| ἐὰν δὲ τὴν μεσουρανοῦσαν ὑπὲρ γῆς θέλωμεν λαβεῖν , τὰς καιρικὰς ὥρας πάντοτε τὰς ἀπὸ τῆς μεσημβρίας τῆς παρελθούσης μέχρι | ||
| : φησὶ γὰρ ἀναστρέψας αὐτός . ἐπειδὴ τὰ τὰς αὐτὰς καιρικὰς ὥρας ἀπέχοντα τοῦ μεσημβρινοῦ τμήματα τοῦ ζῳδιακοῦ καθ ' |
| παρὰ τὸν τότε δρόμον τῆς σελήνης , ἵνα ποιήσωμεν ὥρας ἰσημερινάς , ταῖς γινομέναις ὥραις ἕξομεν τὸν τῆς ἀκριβοῦς συζυγίας | ||
| ' ἀνατολικωτάτου τὰς τοῦ ἡμικυκλίου μοίρας ρπ καὶ ιβ ὥρας ἰσημερινάς : ὥστε συνάγεσθαι τὸ ἐγνωσμένον αὐτῆς μῆκος σταδίων , |
| ἐπειδὴ οὐδὲν δ ' ἕτερον πρόκειται νυνὶ ἰδεῖν μετὰ πόσους ἰσημερινοὺς χρόνους ἡ δοκοῦσα ἀναιρετικὴ μοῖρα παραγίνεται ἐπὶ τὸν τοῦ | ||
| αὐτοῦ γίγνεται τῶν προειρημένων ἡμικυκλίων , δεήσει λαβεῖν μετὰ πόσους ἰσημερινοὺς χρόνους καὶ τὸ ἑπόμενον τμῆμα τὰς ἴσας καιρικὰς ὥρας |
| ζ . Γίνεται οὖν ὁ ἐνιαυτὸς κατ ' αὐτοὺς ἡμερῶν τξε καὶ ε ἐννεακαιδεκάτων . Ἐν δὲ τοῖς σλε μησὶ | ||
| ἐστιν ἡμερῶν τξε ἐννεακαιδεκάτων ε . Πλεονάζουσι δὲ αὗται τῶν τξε δʹ ἡμέρας οϚʹ . Δι ' ἣν αἰτίαν οἱ |
| ηζθʹ κύκλου ἐπιπέδῳ : ἡ αβʹ ἄρα πρὸς ἑκατέραν τῶν ηθʹ κμʹ ὀρθή ἐστιν : ὥστε ἡ ὑπὸ τῶν κμθʹ | ||
| γὰρ τῶν ηζʹ ζθʹ ἀνὰ ἥμισύ ἐστιν ζῳδίου : ἡ ηθʹ ἄρα ζῳδίου ἐστίν , ὥστε καὶ ἡ λμʹ : |
| πανσελήνου ἐπὶ τὴν Σελήνην , καὶ ἐὰν μὲν ἐντὸς τῶν ρπʹ μοιρῶν εὑρεθῇ , χρῆσθαι τῷ ὑποδεδειγμένῳ τρόπῳ : ἐὰν | ||
| γωνία μεʹ μέρος ἐστὶν ὀρθῆς , ἡ ΓΔ ἄρα περιφέρεια ρπʹ μέρος ἐστὶ τοῦ κύκλου : ἡ δὲ ΔΖ περιφέρεια |
| κάλλους καὶ ἀρετῆς ἡ ἐπὶ τὸ νοητὸν γίνεται ἄνοδος . Ϙβʹ Καὶ τοῖς ὀνόμασιν ἠναγκασμένη Ἀπολογεῖται ἐνταῦθα διὰ τί ποιητικοῖς | ||
| ] ἡμέραι [ ] Ϙαʹ , Εὐκτήμονι Ϙʹ , Καλλίππῳ Ϙβʹ . . . . κη : μετοπωρινὴ ἰσημερία . |
| καὶ τοῦ χειμερινοῦ τροπικοῦ ἓξ ὡριαίων διαστημάτων τὸ μὲν πρῶτον ὡριαῖον διάστημα ἐπὶ τοῦ περὶ μέσας τὰς Χηλὰς κύκλου ἀφορίζει | ||
| ἑπόμενος τῶν ἐπ ' εὐθείας τριῶν . Τὸ δὲ τρίτον ὡριαῖον διάστημα ἀφορίζει περὶ μέσον τὸν Ταῦρον τῶν ἐν τῇ |
| ἐφέστηκεν τὸ ηζθʹ , καὶ ἡ τοῦ ἐφεστῶτος τμήματος τοῦ ηζθʹ περιφέρεια εἰς ἄνισα τέτμηται κατὰ τὸ ζʹ σημεῖον , | ||
| Ἐπεζεύχθωσαν γὰρ αἱ αβʹ γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων |
| . Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
| ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
| Ἔμαθες ἄρτι καὶ περὶ κλήρου τύχης , Λοιπὸν δ ' ἀναβιβάζων ἢ τουναντίον Καταβιβάζων προστεθείσθω τῷ λόγῳ . Ἀναβιβάζων ἐντυχὼν | ||
| εἰς η καὶ τὸ ος εἰς ι καὶ τὸν τόνον ἀναβιβάζων . Καὶ οὕτως ἀπὸ τοῦ τυφθέντος ποιεῖ τὸ τύφθητι |
| μοῖραν καὶ τὰς γινομένας μοίρας μέρισον ὁμοίως εἰς τὸ μέσον ἡμερήσιον δρόμημα τῆς Σελήνης καὶ ὡριαῖον , καὶ τὰς γινομένας | ||
| ἐπισυναγόμενα . Ἐὰν τοίνυν τὸ ἀποδεδειγμένον μέσον τοῦ ἡλίου κίνημα ἡμερήσιον # νθ η ιζ ιγ ιβ λα ἔγγιστα πολλαπλασιάσωμεν |
| γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
| τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
| καὶ τὸ Π τοῦ ἀναβιβάζοντος , τὸ δὲ Τ τοῦ καταβιβάζοντος . Κἂν διὰ τὰ προκείμενα διέλωμεν τὴν ΟΜ περιφέρειαν | ||
| τοῦ ΑΒ , ἀναβιβάζοντος δὲ συνδέσμου τοῦ Ζ νοουμένου , καταβιβάζοντος δὲ τοῦ Ε , ἐκλειπτικῶν δὲ ὅρων ἀκριβῶν τῶν |
| τὸν σχηματισμὸν παροδεύωσιν , ἐν δὲ ταῖς ἔχθραις σπονδὰς καὶ ἀποκαταστάσεις κατὰ τὰς τῶν ἀγαθοποιῶν τοῖς σχηματισμοῖς ἐπεμβάσεις . ἐπεὶ | ||
| κατά γε τοῦτο ἐλλείπειν τὴν τοῦ πλάτους περίοδον εἰς ὅλας ἀποκαταστάσεις ἡμίσει καὶ δʹ καὶ ηʹ μιᾶς μοίρας , οἵων |
| συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε | ||
| ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη |
| ' οἷς ἔδοξε λέγειν κατὰ τοῦ ὀνόματος τοῦ Ἔρωτος . Ϙδʹ Καὶ τῶνδε χάριν ἔχων Οἱ γὰρ θεοί εἰσιν οἱ | ||
| καὶ ὠτὸϲ θλαϲθέντοϲ . Ϙγʹ . Περὶ κλειδὸϲ κατεαγείϲηϲ . Ϙδʹ . Περὶ ὠμοπλάτηϲ . Ϙεʹ . Περὶ ϲτέρνου . |
| τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ | ||
| δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ |
| τῇ νουμηνίᾳ , βραδυτάτη δὲ τῇ γῃ : καὶ μένει μηνοειδὴς ὁτὲ μὲν ἕως τῆς εης , ὁτὲ δὲ βραδύτατον | ||
| σχηματισμῶν τῆς σελήνης φωτεινοί εἰσιν οἵδε . . . . μηνοειδὴς μὲν οὖν ἐστιν , ὅταν ὑπὸ γραμμῶν μὴ ὅλως |
| Περὶ ἐμφυϲήματοϲ . κθʹ . Περὶ ϲτρεμμάτων καὶ θλαϲμάτων . λʹ . Περὶ ϲαρκοθλαϲμάτων καὶ ἐκχυμωμάτων . λαʹ . Περὶ | ||
| * ἡδύλογος . * ἀγαθοῦ : ὑπῆρξε τοῖς Ὀλιγαιθίδαις : λʹ γὰρ ἐν ἑκατέρῳ ἀγῶνι ἐνίκησε τῶν Ὀλιγαιθιδῶν . ἔργα |
| αὐτὸν καὶ τὸν πα ἀριθμὸν , ὅς ἐστιν ὄγδοον τοῦ χμη . εἰς δὲ συμπλήρωσιν τοῦ ἡμιολίου ἀριθμοῦ τοῦ ψξη | ||
| γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ |
| ιεʹ , ὁλκὰϲ ριβʹ ʂ . Ἡ λίτρα ἔχει ὁλκὰϲ Ϙʹ . Τὸ δὲ δηνάριον ἔχει γράμματα δʹ . Τὸ | ||
| ᾗ ὅρμος ναυσὶ , στάδιοι σʹ , μίλια κϚʹ , Ϙʹ Ϛʹ . Ὀδησσὸν κτίζουσι Μιλήσιοι , ὅτε Ἀστυάγης ἦρχε |
| κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
| ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
| καθ ' ὃν ὁ ἥλιος εἰς τὸν Σκορπίον ἐμβάλλει , Ὀκτωβρίου καὶ Νοεμβρίου . αἳ δή τοι νύκτας : αἵτινες | ||
| ἐνάτης μέχρις Ἰουνίου κγʹ , ἡ δὲ τούτων δύσις ἀπὸ Ὀκτωβρίου ηʹ μέχρι Δεκεμβρίου ἐνάτης . |
| καλεῖται δὲ ἡ κατ ' ἐπιστροφὴν εἰς τὸ ἐξ ἀρχῆς ἀποκατάστασις ἐπικατάστασις . Ἡ μὲν οὖν πρώτη ἐπιστροφὴ καὶ ἡ | ||
| τῆς τοῦ ὤμου κεφαλῆς ποιησαμένης εὐχερὴς εἰς τὸ κατὰ φύσιν ἀποκατάστασις ἔσται . καταρτίζεται δὲ ὦμος ὑπὲρ τῆς δικλίδος θύρας |
| μῆνα ἐργάζεσθαι . [ βʹ . ] μὴν Ἰαννουάριος : Τυβί . βʹ . [ γʹ . ] Φευρουάριος : | ||
| τοῦ Ἀθὺρ ποσότης ἡμέραι γ , τοῦ δὲ Χοιάκ , Τυβί , Μεχὶρ ἀνὰ ἡμέρας β μετὰ τὴν τῶν ιβ |
| ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
| ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
| τὸ συναχθὲν ἀπὸ τοῦ πολλαπλασιασμοῦ τῶν ὡρῶν καὶ τῶν προκειμένων ὡριαίων τῇ ἡλιακῇ μοίρᾳ μερίσῃς περὶ τὸν ιεʹ . ἐὰν | ||
| καιρικῶν ὡρῶν τοῦ μεταξὺ διαστήματος τοσαῦτα δωδέκατα ἀφαιροῦσιν ἀπὸ τῶν ὡριαίων : οὕτω γὰρ καὶ ποιῶμεν ἕως τῆς δωδεκάτης ὥρας |
| εἰς τὴν ιθʹ πρὸ ∠ ʹ καὶ γʹ α ὥρας ἰσημερινῆς τοῦ μεσονυκτίου καὶ τοῦ ιθʹ ἔτους Ἀδριανοῦ Χοϊὰκ βʹ | ||
| . ἅπερ οὐδὲ ιϚʹ , φησίν , ποιεῖ ὥρας μιᾶς ἰσημερινῆς . ἐὰν γὰρ τὸ ὡριαῖον μέσον δρόμημα τῆς σελήνης |
| μοίρᾳ κατὰ τὰς ἐπ ' ὀρθῆς τῆς σφαίρας ἀναφοράς . ἰσημερινῶν μὲν τυγχανουσῶν τῶν διδομένων ὡρῶν ἤτοι τῶν ἀπὸ τῆς | ||
| ὅσον τετρακοσίοις σταδίοις , ὅπου ἡ μεγίστη ἡμέρα ὡρῶν ἐστιν ἰσημερινῶν δεκατεττάρων , κατὰ κορυφὴν γίνεται ὁ ἀρκτοῦρος , μικρὸν |
| τῇ λκʹ ἴση ἐστίν : ἡμίσους δὲ ζῳδίου ἐστὶν ἡ δεʹ : ἡμίσους ἄρα καὶ ἡ λκʹ : τοῦ ἄρα | ||
| δλʹ , καὶ κοινὴ ἡ λεʹ : ὅλη ἄρα ἡ δεʹ ὅλῃ τῇ λκʹ ἴση ἐστίν : ἡμίσους δὲ ζῳδίου |
| τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν | ||
| τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ |
| ταῖς θέσεσιν . πρῶτον μὲν ὡς ὡροσκοποῦντος τοῦ ἀφέτου , μεσουρανούσης δὲ τῆς ἀρχῆς τοῦ Αἰγοκέρωτος ὡς ἀπέχειν τὴν ἀρχὴν | ||
| ” . ταύτης γὰρ „ ὕψι μάλα „ φερομένης καὶ μεσουρανούσης , οὐχ ὁ Τοξότης ἀνατέλλει , ἀλλ ' ὁ |
| πρῶτος ἔστω σοι καιρὸς τῆς ἀντιδότου ἀρχομένου ἔαρος καὶ ἡλίου διαπορευομένου τὸν κριόν . εἰ δέ τι κωλύσειεν ἄρχεσθαι τῆς | ||
| ἴσας περιφερείας διέρχεται . νυνὶ δὲ τοῦ μὲν ἡλίου ὁμαλῶς διαπορευομένου τὸν κύκλον , αὐτοῦ δὲ τοῦ κύκλου ἀνωμάλως τὰς |
| ὁπλίτῃσι καὶ ψιλοῖσι τοῖσι μαχίμοισι ἕνδεκα μυριάδες ἦσαν , μιῆς χιλιάδος , πρὸς δὲ ὀκτακοσίων ἀνδρῶν καταδέουσαι . Σὺν δὲ | ||
| Ἴβηρος ” . ἀφ ' οὗ παρὰ Κουαδράτῳ ἐν Ῥωμαϊκῆς χιλιάδος εʹ ἐστὶν Ἰβήροισιν οὕτως ” καί τοι Λίγυσί θ |
| . καὶ ἣ μέν ἐστιν ἐαρινή , ἣ δὲ μετοπωρινὴ ἰσημερία , ἐαρινὴ μὲν ἐν Κριῶι , ὅτε ἐφάπτεται τοῦ | ||
| ἰκτῖνος φαίνεται , καὶ βορρᾶς πνεῖ . κϚʹ . ἐαρινὴ ἰσημερία . ὡρῶν ιδ : ὁ λαμπρὸς τοῦ βορείου Στεφάνου |
| ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
| τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
| ἐτελεύτα τῷ ξεʹ ἔτει . Ἄλλη . Τίτου ἔτος βʹ Χοιὰκ αʹ ὥρα θʹ ἥμισυ . Ἥλιος Τοξότῃ ηʹ , | ||
| δυάδα , ὁ δὲ Ἀθὺρ ὁμοίως ἀπόζυγος , ὁ δὲ Χοιὰκ ἄρτιος : καὶ ἀκολούθως ἓν παρ ' ἓν τὰ |
| καὶ ἀναδρομῆς μήτρας , Ἀσπασίας οδʹ . Περὶ ἐμπνευματώσεως μήτρας οεʹ . Περὶ ὑδρωπιώσης μήτρας οϚʹ . Περὶ μύλης , | ||
| ἐπελογισάμεθα πάλιν διὰ δύο τῶν ὑποκειμένων . ἔτους μὲν γὰρ οεʹ κατὰ Χαλδαίους Δίου ιδʹ ἑῷος ἐπάνω ἦν τοῦ νοτίου |
| δγ . καὶ ἐπεὶ ὁ δὶς ἐκ τῶν αδ , δβ μετὰ τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν αδ , | ||
| δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , αἱ ἄρα ὑπὸ δαε , δβε ὀρθαί εἰσιν |
| κύκλον ἐν τοῖς αὐτοῖς δώδεκα ζωδίοις πληροῦσθαι ἐν ἰσαρίθμοις μοίραις τξʹ . Ὅθεν συνέβη τὰς βασιλείας τῶν παρ ' αὐτοῖς | ||
| τι παντάπασιν ὁρᾶται , τὸ πᾶν περὶ μίαν μοῖραν τῶν τξʹ : ἡ δὲ σελήνη , καθὰ οἱ ἀρχαῖοί φασι |
| καὶ δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος | ||
| κδʹ καὶ ἁρμονικὸς τῶν τελευταίων διαστημάτων : ὑπερέχει δὲ αὐτοῦ ͵αψκη . ὁ δ ' αὐτὸς κατ ' ἀριθμητικὰν μέσος |
| Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ , | ||
| γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι |
| ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
| ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
| πρὸς τὴν ΛΓ , διὰ τὸ νῦν ἄρα δειχθὲν τοῦ ογʹ τὸ πρῶτον λόγος τοῦ ΓΜ πρὸς τὸ ΕΗ δοθείς | ||
| ἐν τῷ γʹ ὅρῳ ἔτη ογʹ : καὶ ἐτελεύτησεν τῷ ογʹ ἔτει . εἰ δὲ ὁ τῆς Σελήνης γνώμων ὑπερεῖχεν |
| ε τόπους μετ ' ἀκριβείας ἵνα μὴ λάθῃ ποτὲ ὁ ἀφέτης , ὥς φησιν , ἐκπεσὼν εἰς ἀργὸν τόπον καὶ | ||
| ε ἀφετῶν ποιεῖν τὸν περίπατον ἰδίᾳ : ὁ μὲν πρῶτος ἀφέτης δηλοῖ τὸν χρόνον τῆς ζωῆς καὶ τὰς νόσους καὶ |
| δὲ κεʹ : καὶ τὸν τρίτον δὲ ἐκ βιβλίων μὲν χʹ , συγγραφέων δὲ κϚʹ : τὸν μέντοι τέταρτον ἐκ | ||
| Ἀπὸ δὲ Ἀγρίσης πόλεως ἐπὶ Ὄμμανα ἐμπόριον τῶν ἐπισήμων στάδιοι χʹ . Ἀπὸ δὲ Ὀμμάνων ἐπὶ Ῥόγανα στάδιοι ρνʹ . |
| πρώταις ἡμῖν τετηρημένων ἰσημεριῶν μία τῶν ἀκριβέστατα ληφθεισῶν γέγονεν ἰσημερία μετοπωρινὴ τῷ ιζʹ ἔτει Ἀδριανοῦ κατ ' Αἰγυπτίους Ἀθὺρ ζʹ | ||
| Ϙʹ , Καλλίππῳ Ϙβʹ . . . . κη : μετοπωρινὴ ἰσημερία . Αἰγυπτίοις καὶ Εὐδόξῳ ἐπισημαίνει . . . |
| δὲ μοίρας νβ λα , ὡς τὴν μὲν τοῦ μήκους ἐπουσίαν ἀπαράλλακτον , ὡς ἔφαμεν , εὑρῆσθαι τῇ διὰ τῶν | ||
| ἔφαμεν , εὔχρηστον καὶ ἀφελόντες ὅλους κύκλους ἕξομεν ὀκτωκαιδεκαετηρίδος μέσην ἐπουσίαν μήκους μὲν μοιρῶν ρξη μθ νβ θ θ με |
| τῷ συναμφοῖν ἀριθμῷ χρῆσθαι ἐπὶ τῶν ἐτῶν . οἷον ἔστω ὡροσκοπικὴν μοῖραν ἐκπεπτωκέναι Καρκίνου μοίρᾳ ηʹ , ἥτις σημαίνει τόπον | ||
| Ἡλίου μοίρας : καὶ αὕτη μὲν οἴσει τὸ ἀπογώνιον ἤτοι ὡροσκοπικὴν μοῖραν : ἢ καὶ ταύτην ἐπιπροσθέντα ἢ καὶ ἀφαιρεθέντα |
| λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
| ' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
| τὴν ὁδὸν αὐτοῦ . Καὶ εἶπε πρὸς αὐτούς : Ἑκατὸν δεκαεννέα ἐτῶν ἐγὼ ἀποθνήσκω σήμερον ἐν ὀφθαλμοῖς ὑμῶν . Μηδείς | ||
| μῆνας ἑπτά . τοῦτον δ ' ἀνελὼν Δαρεῖος ἐβασίλευσεν ἔτη δεκαεννέα . τῶν δὲ συγγραφέων Ἀντίοχος ὁ Συρακόσιος τὴν τῶν |
| ∠ ʹ τὸ πέμπτον , ὃ καλεῖται Ἀντιβολή . . ρμη ∠ ʹ ιη δʹ : Ὄρη δὲ ὀνομάζεται ἐν | ||
| ὑπὸ ΑΖΒ ὅλη τὸ ὁμαλὸν μῆκος περιέχουσα τῶν μὲν αὐτῶν ρμη λη , οἵων δ ' αἱ δ ὀρθαὶ τξ |
| τοὺς πλείστους αὐτέων ἔτι νοσέειν : τοῖσι δὲ πλείστοισιν ἀκρίτως ἐξέλειπεν : ὁμοίως δὲ ταῦτα ξυνέπιπτε τοῖσι περιγινομένοισι καὶ τοῖσιν | ||
| ἐπηρείαις τὸ τῶν ἐπιμιξιῶν ἡδύ τε καὶ χρήσιμον τὰς πόλεις ἐξέλειπεν : ἡδὺ μὲν γὰρ ἐκδημοῦντας ἱστορῆσαι γείτονα πόλιν , |
| ἴσα καὶ ἀπαλλάξεις . Ἀπὸ τῆς πρὸ ιαʹ καλανδῶν τοῦ Φεβρουαρίου σύναζον ταύτην : Ὑδροχόου βοτάνη τὸ μάραθρον καλούμενον , | ||
| , τοῦ τῶν Καλάνδων λέγω , ἕως Μεχὶρ τῶν δεκαὲξ Φεβρουαρίου τοῦδε . Εἰ σεισμὸς ἐπιβήσεται γενέσθαι τὴν ἡμέραν , |
| λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν | ||
| μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς |
| Ϛ , τοῦ δὲ β τὰ δύο καὶ δ . πολλαπλασίασον τὴν ἐλάττονα πλευρὰν τοῦ Α μετὰ τῆς μείζονος πλευρᾶς | ||
| μῆκος τῆς Α . τὰ δὴ οὖν ε ια μϚ πολλαπλασίασον μετὰ τοῦ Ϛ , καὶ γίνονται μονάδες λ λεπτὰ |
| τὴν ὥραν , ἐὰν αὐτῶν τι τῶν δώδεκα ζῳδίων θεωρῶμεν ἀνατέλλον . τὸν γὰρ γινώσκοντα , ἐν ᾧ ἐστι ζῳδίῳ | ||
| τῶν ἀπλανῶν ἄστρων ἀπὸ ἑῴας φαινομένης ἐπιτολῆς ἑκάστης νυκτὸς ὁρᾶται ἀνατέλλον ἕως τῆς ἑσπερίας φαινομένης ἐπιτολῆς , τὸ ηʹ ἄρα |
| ὁ ὀκτάκις ιʹ , οἵτινές εἰσιν ὁ ηʹ κδʹ μηʹ πʹ . τετράγωνοί εἰσιν οἱ ἐκ τῶν κατὰ τὸ ἑξῆς | ||
| σταδίους ρνʹ ] . Ἀπὸ Ἄνδρου εἰς λιμένα Γαυρίου σταδίους πʹ . Ἀπὸ Γαυρίου ἐπὶ [ τὸ Παιώνιον ] ἀκρωτήριον |
| υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ | ||
| τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας |
| ἐπέχουσι διάστημα , αἱ δὲ Ϙʹ τριῶν , αἱ δὲ ξʹ δύο , ὧν ὁ γʹ κείμενος μέσος πρὸς μὲν | ||
| . νθʹ . Πῶϲ ἄν τιϲ ἰάϲαιτο κατιϲχνωθέντα μόρια . ξʹ . Διάγνωϲιϲ ἀρίϲτηϲ κράϲεωϲ . ξαʹ . Διάγνωϲιϲ τῶν |
| μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β | ||
| τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο |
| θερινῶν τροπῶν ἡμέραι εἰσὶν Ϙδʹ καὶ ἥμισυ , ἀπὸ δὲ θερινῆς τροπῆς μέχρι φθινοπωρινῆς ἰσημερίας ἡμέραι Ϙβʹ καὶ ἥμισυ , | ||
| δὶς τοῦ ἔτους κατὰ κο - ρυφὴν , ἀπέχοντα τῆς θερινῆς τροπῆς ἐφ ' ἑκάτερα μοίρας με γʹ . Ἡ |
| ἐτῶν διδόναι τοὺς ἐνιαυσιαίους χρόνους . ἐπεὶ τοὺς περιοδικοὺς ἑκάστου ὡριαίους ἡμερησίους μηνιαίους συναναλαμβάνειν χρὴ τοῖς ἐνιαυσιαίοις καὶ συγκρίνειν τόν | ||
| καιρικὴν ὥραν πολυπλασιαζομένων ἐπὶ τοὺς ἐν τῷ οἰκείῳ κανόνι παρακειμένους ὡριαίους χρόνους , τῶν μὲν ἡμερινῶν πάλιν τῇ ἡλιακῇ μοίρᾳ |
| , πόσος πόση πόσον , πηλίκος πηλίκη πηλίκον , πόστος πόστη πόστον , ποδαπός ποδαπή ποδαπόν : οὕτως οὖν καὶ | ||
| , πόσος πόση πόσον , πηλίκος πηλίκη πηλίκον , πόστος πόστη πόστον , ποδαπός ποδαπή ποδαπόν : οὕτως οὖν καὶ |
| παρόδους νοτιώτερος ᾖ τοῦ διὰ μέσων μοίραις γ καὶ Ϛʹ ἔγγιστα , οἱ δὲ τῶν περὶ τὰς ὀρθὰς γωνίας λόγοι | ||
| ἡ ΒΚ ἐκ τοῦ κέντρου τοῦ ἐπικύκλου ἔσται ια λ ἔγγιστα : ὅπερ ἔδει εὑρεῖν . Ἑξῆς δὲ καὶ τῶν |
| ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ | ||
| ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ |
| ἔσται μὲν μέση δίχα διαιρεθείσης τῆς ὅλης χορδῆς , καὶ ἀφέξει Ϛʹ ἑκατέρωθεν [ διαιρουμένη ] : ἡ δὲ ὑπάτη | ||
| αὐτῶν δʹ . ἡ δὲ ὑπερυπάτη ἀπὸ τῆς ἀρχῆς τρία ἀφέξει μεγέθη , ἀπὸ δὲ τῆς ὑπάτης ἕν : ἡ |
| . . . . . . . . . . ρξζ ∠ ʹ ιδ ∠ ʹ Δωρίου ποταμοῦ ἐκβολαί . | ||
| β τηρήσεων χρόνος περιέχει ἔτη μὲν Αἰγυπτιακὰ υθ καὶ ἡμέρας ρξζ ἔγγιστα , ἀνωμαλίας δ ' ἀποκαταστάσεις ὅλας σνε , |
| ' αὐτοῖς ὁρίζοντος ὁ ἄξων διάμετρος γίνεται , καὶ οὔτε ἀειφανὲς οὔτε ἀφανές τι τῶν ἄστρων παρ ' αὐτοῖς ἐστιν | ||
| στήθεα γυμνώσας καὶ γαστέρα σήματα φαίνει , ὅττι γένος περίφοιτον ἀειφανὲς οὐρανιώνων οὔτε πολυρραφέος μεθέπει σπείρημα χιτῶνος οὔτε χαμαιγενέων ἐπιδεύεται |
| ἀκατάληκτος , τὰ ἑξῆς ιβʹ δίμετρα ἀκατάληκτα Ἀνακρεόντεια , τὸ πεντεκαιδέκατον μονόμετρον ἀκατάληκτον , ὃ καὶ παρατέλευτον ὀνομάζεται , τὸ | ||
| σεληνῶν εἶναι δύο . Ϛʹ . Τὴν σελήνην ὑποτείνειν ὑπὸ πεντεκαιδέκατον μέρος ζῳδίου . Ἐπιλογίζεται οὖν τὸ τοῦ ἡλίου ἀπόστημα |
| . ἀπὸ τῆς δυνούσης μοίρας λαβὼν κατὰ τὰς ἀναφορὰς τοῦ κλίματος ἕως τοῦ διαμέτρου τούτων τὴν ἡμίσειαν ἀπόλυε ἀπὸ τῆς | ||
| τὸν ζωτικὸν ἀπολήψεται χρόνον καὶ τὴν ποσότητα κατὰ τὴν τοῦ κλίματος ἁρμονίαν : ὅτε δέ τις κατὰ μόνας αὐτοὺς ἀνακυκλήσῃ |
| γύναια . οἱ δὲ κλιμακτῆρες ἔτος ζʹ , ιγʹ , κγʹ , μγʹ , νβʹ , ξϚʹ , οδʹ , | ||
| ὡρῶν ιε : Προκύων ἑῷος δύνει . Ἱππάρχῳ νότος . κγʹ . ὡρῶν ιδ ∠ ʹ : ὁ ἐν τῷ |
| ἑαυτόν : πεντάκις εʹ , κεʹ . ὁμοῦ ὅλα , μʹ . ὁ μʹ ἀριθμὸς πεπολλαπλασιάσθω ἐπὶ τὸ ἐμβαδὸν τοῦ | ||
| ∠ ʹʹ Φόρος Ποπιλίου λθʹ ∠ ʹʹδʹʹ μαʹ δʹʹ Καπύη μʹ μαʹ Ϛʹʹ Ἀβέλλα μʹ γʹʹ μαʹ Ϛʹʹ Ἀτέλλα μʹ |
| . Διὰ γὰρ τῶν πόλων τῆς σφαίρας κύκλος μένων ὁ αβγʹ ὁριζέτω τό τε φανερὸν τῆς σφαίρας καὶ τὸ ἀφανές | ||
| δὲ αἰεὶ φανερῶν ἔστω ὁ αδʹ , ὧν ἐφάπτεται ὁ αβγʹ ὁρίζων , καὶ γεγράφθω τις μέγιστος κύκλος ἐφαπτόμενος τῶν |
| τὸ ξηρὸν ἐν τῷ ἀφεψήματι καταιόνησον ἑπτάκις τῆς ἡμέρας ἐξ ὡριαίου διαστήματος , τῇ δ ' ἐπιούσῃ ἕτερον ὁμοίως σκευάσας | ||
| μέρος ἐστὶ τοῦ δρόμου , καὶ τοῦτο ἐκκρούειν ἐκ τοῦ ὡριαίου μεγέθους . Ἄλλως . Ἐπεξεύρομεν δὲ καὶ ἄλλως τὸ |
| ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω , | ||
| ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ |
| ποιούντων ἔγγιστα ε περιόδους τὰ μὲν υη ἔτη συνάγει περιόδους σνε , τὸ δὲ λοιπὸν ἔτος ἓν μετὰ τῶν ἐπιλαμβανομένων | ||
| σφαῖραν μεταλαμβανομένοις ϠϘγσιν , ἅ ἐστιν Αἰγυπτιακὰ ϠϘγ καὶ νυχθήμερα σνε # νδ μϚ να ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις ποιείσθω |
| τῷ τοῦ τεταρτημορίου τριακοστημορίῳ [ ἀντὶ τοῦ ἀπέχειν αὐτὴν μοίρας πζʹ : αὗται γὰρ ἐλάσσους εἰσὶν τῶν Ϙʹ μοιρῶν τεταρτημορίου | ||
| πϚʹ . Μακεδόνι . Τῆς ὀξυθυμίας τὸ ἄνθος μανία . πζʹ . Ἀριστοκλεῖ . Τὸ τῆς ὀργῆς πάθος μὴ καθομιλούμενον |
| πέντε τὸν ἀριθμὸν , ὧν ἡ μὲν δυτικωτέρα καλεῖται Αἰβοῦδα ιεʹ ξβʹ ἡ δ ' ἐφεξῆς αὐτῆς πρὸς ἀνατολὰς ὁμοίως | ||
| ἀπολῶ σε κακῶς ” μονόμετρον ἐκ δύο ἀναπαίστων : τὸ ιεʹ “ εἰπέ , τί ποιῶν ” μονόμετρον ἐξ ἀναπαίστου |
| ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
| ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
| δίμετρα ἀκατάληκτα καὶ καταληκτικὰ , ἤτοι ἑφθημιμερῆ δʹ , μονόμετρα κϚʹ , ὧν τὸ κεʹ μονόμετρον , παρατελευταῖον ὀνομαζόμενον , | ||
| οζʹ Ἄρεως ἑνδέκατος , δύσκολος καὶ θανατηφόρος . οηʹ Κρόνου κϚʹ , Σελήνης ἕκτος , χαλεπός . πʹ Ἀφροδίτης ιϚʹ |
| ' ὃ κλίμα τις βούλεται . Περὶ μὲν οὖν τῶν ἀναφορῶν καὶ ἐν τῇ αʹ βίβλῳ ἐδηλώσαμεν , νυνὶ δὲ | ||
| ταῖς μεταξὺ διαστάσεσιν , οὐκέτι οἱ τῶν προκειμέ - νων ἀναφορῶν ἢ καταφορῶν ἢ μεσουρανήσεων χρόνοι τοὺς ἑπομένους τόπους οἴσουσιν |
| ὡρῶν ἰσημερινῶν ιδʹ καὶ τριῶν ἔγγιστα πεμπτημορίων , τὸ δὲ ἔξαρμα τοῦ πόλου μοιρῶν λζʹ ὡς ἔγγιστα . ὅπου δὲ | ||
| Διομήδης διέφθαρτο καὶ αὐτὸς ὑπὸ τῆς συνουσίας καὶ οὐδὲν ἔχων ἔξαρμα φύσεως ἔτι ταπεινότερος ἐγεγόνει πρὸς τὰ ἐπιταττόμενα . καίτοι |
| . Προστιθέμενοι οἱ δ ἀριθμοὶ μὲν ταῖς υ μονάσι ταῖς λειπούσαις ἀριθμοὺς δ , γίνονται υ μονάδες τέλειαι , εἰ | ||
| μέρη τοῦ Ὑδροχόου γινομένη πρότερον ἔσται ταῖς εἰς ὅλας ἡμέρας λειπούσαις ὥραις Ϛ . ζητητέον ἄρα , ποῦ καὶ πότε |
| : τοῦτον γὰρ μετρεῖ μετὰ τὸν ιε ἐφ ' ἑαυτὸν πολλαπλασιαζόμενος : πεντάκις γὰρ ε κε . τὸν δὲ τρίτον | ||
| , ὅσαι εἰσὶν ἐν αὐτῷ μονάδες , τοσαυτάκις συντεθῇ ὁ πολλαπλασιαζόμενος , καὶ γένηταί τις . Ὅταν δὲ δύο ἀριθμοὶ |
| ἴση ἡ ΕΘ , καὶ ἤχθω ἀπὸ τοῦ Β τῇ ΘΕΒ πρὸς ὀρθὰς ἡ ΒΜ : διάμετρος ἄρα ἐστὶν ἡ | ||
| ΘΕΒ δύο ὀρθαῖς ἴσαι , καὶ αἱ ὑπὸ ΔΖΚ , ΘΕΒ δύο ὀρθαῖς ἴσαι . ὁμοίως δὲ δείξομεν , καὶ |
| ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
| ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
| ἀπὸ τοῦ ΑΒ μεγέθους τὸ ΑΚ μέγεθος ἔλασσον ὂν τοῦ ἐκκειμένου ἐλάσσονος μεγέθους τοῦ Γ : ὅπερ ἔδει δεῖξαι . | ||
| τὸ Μουσεῖον ἀπιόντες αὕτη ἡ Ἄσκρη . τοῦ δὲ Ἑλικῶνος ἐκκειμένου τοῖς ἀνέμοις καὶ θαυμαστὰς μὲν ἀναπαύλας ἔχοντος ἐν θέρει |
| . πζʹ . Περὶ ἥλων καὶ μυρμηκίων καὶ ἀκροχορδόνων . πηʹ . Περὶ βελῶν ἐξαιρέϲεωϲ . πθʹ . Περὶ καταγμάτων | ||
| ἥμισυ , ἀπὸ δὲ ταύτης τῆς ἰσημερίας ἄχρι χειμερινῆς τροπῆς πηʹ , ἀπὸ δὲ χειμερινῆς τροπῆς ἐπὶ ἐαρινὴν ἰσημερίαν Ϙʹ |
| Περὶ χαλαζίων . ιζʹ . Περὶ ἀκροχορδόνων καὶ ἐγκανθίδων . ιηʹ . Περὶ πτερυγίων . ιθʹ . Περὶ ϲταφυλωμάτων . | ||
| ιβʹ ὦμοι , ἀπὸ ιγʹ ἕως ιζʹ κοιλία , ἀπὸ ιηʹ ἕως κʹ μηροί , ἀπὸ καʹ ἕως κγʹ μέσαι |
| ἀλλήλους εἰσίν : ὅπερ ἔδει δεῖξαι . Ἐὰν δύο ἀριθμοὶ πολλαπλασιάσαντες ἀλλήλους ποιῶσί τινα , τὸν δὲ γενόμενον ἐξ αὐτῶν | ||
| γὰρ ἀριθμοὶ οἱ Α , Β ἀριθμόν τινα τὸν Γ πολλαπλασιάσαντες τοὺς Δ , Ε ποιείτωσαν : λέγω , ὅτι |
| ἐγένετο ἢ οὐκ ἐγένετο , ὀφείλομεν θεωρεῖν πρὸς τὸ ἀντιφατικῶς συναχθὲν συμπέρασμα . ὁ δέ γε Ἐφέσιος οὕτως ἑρμηνεύει τὸ | ||
| εἰς τὸ μεσουράνημα ἐμπέσῃ ὁ ἀναβιβάζων , ἀπολύειν δεῖ τὸ συναχθὲν πλῆθος ἀπὸ τοῦ μεσουρανήματος , ἐὰν μὲν ἡμερινὴ ἡ |
| τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν | ||
| τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν |
| στάδιοι ιβʹ : ἀπὸ δὲ Πύδνης ἐπὶ τὸν Ψυχέα στάδιοι τνʹ : λιμὴν θερινός : καὶ ὕδωρ ἔχει . Ἀπὸ | ||
| τὸν Δυσωπὸν στάδιοι ρνʹ . Ἀπὸ Δυσωποῦ ἐπὶ Ἀσπίδα στάδιοι τνʹ . Ἀπὸ Ἀσπίδος εἰς Ταριχείας στάδιοι τνʹ Ἀπὸ Ταριχειῶν |
| εἷς μο δ ἐφ ' ἑαυτοὺς πολλαπλασιασθέντες ποιοῦσι δύναμιν μίαν Ϟοὺς η μο ιϚ . Ἀφαιρουμένων οὖν τῶν δυνάμεων , | ||
| ἑτέρων ι μο . Καὶ τῆς δείξεως προβάσεως δεήσει τοὺς Ϟοὺς ιβ μο λϚ τριπλασίονας εἶναι μο Ϛ καὶ ἔτι |
| τοῦ Ταύρου εἰσβολὴν πρὸς τοὺς Διδύμους τοῦ ἡλίου φησίν , Ἰουνίου εʹ : εἰ δὲ ἄροτον τὸν σπόρον φησί , | ||
| ἐν Διδύμοις ἡμέρας λαʹ ὥρας ιϚʹ . εἰς τὸν Καρκίνον Ἰουνίου κγʹ ὥρᾳ νυκτερινῇ δʹ : καὶ μένει ἐν Καρκίνῳ |
| ἐλλείπει διαστολὴν μίαν ἢ καὶ δύο ἢ καὶ πλείους . σκθʹ . Παρεμπίπτων σφυγμός ἐστιν ὅταν μεταξὺ δυοῖν πληγῶν κατὰ | ||
| . ὁμοίως ἐπεὶ τρίτης συζυγίας ἐστὶ τὰ τνʹ , ἀφέλω σκθʹ , λείπω ρκαʹ καὶ ἴσχω τὸν τέταρτον . ὁμοῦ |
| τῆς χώρης ταύτης δείκνυσθαι τὸν τάφον : ὄνομα δὲ αὐτῷ Ἐρύθρην εἶναι , ἀπ ' ὅτου καὶ τὴν ἐπωνυμίην τῇ | ||
| δέ φησιν ἐξ Ἀθάμαντος καὶ Θεμιστοῦς γενέσθαι παῖδας Σχοινέα , Ἐρύθρην , Λεύκωνα , Πτοῖον , νεωτάτους δὲ Φρίξον καὶ |
| νʹ [ διὰ τὸ ἴσην εἶναι τὴν ζηʹ περιφέρειαν τῇ λνʹ περιφερείᾳ ] : καὶ ἔσται ὁ χρόνος ἐν ᾧ | ||
| ἑκάστης νυκτὸς ὁρᾶται . Κείσθω γὰρ τῇ ζηʹ ἴση ἡ λνʹ , τῇ δὲ ζθʹ ἴση ἡ μξʹ : ἔσται |
| . καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι | ||
| μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ |