαικά : τὸ βʹ ὅμοιον δίμετρον καταληκτικὸν ἤτοι ἑφθημιμερὲς Εὐριπίδειον : τὸ γʹ ὅμοιον τὸν τρίτον ἔχον πόδα ἴαμβον | ||
| τούτου λέγουσιν , οὔ μοι δοκεῖ εὔλογα . Τὸ ζʹ Εὐριπίδειον ἢ ληκύθιον : τροχαϊκὸν γάρ ἐστιν ἑφθημιμερές . Τὸ |
| δίμετρα ἀκατάληκτα ἃ καλεῖται κρητικὰ δίρρυθμα . τὸ δὲ δʹ τροχαϊκὸν ἑφθημιμερὲς ὃ καλεῖται Εὐριπίδειον ἢ ληκύθιον , ὁ εʹ | ||
| ἑξῆς δʹ ἰαμβικὰ δίμετρα ἀκατάληκτα , τὸ δὲ εʹ , τροχαϊκὸν ἑφθημιμερές . ὁ κζʹ ἰαμβικὸς στίχος τρίμετρος ἀκατάληκτος . |
| βʹ . τὸ ηʹ καταληκτικὸν ἐκ διτροχαίου καὶ βακχείου ἢ ἀμφιβράχεος . τὸ θʹ ὅμοιον τῷ βʹ . τὸ ιʹ | ||
| . τὸ Ϛʹ ὅμοιον τρίμετρον καταληκτικὸν ἐξ ὁμοίων ποδῶν καὶ ἀμφιβράχεος . ἐπὶ τῷ τέλει παράγραφος . δυσδαίμων σφιν ἡ |
| εἰ δὲ βούλει , ἰαμβικὸν τρίμετρον βραχυκατάληκτον τοῦ δευτέρου ποδὸς χορείου , τοῦ δὲ τρίτου δακτύλου . τὸ ναʹ ἀντισπαστικὸν | ||
| ἰωνικὸν ἀπ ' ἐλάττονος δίμετρον καταληκτικόν , ἐξ ἰωνικοῦ καὶ χορείου ἢ ἀναπαίστου διὰ τὴν ἀδιάφορον : τὸ εʹ ὅμοιον |
| μὲν δοχμιακά , ὧν τὸ μὲν συντίθεται ἐξ ἰάμβου καὶ παίωνος διαγυίου , τὸ δὲ δεύτερον ἐξ ἰάμβου καὶ δακτύλου | ||
| γʹ ὅμοιον τῷ αʹ : τὸ δʹ ὅμοιον ἡμιόλιον ἐκ παίωνος : τὸ εʹ δίμετρον ἐκ παλιμβακχείων : τὸ Ϛʹ |
| κατακλιθεὶς γὰρ καὶ μὴ δυνάμενος ὑπενεγκεῖν παρεκάλει . παιωνικὸν βακχειακὸν δίρρυθμον . δάκνουσι μ ' ἐξέρποντες οἱ Κορίνθιοι : ἴσως | ||
| φιληδεῖ Ἀριστοφάνης , καὶ ὑστέραν τρίκωλον . τὸ αʹ παιωνικὸν δίρρυθμον : τὸ βʹ καὶ γʹ καὶ δʹ ἐξ ἰαμβικῆς |
| Ἰωνικὸν ἀπ ' ἐλάσσονος τρίμετρον καταληκτικόν . τὸ εʹ Σαπφικὸν ἑνδεκασύλλαβον . τὸ Ϛʹ Ἰωνικὸν δίμετρον ἀκατάληκτον . τὸ ζʹ | ||
| τὰ πυκνότατα παραθησόμεθα . Ἐπιχοριαμβικὸν μὲν οὖν τὸ Σαπφικὸν καλούμενον ἑνδεκασύλλαβον , οἷον Ποικιλόθρον ' ἀθανάτ ' Ἀφρόδιτα : τοῦτο |
| παίωνα δεύτερον ἔχει ἀντὶ ἰωνικοῦ . τὸ ηʹ τροχαϊκὸν καθαρὸν ἰθυφαλλικόν . ἐπὶ τῷ τέλει τῆς τε στροφῆς καὶ ἀντιστροφῆς | ||
| ἐκ παίωνος βʹ καὶ χοριάμβου : τὸ δὲ γʹ τροχαϊκὸν ἰθυφαλλικόν : τὸ εʹ ἰαμβικὸν πενθημιμερές : τὸ δὲ ζʹ |
| . τὸ δʹ ὅμοιον τρίμετρον βραχυκατάληκτον ἐξ ἐπιτρίτου πρώτου , χοριάμβου καὶ ἰάμβου : τὸ μέντοι κῶλον τῆς ἀντιστροφῆς ἀντὶ | ||
| βʹ καὶ Κρητικοῦ . Τὸ γʹ χοριαμβικὸν δίμετρον ἀκατάληκτον ἐκ χοριάμβου καὶ ἀντισπάστου . Τὸ δʹ πολυσχημάτιστον τρίμετρον ἀκατάληκτον ἐκ |
| ὑπερκατάληκτος εἰς δισύλλαβον , ὑπερκατάληκτος εἰς συλλαβήν , ἀκατάληκτος , καταληκτικὴ εἰς δισύλλαβον , καταληκτικὴ εἰς συλλαβήν , βραχυκατάληκτος . | ||
| ὑπερκατάληκτος εἰς συλλαβήν , ἀκατάληκτος , καταληκτικὴ εἰς δισύλλαβον , καταληκτικὴ εἰς συλλαβήν , βραχυκατάληκτος . Ἐπισημότατον δὲ ἐν αὐτῷ |
| τρίτον τοῦ πρώτου ποδὸς πεντασυλλάβου καταληκτικόν . τὸ τέταρτον ἐκ διτροχαίου καὶ ἐπιτρίτου τρίτου ἀκατάληκτον . τὸ εʹ ὅμοιον τῷ | ||
| Τὸ αʹ προσοδιακὸν τρίμετρον ἀκατάληκτον ἐξ Ἰωνικοῦ καὶ χοριάμβου καὶ διτροχαίου ἢ ἐπιτρίτου . Τὸ βʹ δακτυλικὸν τρίμετρον ἀκατάληκτον . |
| ἰαμβικήν . Τὸ δʹ ἀντισπαστικὸν δίμετρον ἀκατάληκτον , ὃ καλεῖται Γλυκώνειον , ἐκ διτροχαίου ἢ ἐπιτρίτου . Τὸ εʹ ἰαμβικὸν | ||
| τὸ ιγʹ ἐξ ἀντισπάστου καὶ ἰαμβικοῦ ἑφθημιμεροῦς . τὸ ιδʹ Γλυκώνειον . τὸ ιεʹ ἰαμβικὸν δίμετρον ἀκατάληκτον . τὸ ιϚʹ |
| μεʹ . τὸ δὲ μέτρον καλεῖται εὐπολίδειον : ἔστι δὲ ἐπιχοριαμβικόν , οὗ τὸ τροχαϊκὸν μέρος οὐ κατὰ τάξιν δέχεται | ||
| ἀντίστροφος κώλων θʹ . τὸ αʹ τροχαϊκὸν ἐπίτριτον , ἢ ἐπιχοριαμβικόν . τὸ βʹ ἰωνικὸν ἀπ ' ἐλάσσονος , τρίτου |
| , τοῦ βʹ παίωνος γʹ καὶ συλλαβῆς . καλεῖται δὲ Σαπφικὸν ἢ Ἱππωνάκτειον : εὕρημα γάρ ἐστι Σαπφοῦς , ὁ | ||
| μετατιθεὶς ἐπὶ τὴν ἄρχουσαν . γεγένηται δὲ καὶ παρὰ τὸ Σαπφικὸν , συστεῖλαν τὴν παρατέλευτον , πλεονάσαν μιᾷ συλλαβῇ . |
| κατὰ τὸ ἰαμβικόν . τὸ δὲ δʹ ὅμοιον τοῖς πρώτοις χοριαμβικὸν δίμετρον ἀκατάληκτον , τὸ εʹ χοριαμβικὸν καθαρόν , τὸ | ||
| βραχυκατάληκτον . τὸ δʹ ἰαμβικὸν δίμετρον καταληκτικόν . τὸ εʹ χοριαμβικὸν δίμετρον βραχυκατάληκτον . τὸ Ϛʹ ἀναπαιστικὸν δίμετρον ὑπερκατάληκτον . |
| στροφὴ καὶ ἀντίστροφος κώλων δέκα . τὸ αʹ ἰαμβικὸν δίμετρον ἀκατάληκτον , ὡς τὸ τίς σὰς παρήειρε φρένας . τὸ | ||
| ] διὰ τὸ δριμύ . ἰοὺ ἰού ] ἰαμβικὸν μονόμετρον ἀκατάληκτον . ἰοὺ ἰού : ἔκθεσις κορωνίδος ἐκ στίχων ἰαμβικῶν |
| . , ὁ τροχαῖος τροχαλὸν ποιεῖ τὸν λόγον , διὸ τροχαῖος καλεῖται ὁ τῶν τρεχόντων ῥυθμός , ὥς φησιν Λογγῖνος | ||
| ποὺς ἁπλοῦς . τὸ βʹ προσοδιακὸν τρίμετρον ἀκατάληκτον : αʹ τροχαῖος τοῦ αʹ ποδὸς λελυμένου : εἶτα ἰωνικὸς ἀπὸ μείζονος |
| τινα καὶ ἐξ ὁμοίων πεποιημένα , οἷον τὰ Ἑρμείου , παιωνικὰ ὄντα , ἐπτά μοι δὶς τριάκοντα βασιλεὺς σχεδόν καὶ | ||
| ὅμοιος . τὸ βʹ καὶ γʹ καὶ δʹ καὶ εʹ παιωνικὰ δίμετρα ἀκατάληκτα δίρρυθμα . ὁ Ϛʹ ὅμοιος τῷ αʹ |
| εἰ δὲ βούλει προσοδιακὸν δίμετρον καταληκτικὸν ἐκ χοριάμβου καὶ Ἰωνικοῦ καταληκτικοῦ . Τὸ θʹ προσοδιακὸν τρίμετρον ἀκατάληκτον : ὁ αʹ | ||
| τοῦ βʹ χοριάμβου , τοῦ γʹ Ἰωνικοῦ ἀπ ' ἐλάσσονος καταληκτικοῦ . τοῦτο καὶ ἀναπαιστικόν ἐστι δίμετρον ἀκατάληκτον , σπονδείου |
| ἁπασῶν τελευταίας συλλαβὰς εἰς μακρὰν ποιήσει τις , ὁ Ἱππώνακτος ἴαμβος ἔσται . ὅτι ἐν τῷ βυρσηναίων καλουμένῳ χορῷ ἕκαστον | ||
| ἔχειν αἱμάτων ἄγος ἐπαίροντα . στροφὴ ἑτέρα κώλων εʹ . ἴαμβος . μάντι ] ὦ . αὐτὸς ἑαυτὸν καλέσας ἐπὶ |
| ἐκ χοριάμβου , ἰάμβου καὶ συλλαβῆς : τὸ εʹ ἐκ προκελευσματικοῦ , σπονδείου καὶ ἰάμβου : τὸ Ϙʹ δίμετρον ἐξ | ||
| . μονόμετρα δὲ τὰ γʹ . τὸ δʹ δὲ ἐκ προκελευσματικοῦ . ποῦ δὲ φίλων ] τροχαϊκὰ Ϛʹ ἑφθημιμερῆ , |
| , ἤτοι ἑφθημιμερῆ καὶ μονόμετρα . τὰ δὲ ἑξῆς ρκαʹ χοριαμβικὰ δίμετρα ἀκατάληκτα καὶ καταληκτικά , ἤτοι ἑφθημιμερῆ καὶ πενθημιμερῆ | ||
| εἴτε ἐπιτρίτου τετάρτου , καὶ διιάμβου : τὰ ἑξῆς δύο χοριαμβικὰ δίμετρα βραχυκατάληκτα : τὸ τρισκαιδέκατον ἐκ χοριάμβου καὶ σπονδείου |
| ἐστι τῷ ‚ ἑαυτοὺς τρώσητε ‚ , ὥσπερ καὶ τὸ Πινδαρικὸν οἱ περὶ Τρύφωνα ἐσημειοῦντο ἐπί τε τοῦ Ὤτου καὶ | ||
| ἀκα - τάληκτον ἐξ Ἰωνικοῦ καὶ χοριάμβου . Τὸ ζʹ Πινδαρικὸν ἐκ Σαπφικοῦ ἑνδεκασύλλαβον , ἤτοι τρίμετρον καταληκτικόν . σύγκειται |
| αὐτό . ἡ ἐπῳδὸς κώλων ἐστὶν ἕνδεκα . τὸ αʹ προσοδικὸν δωδεκάσημον . τὸ βʹ μονόμετρον ἰωνικὸν ἢ ἀναπαιστικόν . | ||
| τελευταία ἀπόδοσις ἀναγκάζει δακτυλικὸν γενέσθαι τὸ κῶλον . τὸ δʹ προσοδικὸν δίμετρον ἀπὸ ἰωνικοῦ , καὶ ἐνόπλιον . τὸ εʹ |
| ποιῆσαι πρίν με τὰς πληγὰς λαβεῖν . ὁ ξʹ μέντοι ἰαμβικὸς ἑφθημιμερής . εἶτα κῶλον ἀντισπαστικὸν ἐξ ἐπιτρίτου πρώτου ἡμιόλιον | ||
| τοῦ τέλους τῆς ἐπῳδοῦ τὰ σημεῖα , ὡς εἴρηται . ἰαμβικὸς τρίμετρος . τάδ ' αὐτόδηλα : αὐτὰ δὲ ταῦτα |
| τροχαϊκῆς . τὸ εʹ χοριαμβικὸν δίμετρον καταληκτικὸν ἐκ χοριάμβου καὶ βακχείου . ἐπὶ τῷ τέλει τῆς στροφῆς καὶ ἀντιστροφῆς παράγραφος | ||
| παιωνικὸν τρίμετρον καταληκτικὸν ἐκ παίωνος βʹ , ἐπιτρίτου γʹ καὶ βακχείου . Τὸ Ϛʹ ἀντισπαστικὸν τρίμετρον ἀκατάληκτον ἐξ ἀντισπάστου , |
| ὃ τὴν μὲν πρώτην ἔχει ἰαμβικήν , ἤτοι ἑξάσημον ἢ ἑπτάσημον , τὴν δὲ δευτέραν ἰωνικὴν ἢ δευτέραν παιωνικήν , | ||
| καὶ τὴν τροχαϊκήν , ὁπόταν προτάττοιτο τῆς ἰωνικῆς , γίνεσθαι ἑπτάσημον [ τροχαϊκήν ] , τὸν καλούμενον δεύτερον ἐπίτριτον : |
| ἢ δακτυλικὸν ὃ καλεῖται Φαλαίκειον . τὸ βʹ τροχαϊκὸν δίμετρον καταληκτικόν , ἤτοι ἑφθημιμερὲς Εὐριπίδειον . τὸ γʹ ἰαμβικὸν ἑφθημιμερές | ||
| ἀκατάληκτον μετρούμενον ὡς οἱ ἡρωϊκοί , τὸ δεύτερον δὲ ἑξάμετρον καταληκτικόν , τὸ τρίτον πεντάμετρον ἀκατάληκτον , τὸ τέταρτον πεντάμετρον |
| . ἡ ἐπῳδὸς κώλων ἐστὶν ἕνδεκα . τὸ αʹ προσοδικὸν δωδεκάσημον . τὸ βʹ μονόμετρον ἰωνικὸν ἢ ἀναπαιστικόν . τὸ | ||
| . τὸ εʹ τὸ αὐτὸ τῷ γʹ , ἀλλὰ τοῦτο δωδεκάσημον , τὸ δὲ γʹ ἑνδεκάσημον . τὸ Ϛʹ δίμετρον |
| τοῦ αʹ ἰάμβου λελυμένου . ἔστι γὰρ ἐξ ἰαμβικοῦ καὶ δακτυλικοῦ πενθημιμερῶν . Τὸ ιαʹ Ἰωνικὸν δίμετρον καταληκτικὸν ἀπὸ ἐλάσσονος | ||
| δὲ καὶ συλλαβὴν μίαν πλείονα . εἴρηται δὲ πλὴν τοῦ δακτυλικοῦ , ὅτι τοῦτο μόνον κατὰ μονοποδίαν μετρεῖται διὰ τὸ |
| τὸ ἰαμβικὸν μέτρον καὶ ἄριστά γε εἰδέναι τί ἐστι τὸ ἰαμβικόν , οὕτως ἔχει καὶ ἐπὶ τῶν μελῳδουμένωνοὐ γὰρ ἀναγκαῖόν | ||
| . Καὶ ἀπορήσεις ἐντεῦθεν , πῶς ἐπεὶ καὶ τὸ Δημοσθένης ἰαμβικόν ἐστιν ὄνομα , ἅτε τὴν παραλήγουσαν βραχεῖαν ἔχων , |
| ὅσα πρὸς τῷ τελείῳ προσέλαβε μέρος ποδός , οἷον ἐπὶ ἰαμβικοῦ εἶμ ' ὧτε πυσσάκω λυθεῖσα : τοῦτο μὲν οὖν | ||
| μιᾶς λειπούσης συλλαβῆς . τὸ γὰρ ἐγκωμιολογικὸν ἐκ δακτυλικοῦ καὶ ἰαμβικοῦ πενθημιμερῶν σύγκειται . Τὸ εʹ ὅμοιον τῷ βʹ , |
| εἰκοσίκωλον , ὧν τὰ μὲν βʹ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ ἑφθημιμεροῦς : τὰ δὲ ἑξῆς δύο ἐν ἐκθέσει ἰαμβεῖα | ||
| . Ἄλλο ἀσυνάρτητον ὁμοίως κατὰ τὴν πρώτην ἀντιπάθειαν , ἐκ τροχαϊκοῦ διμέτρου ἀκαταλήκτου καὶ ἰαμβικοῦ ἑφθημιμεροῦς , ὅπερ ἐὰν παραλλάξῃ |
| ἕξ : κρητικός , ὃς συνέστηκεν ἐκ τροχαίου θέσεως καὶ τροχαίου ἄρσεως : δάκτυλος κατ ' ἴαμβον , ὃς σύγκειται | ||
| προσοδιακὸν τρίμετρον ἀκατάληκτον : ἡ αʹ συζυγία τροχαϊκὴ τοῦ αʹ τροχαίου διαλελυμένου εἰς τρίβραχυν , εἶτα Ἰωνικὸς ἀπὸ μείζονος , |
| καὶ ἡμιόλιον . Τὸ θʹ ἰαμβικὸν ἑφθημιμερές . Τὸ ιʹ ἐπιωνικὸν τρίμετρον βραχυκατάληκτον : τῆς γὰρ αʹ συζυγίας οὔσης ἰαμβικῆς | ||
| καὶ κατ ' ἀντιπάθειαν μέτρα δύο : ὧν τὸ μὲν ἐπιωνικὸν καλεῖται , ὅτε διποδίας ἰαμβικῆς προκειμένης ἰωνικὴν ἐπιφέρεσθαι συμβαίνει |
| βασιλική ] : τρίτον [ Μενδήσιον καὶ πόλις : δʹ Φατνιτικόν ] : πέμπτον Σεβεννυτικὸν [ καὶ πόλις Σεβέννυτος : | ||
| στόμα ἔστι τὸ Βολβιτικόν , εἶτα τὸ Σεβεννυτικὸν καὶ τὸ Φατνιτικόν , τρίτον ὑπάρχον τῷ μεγέθει παρὰ τὰ πρῶτα δύο |
| ιʹ χοριαμβικὸν ἑφθημιμερές . αʹ χορίαμβος δίμετρος ἀκατάληκτος . βʹ χορίαμβος δίμετρος καταληκτικός . γʹ ἴαμβος πενθημιμερής . δʹ ἀπὸ | ||
| χοριαμβικὸν † δίμετρον . τὸ ιʹ χοριαμβικὸν ἑφθημιμερές . αʹ χορίαμβος δίμετρος ἀκατάληκτος . βʹ χορίαμβος δίμετρος καταληκτικός . γʹ |
| τὴν βάσιν : οἷον εἰ ἐκκειμένου μὲν ἑνὸς δακτύλου , διμέτρου δὲ ἀναπαιστικοῦ κατὰ μέσον πέσοι σπονδεῖος , ἄδηλον πότερα | ||
| δέ ἐστι παρὰ Ἀρχιλόχῳ ἀσυνάρτητον ἐκ δακτυλικοῦ πενθημιμεροῦς καὶ ἰαμβικοῦ διμέτρου ἀκαταλήκτου ἀλλά μ ' ὁ λυσιμελής , ὠταῖρε , |
| τὸ δʹ ἰωνικὸν ἡμιόλιον , ἐκ τροχαϊκῆς συζυγίας ἤτοι ἐπιτρίτου βτέρου καὶ ἰάμβου . τὸ εʹ ὅμοιον καθαρόν , ἐξ | ||
| ἀκατάληκτον ὅμοιον τῷ γʹ , ἐκ παίωνος γʹ καὶ ἐπιτρίτου βτέρου ἤτοι τροχαϊκῆς συζυγίας : εἰ δὲ βούλει , ἰαμβικὸν |
| ἀκατάληκτος . τὸ δʹ περίοδος καταληκτικὴ ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς : εἰ δὲ βούλει , χοριαμβικὸν δίμετρον καταληκτικὸν | ||
| Σαπφικοῦ ἑνδεκασύλλαβον , ἤτοι τρίμετρον καταληκτικόν . σύγκειται δὲ ἐκ τροχαϊκῆς συζυγίας , χοριάμβου καὶ Ἰωνικῆς καταληκτικῆς , ἤτοι ἀναπαίστου |
| , ἐκ δύο χοριάμβων καὶ συλλαβῆς , εἰ δὲ βούλει ἀναπαιστικὸν ἑφθημιμερές : τὸ βʹ ἰωνικὸν ἀπ ' ἐλάττονος δίμετρον | ||
| ἀπ ' ἐλάττονος δίμετρα ἀκατάληκτα καθαρά : τὸ δὲ γʹ ἀναπαιστικὸν ἑφθημιμερές . ἐπὶ τῷ τέλει παράγραφος καὶ διπλαῖ . |
| τροχαϊκῆς βάσεως . ὁ δὲ νεʹ ἐξ ἰαμβικοῦ πενθημιμεροῦς καὶ ἀναπαιστικῆς βάσεως . ἐπὶ τῷ τέλει κορωνὶς ἐξιόντων τῶν ὑποκριτῶν | ||
| ἐν ἐπεισθέσει , ὧν τὸ πρῶτον ἐκ τροχαϊκῆς βάσεως καὶ ἀναπαιστικῆς , καὶ ἑφθημιμερὲς ἢ Ἰωνικόν , ἀπὸ μὲν τριμέτρου |
| βʹ τροχαϊκὸν τρίμετρον καταληκτικὸν Ἀρχιλόχειον . τὸ γʹ Πινδαρικὸν ἐκ Σαπφικοῦ . τὸ δʹ πενθημιμερὲς δακτυλικόν . τὸ εʹ τροχαϊκὸν | ||
| τάληκτον ἐξ Ἰωνικοῦ καὶ χοριάμβου . Τὸ ζʹ Πινδαρικὸν ἐκ Σαπφικοῦ ἑνδεκασύλλαβον , ἤτοι τρίμετρον καταληκτικόν . σύγκειται δὲ ἐκ |
| τοῦ ἐλαχίστου ἑξαπλάσιον . τὸ δὲ παιωνικὸν ἄρχεται μὲν ἀπὸ πεντασήμου ἀγωγῆς , αὔξεται δὲ μέχρι πεντεκαιεικοσασήμου , ὥστε γίνεσθαι | ||
| εἰς ἀντισπαστικόν . τὸ θʹ ἐξ ἰωνικῆς βάσεως καὶ τοῦ πεντασήμου καὶ χοριαμβικοῦ καὶ ἰωνικοῦ ἀπὸ μείζονος . τὸ ιʹ |
| οἶμαί γε τῶν νεωτέρων τὰς καρδίας ” στίχος τρίμετρος ἰαμβικὸς ἀκατάληκτος : τὸ βʹ “ πηδᾶν ὅ τι λέξει ” | ||
| δʹ κῶλα . μεθ ' ὃ ἐν εἰσθέσει ἰαμβικὸς τρίμετρος ἀκατάληκτος . τῆς βʹ περιόδου κῶλα Ϛʹ , ὧν ὁ |
| δακτύλου καὶ συλλαβῆς : τὸ ιβʹ ἀντισπαστικὸν δίμετρον τὸ καλούμενον γλυκώνειον , ἐκ διτροχαίου καὶ διιάμβου : τὸ ιγʹ ἀντισπαστικὸν | ||
| δʹ εʹ ὅμοια ἑφθημιμερῆ ἐξ ἐπιτρίτων : τὸ Ϛʹ ἀντισπαστικὸν γλυκώνειον : τὸ ζʹ ὅμοιον ὑπερκατάληκτον : τὸ ηʹ παιωνικὸν |
| παρ ' Ἀλκμᾶνι , ὃ τὴν μὲν πρώτην ἔχει ἰαμβικὴν ἑξάσημον ἢ ἑπτάσημον , τὰς δὲ ἑξῆς δύο ἰωνικὰς ἑξασήμους | ||
| Ἀφρόδιτα : τοῦτο δὲ τὴν μὲν πρώτην συζυγίαν ἔχει τροχαϊκὴν ἑξάσημον ἢ ἑπτάσημον , τὴν δὲ δευτέραν χοριαμβικήν , τὴν |
| ὁμοίου . ὁ πέμπτος ὅμοιος τῷ γʹ . ὁ Ϛʹ ἀναπαιστικὸς δίμετρος βραχυκατάληκτος . ὁ ζʹ ἀσυνάρτητος ἐξ ἀναπαιστικῆς βάσεως | ||
| ποιητοῦ δὲ ὁ λόγος . κορωνίς : ὁ δὲ στίχος ἀναπαιστικὸς τετράμετρος καταληκτικός . κεκώλισται ἐκ τῶν Ἡλιοδώρου , παραγέγραπται |
| ἀντισπαστικῶν μονομέτρων καὶ διμέτρων καὶ τριμέτρων καταληκτικῶν καὶ ἀκαταλήκτων καὶ βραχυκαταλήκτων κθʹ , ὧν τελευταῖον : μιάστορ ' ἐκείνου πάσσεται | ||
| στίχων θʹ . ὧν ὁ πρῶτος ἀσυνάρτητος ἐξ ἀναπαιστικῶν διμέτρων βραχυκαταλήκτων , καὶ ἰαμβικῆς βάσεως διὰ τὴν ἀδιάφορον . ὁ |
| ἀκατάληκτος , τὰ ἑξῆς ιβʹ δίμετρα ἀκατάληκτα Ἀνακρεόντεια , τὸ πεντεκαιδέκατον μονόμετρον ἀκατάληκτον , ὃ καὶ παρατέλευτον ὀνομάζεται , τὸ | ||
| σεληνῶν εἶναι δύο . Ϛʹ . Τὴν σελήνην ὑποτείνειν ὑπὸ πεντεκαιδέκατον μέρος ζῳδίου . Ἐπιλογίζεται οὖν τὸ τοῦ ἡλίου ἀπόστημα |
| συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε | ||
| ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη |
| , ἣ πεποίηκεν αὐτὸ ἄσημον ἐπισυνάπτουσα τῷ τρίτῳ κώλῳ , πεντάμετρον ἐλεγειακὸν ἔσται συντετελεσμένον τουτί : μήτ ' ἰδίας ἔχθρας | ||
| ἡρωϊκοί , τὸ δεύτερον δὲ ἑξάμετρον καταληκτικόν , τὸ τρίτον πεντάμετρον ἀκατάληκτον , τὸ τέταρτον πεντάμετρον καταληκτικόν , τὸ πέμπτον |
| ἐλάττονος δίμετρον ἀκατάληκτον ἐκ παίωνος τετάρτου ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ | ||
| καὶ πάλιν χοριάμβου : τὸ εʹ δίμετρον ἐκ χοριάμβου καὶ διιάμβου : τὸ Ϙʹ δίμετρον ἐκ χοριάμβου καὶ βακχείου : |
| καταληκτικόν : τὸ Ϙʹ δίμετρον ἐξ ἀμφιμάκρου , βακχείου , ἰάμβου καὶ ἀμφιμάκρου : τὸ ζʹ ἀναπαιστικὸν δίμετρον ἀκατάληκτον : | ||
| , τῶν ἑξῆς χοριάμβου γινομένων . διὰ τοῦτο καὶ ἀπὸ ἰάμβου ἄρχονται ἐν τῷ ἀναπαιστικῷ , ὥσπερ Ἀρχίλοχος ἐν τῷ |
| αὐτὸν καὶ τὸν πα ἀριθμὸν , ὅς ἐστιν ὄγδοον τοῦ χμη . εἰς δὲ συμπλήρωσιν τοῦ ἡμιολίου ἀριθμοῦ τοῦ ψξη | ||
| γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ |
| τρίτον ἐξ ὑπερκαταλήκτου , ἀντὶ τᾶς ἐγὼ οὐδὲ Λυδίαν καὶ βραχυκαταλήκτου , πᾶσαν οὐδ ' ἐραννάν . Ἀνακρέων δὲ οὐκ | ||
| Πελέκεως ἡ ἀνάγνωσις . δύναται καὶ ἀπὸ τοῦ μέτρου τοῦ βραχυκαταλήκτου τις ἄρχεσθαι , εἶτ ' αὐτῷ ἀνταποδιδοὺς τὸ ἴσον |
| οἰκεῖον . ὅμοιον . ἀναπαιστικὸν μονόμετρον . ἀναπαιστικὸν δίμετρον ἐν ἐπεισθέσει τοῦ χοροῦ . καὶ πῶς ὅτε μου : καὶ | ||
| τὸν Δία : διπλῆ καὶ τοῦ χοροῦ περίοδος δίκωλος ἐν ἐπεισθέσει , ὧν τὸ πρῶτον ἐκ τροχαϊκῆς βάσεως καὶ ἀναπαιστικῆς |
| κοινή . στίχοι ξδʹ . + στροφὴ χοροῦ ἐκ κώλων ἀντισπαστικῶν εʹ , ὧν τὸ αʹ δίμετρον ὑπερκατάληκτον , τὸ | ||
| στίχοι κβʹ . + ἡ μεσωιδικὴ αὕτη ἀντιστροφὴ κώλων ἐστὶν ἀντισπαστικῶν ιαʹ . τὰ αὐτὰ δέ ἐστι κῶλα ἃ καὶ |
| Ἀντωνίνου Φαωφὶ ιʹ : εἰσὶ σμγʹ , καὶ γίνονται ὁμοῦ υλβʹ . ἀφαιρῶ τὰς τξʹ , λοιπαὶ οβʹ : ταύτας | ||
| . . . . . . . . . τπδʹ υλβʹ υπϚʹ φιβʹ φοϚʹ χμηʹ ψκθʹ λεῖμμα βπλάσιον τοῦ αʹ |
| τρίτης συζυγίας ἐστὶ τὰ τνʹ , ἀφέλω σκθʹ , λείπω ρκαʹ καὶ ἴσχω τὸν τέταρτον . ὁμοῦ οὖν τῶν τεσσάρων | ||
| παρὰ τὰ ͵βφμα , γίνονται Ϙη δʹ ιαʹ λγʹ μδʹ ρκαʹ τξγʹ . Ἔτεμον σφαῖραν εἰς μέρη τέσσαρα καὶ εὑρέθη |
| διὰ τὸ προτίθεσθαι τῆς κορωνίδος , ἐκ κώλων τροχαϊκῶν ἐπιμεμιγμένων χορείοις καὶ ἰάμβοις ηʹ . ὧν τὰ γʹ ἑφθημιμερῆ : | ||
| τὸ μετὰ τὴν κορωνίδα κεῖσθαι , ἐκ κώλων τροχαϊκῶν ἐπιμεμιγμένων χορείοις καὶ ἰάμβοις καὶ ἀναπαίστοις διμέτρων ὀκτωκαίδεκα : ὧν τὰ |
| Κοκκύμηλον σι Κολοκάϲιον σια Κόλλα σιβ Κολοκύνθη σιγ Κόμαροϲ σιδ Κόμμι σιε Κονία σιϚ Κόνυζα διττή σιζ Κορίανον ἢ κόριον | ||
| φοίνικες οἱ πίονες , καὶ γίνεται κλυσμὸς ἀπὸ τούτων . Κόμμι ἢ τραγάκανθα ὁμοῦ τινι τῶν εἰρημένων ἕψεται . ἢν |
| , ἐκ κώλων τροχαϊκῶν ἐπιμεμιγμένων χορείοις καὶ ἰάμβοις καὶ ἀναπαίστοις διμέτρων ὀκτωκαίδεκα : ὧν τὰ μὲν αʹ , βʹ , | ||
| τοῦ μακροῦ καὶ τῆς ἐκθέσεως τούτου παράγραφος . κώλων δέκα διμέτρων πλὴν τοῦ τελευταίου καταληκτικῶν . ἐπὶ πᾶσι παράγραφος . |
| ἑφθημιμερὲς ἐκ παιῶνος δʹ καὶ βακχείου : τὸ γʹ τρίμετρος ὑπερκατάληκτος ἐκ διιάμβου , παιῶνος αʹ , ἐπιτρίτου γʹ καὶ | ||
| οἶμαί σοι δὲ ταῦτα μεταμελήσειν , ὃς μόνος ἐστὶ τρίμετρος ὑπερκατάληκτος . τί δῆτα ; πότερον : σύστημα κατὰ περικοπὴν |
| βραχυκατάληκτον , ἐξ ἐπιτρίτων πρώτων δύο καὶ ἰάμβου . τὸ βτερον προσοδιακὸν δίμετρον ἀκατάληκτον , ἐκ παίωνος βτέρου ἀντὶ ἰωνικοῦ | ||
| βτέρα αὕτη στροφὴ κώλων ἐστὶ ιβʹ . τὸ αʹ τὸ βτερον καὶ τὸ γʹ ἰαμβικὰ δίμετρα ἀκατάληκτα , ἃ καλεῖται |
| ' ἂν ὀρθότερον ἢ πολιτικῆς . Πάνυ μὲν οὖν . Πέμπτον δὲ ἆρ ' ἂν ἐθέλοιμεν τὸ περὶ τὸν κόσμον | ||
| λογικὸν τὸ ὡς ἐν ἀνθρώπῳ , ὅπερ ἐστὶν ἀδύνατον . Πέμπτον ἐπιχείρημα : καί φησιν ὅτι τῷ Σωκράτει τὸ καθόλου |
| ιβʹ . τὸ αʹ τὸ βτερον καὶ τὸ γʹ ἰαμβικὰ δίμετρα ἀκατάληκτα , ἃ καλεῖται Ἀνακρεόντεια ὡς κατακόρως τούτοις τοῦ | ||
| τροχαϊκὴ βάσις : τὰ ιβʹ ιγʹ χοριαμβικὰ εἰς βακχεῖον περαιούμενα δίμετρα : τὸ ιεʹ ἀναπαιστικὸν δίμετρον βραχυκατάληκτον : τὰ ιζʹ |
| ἐξ οὗ παράγωγον τὸ δηθύνω : κνήθω : λήθω : μήθω : νήθω : πρήθω : πλήθω : τὸ πήθω | ||
| , ὁ κατωφερὴς , καὶ παρωνύμως μάχλας . Μαθεῖν . μήθω ἐστὶ ῥῆμα . ἀφ ' οὗ ἔμαθον δεύτερος ἀόριστος |
| ἐϲτι , καταπλαττομένη δὲ ῥυπτικὸν ἔχει τι καὶ διαφορητικόν . Λάπαθον διαφορητικῆϲ μετρίωϲ ἐϲτὶ δυνάμεωϲ , καὶ δηλονότι θερμότητοϲ μετέχει | ||
| : πόλις ἐστίν : ἔχει ὕφορμον . Ἀπὸ Κερυνείας εἰς Λάπαθον στάδιοι υνʹ . πόλις ἐστὶν ἔχουσα ὅρμον . Ἀπὸ |
| εἰσὶ χοριαμβικὰ δίμετρα ἀκατάληκτα καὶ καταληκτικὰ , ἤτοι ἑφθημιμερῆ , πενθημιμερῆ καὶ ἡμιόλια , καὶ τρίμετρα βραχυκατάληκτα καὶ καταληκτικά . | ||
| , κώλων ἀναπαιστικῶν εʹ . ὧν τὰ αʹ , βʹ πενθημιμερῆ . τὰ γʹ , δʹ δίμετρα ἀκατάληκτα . τὸ |
| μονάδος ἄχρι δεκάδος πολυπλασιάσῃς , συνθήσεις τὸν προειρημένον ἀριθμὸν τὸν τπεʹ : τὰ δὲ τπεʹ τοῦ νεʹ τὸ ἑπταπλάσιον . | ||
| , συνθήσεις τὸν προειρημένον ἀριθμὸν τὸν τπεʹ , τὰ δὲ τπεʹ τοῦ νεʹ τὸ ἑπταπλάσιον . ἔτι ἐὰν ψηφίσῃς τὸ |
| δίμετρα τὰ Ϛʹ , ιβʹ . τὰ δ ' ἄλλα τροχαϊκὰ , τῇ μὲν δίμετρα , τῇ δ ' Εὐριπίδεια | ||
| , τὸν τρίτον ἔχον πόδα τετράβραχυν . τὰ ἑξῆς ἓξ τροχαϊκὰ δίμετρα ἀκατάληκτα ἐπιμεμιγμένα τριβράχεσιν . τὸ δὲ ιγʹ , |
| : σύστημα ἕτερον κατὰ περικοπὴν κώλων ζʹ . τὸ αʹ περιοδικὸν δίμετρον ἀκατάληκτον ἐξ ἰαμβικῆς καὶ τροχαϊκῆς συζυγίας . τὸ | ||
| δίμετρον ἀκατάληκτον ἐξ ἀντισπάστου πεντασυλλάβου καὶ διιάμβου : τὸ γʹ περιοδικὸν δίμετρον ὑπερκατάληκτοντοιοῦτο γάρ ἐστι τὸ τῆς ἀντιστροφῆς , ἐκ |
| δύο : ὧν τὸ μὲν ἐπιωνικὸν καλεῖται , ὅτε διποδίας ἰαμβικῆς προκειμένης ἰωνικὴν ἐπιφέρεσθαι συμβαίνει , ἥτις οἰκειότητα πρὸς τροχαϊκόν | ||
| τὸν δεύτερον ἔχων πόδα πεντασύλλαβον . τὸ τρίτον περίοδος ἐξ ἰαμβικῆς καὶ τροχαϊκῆς βάσεως . τὸ δʹ ἀσυνάρτητον ἐξ ἀναπαιστικῆς |
| καλῶς ἐδεσμεύθη . διπλῆ καὶ ἕπεται δυὰς ὁμοία ἐκ στίχων ἑφθημιμερῶν τῇ πρώτῃ . Γ μέλλω γέ τοι θερίδδειν : | ||
| ἐξευρήματι καινῷ συμπτύκτοις ἀναπαίστοις . Καὶ τὸ ἐκ τῶν ἰαμβικῶν ἑφθημιμερῶν δικατάληκτον Καλλίμαχος Δήμητρι τῇ πυλαίῃ τῇ τοῦτον οὑκ / |
| αὐτό . τὸ ιγʹ ἰαμβικὸν δίμετρον καταληκτικόν . τὸ ιδʹ ἐννεασύλλαβον Σαπφικὸν πλεονάζον μιᾷ συλλαβῇ τοῦ Γλυκωνείου . τὸ ιεʹ | ||
| , ὁ δὲ Ἱππώναξ πολλάκις ἐχρήσατο . ἔστι δ ' ἐννεασύλλαβον . Τὸ βʹ ἐπιωνικὸν τρίμετρον καταληκτικὸν , τοῦ αʹ |
| δευτέραν ἔκλειψιν ἀπεῖχεν ἡ σελήνη τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας σνα νγ : καὶ ἐνθάδε γὰρ ὁ ἀπὸ τῆς ἐποχῆς | ||
| τῶν πετρῶν σμη Λεοντοπόδιον ἢ λεοντοπέταλον σμθ Λεπίδιον σν Λευκόϊον σνα Λεύκη τὸ δένδρον σνβ Λιβανωτόϲ σνγ Λιβάνου αἰθάλη σνδ |
| , καὶ ἀντισπαστικὰ πενθημιμερῆ καὶ ἑφθημιμερῆ καὶ ἡμιόλια καὶ δίμετρα ἀκατάληκτα καὶ τρίμετρα βραχυκατάληκτα , ὧν τελευταῖον “ μνήστορες ἐστέ | ||
| τῷ αʹ : τὸ ιʹ καὶ τὸ ιαʹ τροχαϊκὰ δίμετρα ἀκατάληκτα : τὸ ιβʹ καὶ ιγʹ , τὸ τῆς γυναικὸς |
| θέμα , πλῆμι , τοῦτο δὲ ἐκ τοῦ πλῶ τὸ πληρῶ , καὶ τὸ παθητικὸν πλῆμαι , καὶ ὁ παρατατικὸς | ||
| ” εὐκτικῆς ἐστιν ἐγκλίσεως . ἀπὸ γὰρ τοῦ πλῶ τὸ πληρῶ γίνεται εἰς - μι πλῆμι καὶ τὸ παθητικὸν πλέμαι |
| καὶ ποταμός . καὶ Σεβεννύτης νομὸς καὶ πολίτης . καὶ Σεβεννυτικὸν στόμα . Σεγίδα , πόλις Κελτιβήρων . τὸ ἐθνικὸν | ||
| δὲ Πηλουσιακόν . Καὶ πάλιν σχίζεται δίχα . Τὸ δὲ Σεβεννυτικὸν , τὸ μὲν εἰς τὸ Μενδήσιον , τὸ δὲ |
| ] ὑπερέχεται δὲ ͵αψκη . ιζʹ ͵αϠμδ σιϚ . ιηʹ ͵βμη ρδ : ἐπίτριτος τῶ ιεʹ : ὑπερέχει γὰρ αὐτοῦ | ||
| χιλιάρχης . αἱ δὲ δύο χιλιαρχίαι μεραρχία καλεῖται , ἀνδρῶν ͵βμη , καὶ ὁ τοῦ μέρους τούτου ἡγούμενος καλεῖται μεράρχης |
| Ὁ δὲ κύαθοϲ ἔχει # βʹ ʂ . Ἡ δὲ χήμη , ὅπερ ἐϲτὶ κυάθου τέταρτον , ἄγει ⋖ εʹ | ||
| παραλήγεται : οἷον , μνήμη : φήμη : κνήμη : χήμη : τούτοις ἀκόλουθον καὶ τὸ τιμὴ ὀξυνόμενον τὸ προσηγορικόν |