δυναμένη , ἀποστάσεως δὲ δεομένη . ἐὰν δ ' αὐτόθεν ἀφαιρῶ , ἀρκοῦμαι τῷ ἀκρωτηριασμῷ καὶ τὴν σκυταλίδα πρίζω πρὸς | ||
Γ φησὶν ⌈ οὖν Γ , ὅτι τὸν τρίβωνα οὐκ ἀφαιρῶ Γ ἐμαυτοῦ : τὸν γὰρ τρίβωνα περισπάσας θέλει αὐτὸν |
, ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ | ||
- ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν |
ταύταις παράκειται κατὰ τὸ δʹ κλίμα τῷ μὲν πρώτῳ ὅρῳ κβʹ λγʹ , τῷ δὲ βʹ ὅρῳ μβʹ κζʹ , | ||
Ἁδριανὸς ἔτη κʹ μῆνας ιʹ ἡμέρας κηʹ . Ἀντωνῖνος ἔτη κβʹ μῆνας ζʹ ἡμέρας κϚʹ . Οὐῆρος ἔτη ιθʹ ἡμέρας |
δίμετρα ἀκατάληκτα καὶ καταληκτικὰ , ἤτοι ἑφθημιμερῆ δʹ , μονόμετρα κϚʹ , ὧν τὸ κεʹ μονόμετρον , παρατελευταῖον ὀνομαζόμενον , | ||
οζʹ Ἄρεως ἑνδέκατος , δύσκολος καὶ θανατηφόρος . οηʹ Κρόνου κϚʹ , Σελήνης ἕκτος , χαλεπός . πʹ Ἀφροδίτης ιϚʹ |
ζ . Γίνεται οὖν ὁ ἐνιαυτὸς κατ ' αὐτοὺς ἡμερῶν τξε καὶ ε ἐννεακαιδεκάτων . Ἐν δὲ τοῖς σλε μησὶ | ||
ἐστιν ἡμερῶν τξε ἐννεακαιδεκάτων ε . Πλεονάζουσι δὲ αὗται τῶν τξε δʹ ἡμέρας οϚʹ . Δι ' ἣν αἰτίαν οἱ |
γύναια . οἱ δὲ κλιμακτῆρες ἔτος ζʹ , ιγʹ , κγʹ , μγʹ , νβʹ , ξϚʹ , οδʹ , | ||
ὡρῶν ιε : Προκύων ἑῷος δύνει . Ἱππάρχῳ νότος . κγʹ . ὡρῶν ιδ ∠ ʹ : ὁ ἐν τῷ |
τὰ δὲ παʹ τρὶς σμγʹ : ηʹ θʹ ξδʹ οβʹ παʹ ρϞβʹ σιϚʹ σμγʹ : εἶτα προστίθεμεν τοῖς σμγʹ ἀπὸ | ||
θʹ , κατὰ δὲ ἐμβαδομετρίαν ὡς ὁ κεʹ πρὸς τὸν παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν |
ιβʹ , ιαʹ καὶ λοιπὰ Ϛʹ : ταῦτα δωδεκάκις γίνονται οβʹ , καὶ ἑκάστου ἐκκρουσθέντος κύκλου ἀνὰ αʹ , γίνονται | ||
' ἑαυτά , καὶ γίνεται παʹ : ηʹ θʹ ξδʹ οβʹ παʹ : εἶτα πάλιν τούτων ἕκαστον ληφθήτω τρίς , |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
Περὶ χαλαζίων . ιζʹ . Περὶ ἀκροχορδόνων καὶ ἐγκανθίδων . ιηʹ . Περὶ πτερυγίων . ιθʹ . Περὶ ϲταφυλωμάτων . | ||
ιβʹ ὦμοι , ἀπὸ ιγʹ ἕως ιζʹ κοιλία , ἀπὸ ιηʹ ἕως κʹ μηροί , ἀπὸ καʹ ἕως κγʹ μέσαι |
πρὸς τὴν ΛΓ , διὰ τὸ νῦν ἄρα δειχθὲν τοῦ ογʹ τὸ πρῶτον λόγος τοῦ ΓΜ πρὸς τὸ ΕΗ δοθείς | ||
ἐν τῷ γʹ ὅρῳ ἔτη ογʹ : καὶ ἐτελεύτησεν τῷ ογʹ ἔτει . εἰ δὲ ὁ τῆς Σελήνης γνώμων ὑπερεῖχεν |
τῆς σελήνης τοὺς τῶν ἀστέρων , τὴν μὲν ἐν τῷ λβʹ ἔτει φησὶ γεγονέναι τοῦ Μεχὶρ κζʹ πρωίας , τὴν | ||
δραχ . κʹ κόμμεως . . . . δραχ . λβʹ τοῦ φαρμάκου . . . δραχ . λϚʹ ὕδωρ |
πολὺ * γὰρ * πλῆθος Ἑλλήνων τὸ μὲν ναυαγῆσαν βρωθήσεται κή - τεσι θαλασσίοις , οἱ δὲ τοῖς ἀνέμοις εἰς | ||
διὰ τοῦτο προσειληφότες τὸ Τ ἄνακτος κλίνομεν . Καν . κή . Ὁ μύρμηξ . Ἔστι μὲν καὶ αὐτὸς τῶν |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
ἔπη † ἐπὶ † τὸ θέατρον παραβῆναι . Θεοπόμπου δράματα ιζʹ . Στράττιδος δράματα ιϚʹ . Φερεκράτους δράματα ιηʹ . | ||
διεδέξατο Βαλεάζωρος , βιώσας ἔτη μγʹ , ὃς ἐβασίλευσεν ἔτη ιζʹ . μετὰ τοῦτον Ἀβδάστρατος , ὃς βιώσας ἔτη κθʹ |
μοῖραι νϚ κ . ἃς καὶ διπλώσαντες , τὰς γενομένας ριβ μ εἰσηνέγκαμεν εἰς τὸν τῶν ἐν κύκλῳ εὐθειῶν κανόνα | ||
ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν |
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
ιγ , ιε , ιζ , ιθ , κα , κγ , κε , κζ : β , δ , | ||
. . . . . . . . ϘϚ γʹ κγ Κόμμανα . . . . . . . . |
, ὥστε γενέσθαι πάντα τὸν ἐκ τῶν β ὀρθογωνίων ἀριθμὸν σνβ . τοσοῦτον δὲ φεν . . . . . | ||
, ἃς ἐὰν ἀφέλωμεν ἀπὸ τῶν κατὰ τὴν τήρησιν μοιρῶν σνβ ζ , ἕξομεν ἐποχὴν εἰς τὸ αʹ ἔτος Ναβονασσάρου |
ἀφειστήκει ὁ ἀστὴρ εἰς τὰ ἑπόμενα τοῦ ἡλίου , μοιρῶν ιη β . διὰ δὲ τοῦ τῆς ἀνωμαλίας κανόνος , | ||
οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων ἐδείχθη ιη λη , οἵων δ ' αἱ β ὀρθαὶ τξ |
μοίρας ιεʹ γίνεται νεʹ ἡ διάστασις : εἰς τὰς ιεʹ ἀπολύω ἄλλα δύο δωδεκατημόρια ἕως Σκορπίου : γίνονται μοῖραι ιϚʹ | ||
πείθονται αὐτοῖς . ἐγὼ μὲν οὖν , ἐγὼ μὲν οὖν ἀπολύω καὶ ὑμᾶς τῆς αἰτίας καὶ Ἀγασίαν , ἂν αὐτὸς |
Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως | ||
ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ |
ὁ ὑπὸ γου καὶ αου # Μο ι γίνεται ΔΥ σξϚ # Μο ι : ταῦτα ἴσα ⃞ῳ . καὶ | ||
σξγ Λωτὸϲ ὁ ἥμεροϲ σξδ Λωτὸϲ τὸ δένδρον σξε Μάκερ σξϚ Μαλαβάθρου φύλλα σξζ Μαλάχη σξη Μανδραγόραϲ σξθ Μάραθρον σο |
σ Κιννάρα σα Κίκεωϲ ὁ καρπόϲ σβ Κιϲθὸϲ ἢ κίϲθαροϲ σγ Ὑποκυϲτίϲ σδ Κιϲθὸϲ ἢ λήδων σε Κιϲϲόϲ σϚ Κνῆκοϲ | ||
δεύτερον ἐπὶ τὸν γʹ πολλαπλασιάσαντες , καὶ τοῦ γενομένου ἀριθμοῦ σγ λβ , τὸ ρκʹ λαβόντες , ἕξομεν α μα |
αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ | ||
ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους . |
Νίνου Πῖκος ὁ καὶ Ζεὺς ἐβασίλευσε τῆς Ἰταλίας , ἔτη ρκʹ κρατῶν τῆς δύσεως . ἔσχε δὲ υἱοὺς καὶ θυγατέρας | ||
ἕν , ἅ ἐστιν ὁμοῦ τρία , δὶς ποιῶ τὸν ρκʹ , καὶ τὸν σμʹ μερίζω παρὰ τὸν τρίτον . |
. . . . . . . . πζ δʹ λβ δʹ Ἄρδεα . . . . . . . | ||
καὶ ἡ μὲν ἐπὶ τῆς ΕΗ περιφέρεια τοιούτων ἐστὶν λθ λβ , οἵων ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος τξ |
μο θ , ἤτοι τῶν φοϚ ξδων , καταλείπονται ιϚ ξδα ἅτινά εἰσι τετράγωνος . Αἱ δὲ κα μονάδες συνάγουσιν | ||
ἀπὸ τῶν κα καὶ ποιῶν τοὺς λοιποὺς τετραγώνους , φξ ξδα , καὶ φανερὰ ἡ ἀπόδειξις . . Εἰς τὸ |
καὶ ὁμοίως κατὰ τὴν προκειμένην ἔφοδον , ἐὰν ἀφέλῃς τὰς κεʹ τοῦ Ὑδροχόου καὶ τῶν λοιπῶν τὸ τρίτον λάβῃς , | ||
δὲ ἀπὸ τῶν βάσεων , τό τε ηʹ καὶ τὸ κεʹ . δεῖ οὖν τούτοις τοῖς τέσσαρσι τῷ δʹ καὶ |
τὰ πέρατα ἐπέχει μοίρας ιδʹ γοʹʹ μβʹ ∠ ʹʹ καὶ ιϚʹ μγʹ καὶ ἡ Ἰδουβέδα , ἧς τὰ πέρατα ἐπέχει | ||
χώρᾳ τὸν σπονδεῖον ἀλλ ' ἐν τῇ βʹ . Τὸ ιϚʹ ἐπιωνικὸν καθαρὸν δίμετρον ἀκατάληκτον , καθαρὰν ἰαμβικὴν ἔχον τὴν |
ἐλάσσων ἄρα ἡ ΕΥ τῆς ΞΨ , ὅπερ : ∼ ιθʹ . Δεδειγμένων δὴ τούτων ἑξῆς ἀποδείξομεν εἰς ὃ ταῦτα | ||
, ἐπὶ ηʹ ὥρᾳ τῆς νυκτός , Ὑδροχόος . Φευρουαρίου ιθʹ , ἐπὶ κʹ ὥρᾳ τῆς νυκτός , Ἰχθύες . |
μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ | ||
ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ |
δὲ τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι | ||
Διὶ ἡμέρας κβ , Ἄρει ἡμέρας κη , Ἡλίῳ ἡμέρας λϚ , Ἑρμῇ λη , Σελήνῃ ἡμέρας ιζ : Ἑρμῆς |
ιεʹ , ὁλκὰϲ ριβʹ ʂ . Ἡ λίτρα ἔχει ὁλκὰϲ Ϙʹ . Τὸ δὲ δηνάριον ἔχει γράμματα δʹ . Τὸ | ||
ᾗ ὅρμος ναυσὶ , στάδιοι σʹ , μίλια κϚʹ , Ϙʹ Ϛʹ . Ὀδησσὸν κτίζουσι Μιλήσιοι , ὅτε Ἀστυάγης ἦρχε |
. Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου | ||
Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ |
μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β | ||
τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο |
ρϘβ Κενταύριον τὸ μέγα ρϘγ Κενταύριον τὸ μικρόν ρϘδ Κέραϲοϲ ρϘε Κερατωνία ρϘϚ Κέϲτρον ρϘζ Κηκίϲ ρϘη Κηρόϲ ρϘθ Κιβώριον | ||
: καὶ ἐκτίθεμαι δύο ἀριθμοὺς ὧν τὸ ὑπό ἐστι Μο ρϘε , καί εἰσι ιε καὶ ιγ : καὶ τῆς |
τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ | ||
δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ |
ρξϚ Περὶ λουτρῶν ρξζ Περὶ λουτρῶν αὐτοφυῶν ρξη Περὶ ψυχρολουϲίαϲ ρξθ Περὶ τῆϲ εἰϲ ἔλαιον ἐμβάϲεωϲ ρο Περὶ ἀποϲπογγιϲμοῦ ροα | ||
λϚ ιδ λθ ια λ # , Διὸς δὲ μοίρας ρξθ λ λγ μδ κζ # # , Ἄρεως δὲ |
ΒΓ . ἄλογον ἄρα διὰ τὸν ὅρον . Διὰ τὸ κζʹ τοῦ ιʹ δυνατόν ἐστι πορίσασθαι τὸ δεδομένον τῆς προτάσεως | ||
καὶ οὐκ εἰς τὰ προηγούμενα , σελήνη μὲν ἐν ἡμέραις κζʹ καὶ τρίτῳ μάλιστα ἡμέρας καὶ νυκτὸς διέρχεται : ὁ |
ὁμοίως β ιγ , ἡ δὲ ΝΖ τῶν λοιπῶν νε μθ . διὰ τοῦτο δὲ καὶ ἡ ΔΖ ὑποτείνουσα τοιούτων | ||
ἔγγιστα # λϚ ν κδ , λοιπαὶ γίνονται ριζ ιβ μθ νδ . Ἐπὶ δὲ τοῦ δευτέρου τὰς ἐπιλαμβανούσας ἐν |
ἴσα ἐστὶ τῷ ἀπὸ τῆς ΓΒ τετραγώνῳ : τὰ γὰρ πεντάκις πέντε εἰκοσιπέντε . Ἔστω ἡ ΑΒ εὐθεῖα μονάδων ι | ||
ΓΔΕ : τὸ ἄρα ἐννάκις ὑπὸ ΓΔΕ μεῖζόν ἐστιν τοῦ πεντάκις ὑπὸ ΓΔΕ καὶ τοῦ πεντάκις ὑπὸ ΔΓΕ , τουτέστιν |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
ἐστιν Αἰγυπτιακὰ ͵αι καὶ νυχθήμερα σνθ κβ ν νϚ ιϚ κζ ν ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις υογ , ὁ δὲ | ||
τὰ μὲν ἄλλα ὡσαύτως τῷ πρώτῳ , ἐπὶ στίχους δὲ κζ καὶ σελίδια δ διὰ τὸ τὴν μὲν ἐκ τοῦ |
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη | ||
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ . |
ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα | ||
ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ |
Σύναξον ταύτην τὴν βοτάνην ἀπὸ τῆς πρὸ ιϚʹ καλανδῶν τοῦ Ἰανουαρίου : Αἰγοκέρωτος βοτάνη λάπαθον . Αὕτη δυνάμεις μὲν οὐκ | ||
τὰ δὲ ἐμβάμματα καὶ τὰς ὀπώρας ὡς τὰ προλεχθέντα τοῦ Ἰανουαρίου . ἐκ δὲ τῶν κοδιμέντων καὶ λαχάνων ὁμοίως ὡς |
δὲ οβʹ γίνεται σιϚʹ , τὰ δὲ ξδʹ τρὶς γίνεται ρϞβʹ . τούτων ἐπίτριτα τὰ σνϚʹ , ἅτινα πρὸς σμγʹ | ||
τοῖς ποδαγρικοῖς : λιθαργύρου ⋖ ϞϚʹ , ἐλαίου παλαιοῦ ⋖ ρϞβʹ , οἴνου παλαιοῦ καὶ κιρροῦ διαυγοῦς καὶ ἠρέμα γλυκέος |
ρκ , καὶ πάλιν ἡ μὲν τῆς ΖΘ διπλῆ μοιρῶν ρπβ ν καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ριθ | ||
τῆς γʹ ἀκρωνύκτου ἀπέχων ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας ρπβ μζ : ἐπέλαβεν ἄρα ἐν τῷ μεταξὺ τῶν β |
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
τούτων τῶν ἡμικυκλίων συναναφοραὶ διοίσουσιν τῶν μὲν ὁμαλῶς θεωρουμένων χρόνων ρπ τοῖς διαφόροις τῆς μεγίστης ἢ ἐλαχίστης ἡμέρας παρὰ τὴν | ||
σελήνης ἀριθμοῦ ἀφελοῦμεν τοῦ τοῦ ἐπικύκλου , ὑπὲρ δὲ τὰς ρπ προσθήσομεν αὐτῷ , καὶ ἀπὸ τοῦ οὕτω διακριθέντος τοῦ |
κάθετον , ἐπὶ τὰ θ , γίνονται ͵αψα : ταῦτα ἑνδεκάκις , γίνονται α˙ . ͵ηψια : τούτων τὸ καʹ | ||
γίνονται ριζ : ταῦτα τετράκις , γίνονται υξη : ταῦτα ἑνδεκάκις , γίνονται ͵ερμη : τούτων τὸ ιδʹ , τξζ |
α αἱ πηγαὶ τοῦ ποταμοῦ . . . . . ρκϚ βορ . α Ὄδωκα πόλις . . . . | ||
. . . . . . . . . . ρκϚ ∠ ʹ ιγ . Ἡ ἐκτὸς Γάγγου Ἰνδικὴ περιορίζεται |
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α , | ||
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι |
κἀνάρμοστος ” δίμετρον ἐκ δακτύλου , σπονδείου , ἰάμβου καὶ σπονδείου : τὸ κζʹ “ καταπύγων εἶ κἀναίσχυντος ” δίμετρον | ||
: τὸ ξθʹ ἐξ ἀναπαίστου , σπονδείου , δακτύλου καὶ σπονδείου : τὸ οʹ ἐκ βʹ ἀναπαίστων καὶ βʹ σπονδείων |
πέντε τὸν ἀριθμὸν , ὧν ἡ μὲν δυτικωτέρα καλεῖται Αἰβοῦδα ιεʹ ξβʹ ἡ δ ' ἐφεξῆς αὐτῆς πρὸς ἀνατολὰς ὁμοίως | ||
ἀπολῶ σε κακῶς ” μονόμετρον ἐκ δύο ἀναπαίστων : τὸ ιεʹ “ εἰπέ , τί ποιῶν ” μονόμετρον ἐξ ἀναπαίστου |
θ μο , μο θ ↑ δυ μιᾶς , ἤτοι φξ ξδʹ καταλειφθήσονται , ἀπὸ δὲ τῶν κα μο , | ||
δὲ τῶν κα μο , ἤτοι ͵ατμδ ξδʹ , τῶν φξ ξδʹ . καταλειφθήσονται ψπδ ξδʹ , ὅλος τετράγωνος . |
τὴν ὄψιν μικρὸν φαινόμενον , δυνάμει δὲ μέγα ὑπάρχον . ρμηʹ . Ἀῤῥώστημά ἐστι νόσημα ἐγκεχρονισμένον μετ ' ἀσθενείας πλείονος | ||
. ἐξ ὧν ἀφεῖλον κύκλους ἀνὰ ρκθʹ : γίνονται κύκλοι ρμηʹ , καὶ λοιπαὶ ἡμέραι κδʹ τοῦ ρμθʹ κύκλου . |
οὕτως ἐπιγνώσῃ : πάντοτε τῇ γενεθλιακῇ ἡμέρᾳ προστίθει ἀπὸ μὲν Θὼθ ἕως Φαμενὼθ μοίρας ηʹ , καὶ τοσούτων εὑρήσεις τὸν | ||
γενέσεως καὶ τὸν Ἑρμῆν οὕτως ἐψήφισα : ἔλαβον τὰς ἀπὸ Θὼθ ἕως τῆς ιγʹ τοῦ Μεχὶρ ρξγʹ καὶ ἔξωθεν προσέθηκα |
Περὶ ἐμφυϲήματοϲ . κθʹ . Περὶ ϲτρεμμάτων καὶ θλαϲμάτων . λʹ . Περὶ ϲαρκοθλαϲμάτων καὶ ἐκχυμωμάτων . λαʹ . Περὶ | ||
* ἡδύλογος . * ἀγαθοῦ : ὑπῆρξε τοῖς Ὀλιγαιθίδαις : λʹ γὰρ ἐν ἑκατέρῳ ἀγῶνι ἐνίκησε τῶν Ὀλιγαιθιδῶν . ἔργα |
τὸ ὑπὸ τῶν ΑΒ , ΒΓ μοιρῶν σϚ λεπτῶν α νγ κ . Τὸ ἀπὸ τῆς ΑΒ τετράγωνον ὑπόκειται ὁ | ||
ἐν τῷ αὐτῷ σελιδίῳ παρακείμενα τὰ τῆς ὅλης παραλλάξεως ἑξηκοστὰ νγ ∠ ʹ , ὡς καὶ ἐνθάδε τὴν προήγησιν τῆς |
ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ , | ||
ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ , |
ἐκ τῆς βας διαιρέσεως Μο κη , ὁ δὲ μείζων οβ . καὶ δῆλον ὡς ποιοῦσι τὸ πρόβλημα . ιδ | ||
. . . . . . . . . . οβ ∠ ʹ λβ ∠ ʹ Γαύαρα . . . |
. καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι | ||
μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ |
α κθ ο Ϙθ ζ ια ο λε ια θ ιθ κ ζ α κ δ ζ ιγ κ μγ | ||
ἀκρόποδι λαμπρὸς κοινὸς Ὕδατος . . . . . Ταύρου ιθ ∠ ʹ γʹ νο λα ∠ ʹ αʹ ὁ |
ὑποτείνουσα ρκ , τοιούτων καὶ ἡ μὲν ΕΛ ἔσται ιγ λγ , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων | ||
. . . . . . . . ι γʹ λγ ∠ ʹδʹ Τοκολόσιδα . . . . . . |
ἑῷος δύνει . Ἱππάρχῳ νότος ἢ βορέας , χειμάζει . κʹ . Αἰγυπτίοις χειμῶνος ἀήρ . καʹ . ὡρῶν ιδ | ||
συγκαταδύνει μὲν αὐτοῖς ὁ ζῳδιακὸς ἀπὸ Ὑδροχόου μοίρας γʹ καὶ κʹ ἕως Κριοῦ μοίρας εʹ : μεσουρανεῖ δὲ ἀπὸ Ταύρου |
. Γαϲτρὸϲ κράϲεωϲ γνωρίϲματα . ξεʹ . Πνεύμονοϲ διάγνωϲιϲ . ξϚʹ . Καρδίαϲ γνωρίϲματα . ξζʹ . Ἥπατοϲ κράϲεωϲ διάγνωϲιϲ | ||
καʹ , κϚʹ , λϚʹ , μγʹ , μϚʹ , ξϚʹ , πδʹ , Ϙβʹ . ὁ δὲ τὸν γʹ |
. . . . . . . . . Ϙθ νζ ∠ ʹ ἀφ ' ὧν ῥέουσιν ὅ τε Ῥυμμὸς | ||
ιθ ὀκταετηρίσιν , ὅπερ ἐστὶν ἔτη ρνβ , ἐμβόλιμοι ἄγονται νζ : ἐν δὲ τῷ αὐτῷ χρόνῳ κατὰ τὴν ἐννεακαιδεκαετηρίδα |
. . . . . . . . . . ρλε μγ . Καλοῦνται δὲ αὐτῶν οἱ μὲν παρὰ τὸν | ||
. . . . . . . . . . ρλε η ∠ ʹ Σουσουάρα . . . . . |
, τὸν στέφανον τοῖς στέρνοις προσαγαγοῦσα καινῷ μοιχῷ συμπλακῆναι . καʹ . Οὖσα ξανθὴ τί ῥόδα ζητεῖς ; καὶ μὴν | ||
' στιν ” μονόμετρον ἐξ ἀναπαίστου καὶ σπονδείου : τὸ καʹ “ παρὰ τοῖσι θεοῖς ” μονόμετρον ἐκ βʹ ἀναπαίστων |
κεράμιον ἔχει ἐλαίου οἴνου μέλιτοϲ λι οβʹ λι πʹ λι ρηʹ [ ἀλ . ρκʹ ] ὁ χοῦϲ λι θʹ | ||
τοῖς ιβʹ ζῳδίοις μερίζοντες ἀνὰ ἔτη θʹ εὑρήσομεν τὴν συμπλήρωσιν ρηʹ ἐτῶν : εἰ δὲ τοῖς ζῳδίοις προμερίζοντες ἐκ δευτέρου |
τῆς ΚΒ εὐθείας , ἴσον ἀεὶ φανεῖται τὸ ὁρώμενον . λγʹ . Ἴσον δὲ ἀεὶ τοῦ ὄμματος ἀπὸ τοῦ κώνου | ||
τούτου ἔτος δʹ , ζʹ , ιαʹ , κβʹ , λγʹ , μϚʹ , νβʹ , ξγʹ , οβʹ : |
, καὶ ταῦτα πάλιν ὀκτάκις τπδʹ , οὗ ἐπίτριτος ὁ φιβʹ , μεταξὺ δὲ τούτων δύο ἐπόγδοα , τοῦ μὲν | ||
, τούτου δὲ υπϚʹ , ἀφ ' ὧν ἐπὶ τὰ φιβʹ ὁ λειμματιαῖος γίνεται λόγος . τινὲς δέ φασι μὴ |
# η , τερεβινθίνης # η , πεπέρεως λευκοῦ κόκκους ρξ . τὸ ὕπερον ἀλείφων γλευκίνῳ κόπτε . Ἰσχιαδικοὺς ἐν | ||
∠ ʹ ἡ δὲ ὡς ἐπὶ τὰ Κάσια ὄρη ἐκτροπὴ ρξ μθ ∠ ʹ ἡ δὲ ἐν τούτοις πηγή . |
. . . . . . . . . . ρλβ γοʹ ιε Πολεούρ . . . . . . | ||
αὐτὴν εὐθεῖα τμημάτων ρκ , ἡ δὲ τῆς ΖΗ μοιρῶν ρλβ ιζ κ καὶ ἡ ὑπὸ αὐτὴν εὐθεῖα τμημάτων ρθ |
πορθεῖσθαι ἀπὸ τῶν σῶν παίδων , ἁλωθήσεται δὲ ὑπὸ τῶν τετάρτων ἀπὸ σοῦ : ἔστι δὲ ὁ Πύρρος . ἅμα | ||
πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ διπλασιεπιτετραμεροῦς πέμπτων ἐν ἐννάτῳ |
λευκάνθεμον ἄλυϲϲον λβ Ἀρμένιον τὸ τῶν ζωγράφων λγ Κενταύριον λεπτόν λδ Περὶ φλεγμαγωγῶν λε Κολοκυνθίϲ λϚ Τιθύμαλλον λζ Ἴϲιον λη | ||
. Ϛ μα Ἀφροδίτης . . . . . τνθ λδ Ἑρμοῦ . . . . . . . σλδ |
δαφνίδων ἐπίθεμα πθʹ . Περὶ ἀποστήματος ἐν μήτρᾳ , Ἀρχιγένους ρʹ . Ὅπως δεῖ ἐνεργεῖν περὶ τὸ στόμιον τῆς μήτρας | ||
μάρπω , τὸ καταλαμβάνω γίνεται μαρπεῖν , καὶ ἀποβολῇ τοῦ ρʹ μαπέειν κατ ' ἐπέκτασιν . Καὶ τὸ ΒΑΙΝΟΥΣΕΩΝ δὲ |
ἐστιν ὁ ἀστήρ , διδοὺς ἑκάστῳ ζῳδίῳ μοίρας λ , καταλείπονται κγ . λέγομεν εἶναι τὸ δωδεκατημόριον τοῦ Ἑρμοῦ Λέοντος | ||
ἴσαι : οὕτω δὲ μᾶλλον : αἵδε αἱ τοῦ ἰσοσκελοῦς καταλείπονται ἀπὸ ἴσων ἴσων ἀφῃρημένων : πάντα τὰ καταλειπόμενα μετὰ |
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ | ||
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ |
ὁ Γ πρὸς κύβον τὸν Δ . ἔστι δὲ ὁ σιϚ κύβος , πλευραὶ δὲ αὐτοῦ ὁ Ϛ καὶ ὁ | ||
Γ Ϙ καὶ ἓξ καὶ τὸ ἀπ ' αὐτῆς ἐννακισχίλια σιϚ , ἡ δὲ Δ λβ καὶ τὸ ἀπ ' |
συγκροτοῦμαι ἀπὸ τοῦ φίλου Ϙζ εἰ παραμένει μου ἡ γυνή Ϙη εἰ παραμένει μου ὁ πλοῦτος Ϙθ εἰ ἀγοράζω χωρίον | ||
κάθετον , τουτέστι τοὺς ιδ ἐπὶ τοὺς ζ , γίνονται Ϙη : ταῦτα καθολικῶς ἑνδεκάκις , γίνονται ͵αοη : τούτων |
νίτρου . . . . . . . δραχ . ϘϚʹ θείου . . . . . . . δραχ | ||
. ρϘβʹ στυπτηρίας ὑγρᾶς . . . . δραχ . ϘϚʹ νίτρου . . . . . . . δραχ |
: πεντάκις γὰρ εʹ κεʹ , πεντάκις κεʹ ρκεʹ , ἑξάκις Ϛʹ λϚʹ , καὶ ἑξάκις λϚʹ σιϚʹ . τῶν | ||
τῆς ΕΖ τετράγωνον μονάδων οὔσης ἓξ γίνεται μονάδων λϚ : ἑξάκις γὰρ τὰ Ϛ λϚ . ἔστι δὲ καὶ τὸ |
κζ ιε τὸ πλεῖστον ἑῷος ἀφέξει τοῦ ἀκριβοῦς ἡλίου μοίρας κβ κγ . πάλιν ὑποκείσθω τὸ μέσον μῆκος ἀπέχων ἐπὶ | ||
γίνονται ξϚ : καὶ μέριζε καθολικῶς : ὧν τρίτον , κβ . ἔστω ἡ διάμετρος τοσοῦτον . Ἔστω δωδεκάγωνον καὶ |
τοῦ Ἀκάμαντος , τὴν Κύπρον εὐώνυμον ἔχοντι εἰς Πάφον στάδιοι τʹ : πόλις ἐστὶ κειμένη πρὸς μεσημβρίαν : ἔχει δὲ | ||
ἔχει καὶ ὕδωρ . Ἀπὸ Παλαιᾶς ἐπὶ τὸν Φιλεοῦντα στάδιοι τʹ . Ἀπὸ Φιλεοῦντος ἐπὶ τὰ Ἄκρα . . . |
νθ α , τὴν δὲ ΓΖ τῶν αὐτῶν νδ Ϛ μδ , τὴν δὲ ΓΘ ὅλην νθ ε με : | ||
ἀνωμαλίας δ ' ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας ροδ μδ : ἅπερ προέκειτο εὑρεῖν . Πάλιν δ ' ἐφεξῆς |
. Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ Πτολομαϊκὸς | ||
͵δρ : τοιούτου καὶ ἔστι τετράγωνος πλευρὰν ἔχων τὰ σι φοϚʹ . Προσλήψει δὲ τῶν τκδ φοϚʹ ἀναλυθέντων εἰς ὀκτωκαίδεκα |
ιε , ἑκάτερον δὲ τῶν ἑκατέρωθεν τοῦ μετοπωρινοῦ σημείου χρόνοις ρη με . καὶ λοιπὸν μὲν ἄρα τό τε τῶν | ||
! ! ! ] ! ! ω ? [ ] ρη πωϲ τοῦτο . τη [ ] ϲί . ποῖοϲ |
, μοῖρα α , παρ ' ἣν ἐὰν μερίσωμεν τὰ σμ πρῶτα λεπτά , τὸ αὐτὸ ἔσται : σμ γὰρ | ||
Μέλιτος # ζ , οἴνου # κα , ἴων δεσμίδια σμ , φυλλίσας ταῦτα βρέξον ἐν τῷ οἴνῳ ἡμέρας λ |
. . . . . . . . . . ριε δʹ ιζ γʹ Ὀμηνόγαρα . . . . . | ||
. . . . . . . . . . ριε δʹ λ Ϛʹ : Ἀράχωτος . . . . |
Αἴτνην ὁμώνυμον τῷ ὄρει . συνέβη δὲ νικήσαντα αὐτὸν τὴν οηʹ Ὀλυμπιάδα ἐν ταύτῃ τελευτῆσαι . τὸ δὲ ὄνομα τοῦ | ||
τοῦ δὲ τοῦ Ἑρμοῦ ἡμέρας μὲν ξϚʹ , νυκτὸς δὲ οηʹ . γίνεται τὸ πᾶν τξʹ . τούτων μὲν οὖν |
' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . . | ||
ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ |
ἔσται μοιρῶν η λα , ἡ δὲ ΕΜ ὅλη ιδ μγ . ὥστε καὶ ἡ ἀπὸ τοῦ βορείου πέρατος τοῦ | ||
. . . . . . . . . ξγ μγ Γήλακα ἢ Σήλκα . . . . . . |
Ϛ , τοῦ δὲ β τὰ δύο καὶ δ . πολλαπλασίασον τὴν ἐλάττονα πλευρὰν τοῦ Α μετὰ τῆς μείζονος πλευρᾶς | ||
μῆκος τῆς Α . τὰ δὴ οὖν ε ια μϚ πολλαπλασίασον μετὰ τοῦ Ϛ , καὶ γίνονται μονάδες λ λεπτὰ |
ἢ δακτύλων σύγκειται τοῦτο τὸ μέτρον , ἐνταῦθα δὲ ἐκ σπονδείων , πλὴν τῆς τελευταίας : οἰκεῖοι δὲ καὶ οἱ | ||
, σπονδείου καὶ βʹ ἀναπαίστων : τὸ ιθʹ ἐκ βʹ σπονδείων : τὸ κʹ ἐξ ἀναπαίστου καὶ σπονδείου : τὸ |
ἡ δὲ ὅλη προήγησις μοιρῶν θ μθ ιδ καὶ ἡμερῶν ρκγ . κατὰ δὲ τοὺς περὶ τὸ ἐλάχιστον ἀπόστημα λογισμοὺς | ||
. . . . . . . . . . ρκγ λγ Ναυλιβί . . . . . . . |
καὶ ἡ ὑπὸ ΒΕΓ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων ρν κϚ , οἵων εἰσὶν αἱ δύο ὀρθαὶ τξ . | ||
μεμφόμενος τῆς πόλεως κάθαρσιν [ . ] . οὗτος ἔζησεν ρν ἔτη , τὰ δὲ Ϙ ἐκαθεύδησεν . καὶ παροιμία |