. Ἐὰν ἐν ὑπερβολῇ ἢ ἐλλείψει ἢ κύκλου περιφερείᾳ εὐθεῖα καταχθῇ τεταγμένως ἐπὶ τὴν διάμετρον , καὶ ἀπό τε τῆς | ||
τῇ πλαγίᾳ τοῦ εἴδους πλευρᾷ , καὶ ἀπὸ τῆς ἁφῆς καταχθῇ εὐθεῖα τεταγμένως ἐπὶ τὴν διάμετρον , ἔσται ὡς ἡ |
τομῆς ἀγαγεῖν ἐφαπτομένην , ἥτις πρὸς τῇ διὰ τῆς ἁφῆς ἠγμένῃ διαμέτρῳ ἴσην περιέξει γωνίαν τῇ δοθείσῃ ὀξείᾳ . ἔστω | ||
τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς |
ΓΔΛ : ὥστε καὶ τῷ ΓΛΘ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , ἡ διὰ τῆς ἁφῆς παράλληλος | ||
εὐθεῖα . Ἐὰν ὑπερβολῆς ἢ ἐλλείψεως ἢ κύκλου περιφερείας εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς ἐπὶ |
τῆς ἁφῆς ἐπὶ τὴν διάμετρον καταχθῇ εὐθεῖα τεταγμένως , ἡ ἀπολαμβανομένη εὐθεῖα ὑπὸ τῆς κατηγμένης πρὸς τῷ κέντρῳ τῆς τομῆς | ||
καθόλου τε , ὅτι , ὃν ἂν ἔχῃ λόγον ἡ ἀπολαμβανομένη περιφέρεια πρὸς τὸν γραφέντα κύκλον , καθ ' ὃν |
ἀπὸ δὲ τῆς κορυφῆς εὐθεῖα ἀναχθῇ παρὰ τεταγμένως κατηγμένην καὶ συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ εὐθείᾳ | ||
ἕν . εἰ δὲ ἡ ΒΓ τῇ Δ τομῇ μὴ συμπίπτῃ , ὡς ἐπὶ τοῦ τρίτου σχήματος , διὰ μὲν |
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ | ||
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ |
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν εὐθεῖα ἐκβληθῇ , ἀπὸ δὲ τῆς συμπτώσεως τῶν ἐφαπτομένων ἀχθεῖσα εὐθεῖα | ||
ΘΓ παράλληλον ἀγάγω τὴν ΕΞ , καὶ ἐπιζευχθεῖσα ἡ ΘΗ ἐκβληθῇ ἐπὶ τὸ Ξ , ὁ μὲν τῆς ΚΗ πρὸς |
ἐκβληθῇ , ἀπὸ δὲ τῆς κορυφῆς ἀναχθεῖσα εὐθεῖα παρὰ τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ | ||
τῇ ΑΓ . ἤχθω γὰρ ἀπὸ τοῦ Β παρὰ τεταγμένως κατηγμένην ἡ ΒΖ . ἔστιν ἄρα , ὡς τὸ ὑπὸ |
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ | ||
ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι |
διὰ τοῦ Δ ἡμικύκλια , ἵνα ἡ ἐφαπτομένη ἑκάστου αὐτῶν προσεκβαλλομένη ἐπὶ τὴν τοῦ μείζονος ἡμικυκλίου περιφέρειαν τὴν μεταξὺ τῆς | ||
ἣν ἄγονται καὶ τῆς παρ ' ἣν δύνανται , καὶ προσεκβαλλομένη ἕως τοῦ ἑτέρου μέρους τῆς τομῆς δίχα τμηθήσεται ὑπὸ |
τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα | ||
παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν |
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
ΑΗΘ . Ἐὰν μιᾶς τῶν κατὰ συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ | ||
ἐπὶ ταὐτὰ τῷ κέντρῳ . Ἐὰν ἑκατέρᾳ τῶν ἀντικειμένων εὐθεῖαι συμπίπτωσι καθ ' ἓν ἐφαπτόμεναι ἢ κατὰ δύο τέμνουσαι , |
τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας τῆς παρὰ τὴν πλαγίαν ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῆς γραμμῆς τετράγωνα | ||
' ἔρωτι οὐρανίῳ σεσοβημένης κἀκμεμηνυίας καὶ ὑπὸ τοῦ ὄντως ὄντος ἠγμένης καὶ ἄνω πρὸς αὐτὸ εἱλκυσμένης , προϊούσης ἀληθείας καὶ |
πενταγώνοις οἱ τρίγωνοι προστιθοῖντο τῇ αὐτῇ τάξει , τοὺς εὐτάκτους γεννήσουσιν ἑξαγώνους καὶ πάλιν ἐκείνοις οἱ αὐτοὶ προσπλεκόμενοι τοὺς ἐν | ||
, δεικνύτωσαν , πῶς ἀλλήλας καταλήψονται ἢ πῶς συμπλακήσονται καὶ γεννήσουσιν ἕτερον . ὅτι μὲν οὖν ἀναιρεῖ κίνησιν μᾶλλον τὸ |
Μήδου υἱοῦ Μηδείας . . Ὑώπη : πόλις Ματιηνῶν , προσεχὴς τοῖς Γορδίοις . Ἑκαταῖος Ἀσίαι : ἐν δὲ πόλις | ||
τε Συρακουσῶν μεμνῆσθαι καὶ τῆς Ὀρτυγίας : αὕτη δέ ἐστι προσεχὴς ταῖς Συρακούσαις νῆσος καὶ ἀχώματος . ὁ δὲ Δίδυμος |
τὰ παρακείμενα ὀρθογώνια παρὰ τὴν ἑτέραν εὐθεῖαν πλάτος ἔχοντα τὴν ἀπολαμβανομένην ὑπ ' αὐτῶν πρὸς τῇ κορυφῇ τῆς τομῆς ἐλλείποντα | ||
ἀνάλογον πλάτος ἔχον τὴν ὑπ ' αὐτῆς τῆς τεταγμένως ἀχθείσης ἀπολαμβανομένην πρὸς τῇ τομῇ ἐλλεῖπον εἴδει ὁμοίῳ τῷ περιεχομένῳ ὑπὸ |
πολυχρονίως ἡ πανήγυρις τελεσθήσεται . ἄλλως : ἐν ταύτῃ πρῶτον ἀγομένῃ τῇ ἑορτῇ τῶν Ὀλυμπίων παρέστησαν αἱ Μοῖραι καὶ ὁ | ||
Ω κάθετος ἀγομένη ἴση ἐστὶ τῇ ἀπὸ τοῦ Χ καθέτῳ ἀγομένῃ ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον , τὰ Ω |
δεδομένῳ εὐθεῖα γραμμὴ ἀχθῇ δεδομένην ποιοῦσα γωνίαν , δέδοται ἡ ἀχθεῖσα τῇ θέσει . πρὸς θέσει γὰρ δεδομένῃ εὐθείᾳ τῇ | ||
, ἡ δὲ ἀπὸ τῆς τομῆς ἐπὶ τὴν δευτέραν διάμετρον ἀχθεῖσα παράλληλος τῇ διαμέτρῳ δυνήσεται χωρίον , πρὸς ὃ τὸ |
ἀπὸ δὲ τοῦ κέντρου τῆς σφαίρας ἐπ ' αὐτὸν κάθετος ἀχθῇ καὶ ἐκβληθῇ ἐπ ' ἀμφότερα τὰ μέρη , ἐπὶ | ||
' αὐτῆς σημεῖον ληφθῇ ὡς τὸ Γ , κάθετος δὲ ἀχθῇ ἡ ΓΔ , ἴσον εἶναι τὸ ὑπὸ Ρ , |
ἄρα ἡ ὑπὸ ΖΔΗ . ὀρθὴ δὲ καὶ ἡ ὑπὸ ΖΒΗ : ἐν κύκλῳ ἄρα τὸ ΒΖΔΗ τετράπλευρον . καὶ | ||
καὶ διὰ μὲν τοῦ Β παρὰ τὴν ΓΔ ἤχθω ἡ ΖΒΗ , διὰ δὲ τοῦ Γ τῇ ΔΕ ἡ ΓΑΗ |
ἦκται ἡ ΑΒ : ὅπερ ἔδει ποιῆσαι . Ἐὰν κύκλου ἐφάπτηταί τις εὐθεῖα , ἀπὸ δὲ τοῦ κέντρου ἐπὶ τὴν | ||
ὀρθαὶ αἱ πρὸς τῷ Κ ; ἐπεὶ κύκλου τοῦ ΑΓΒΔ ἐφάπτηταί τις εὐθεῖα ἡ ΗΘ , ἀπὸ δὲ τοῦ κέντρου |
: ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
τι ἢ ἀπ ' ἄλλου τὸ αὐτό , οὐχ ἡ ἀντικειμένη , ἀλλ ' ἔσται ἐκείνης ἑτέρα , τοῦτο δέ | ||
φερόμενον : ἡ γὰρ ὅλη φορὰ οὐθὲν ἧττον ἑκατέρα ἑκατέρᾳ ἀντικειμένη ἐπ ' ἄπειρον νοεῖται . Καὶ μὴν καὶ ἰσοταχεῖς |
γῆς ὑποτείνουσα εὐθεῖα , μείζονα λόγον ἔχει ἢ ὃν τὰ χοε πρὸς α . Ἔστω τὸ αὐτὸ σχῆμα τῷ πρότερον | ||
, γίνονται σκϚ : ταῦτα ἀπὸ τῶν Ϡ , λοιπὸν χοε : ὧν πλευρὰ τετραγωνικὴ κϚ : τοσοῦτον ἡ κάθετος |
τὸ Γ , καὶ εἰλήφθω τι σημεῖον ἐπὶ τῆς ΑΒ τομῆς τὸ Δ , καὶ δι ' αὐτοῦ ἤχθω παρὰ | ||
ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς . ἔστω γὰρ τὰ αὐτὰ , καὶ τὸ Δ |
ἡ ΑΒ , καὶ ἐφαπτομένη ἤχθω ἡ ΓΔ , καὶ κατήχθω τεταγμένως ἡ ΓΕ , κέντρον δὲ ἔστω τὸ Ζ | ||
ΖΘΦ τεταγμένην εἶναι : δευτέρα ἄρα διάμετρος ἡ ΖΦ . κατήχθω ἐπ ' αὐτὴν ἀπὸ τῆς τομῆς ἡ ΜΝ παράλληλος |
ἐπιγνώμων , ὑστερόφρων . ἀρτίφρων ] ἀρτιμαθής . ἀρτίφρων ] ἐπιγνώμων , εἰδήμων . θ ἀρτίφρων ] ἐν αἰσθήσει γεγονώς | ||
ἀπιθάνου διακριτικὸς ἔσται , τῷ αὐτῷ καὶ ὁ παντὸς ἀληθοῦς ἐπιγνώμων συνεπιβάλλει παντὶ τῷ ἀντικειμένῳ , τουτέστι τῷ ψεύδει . |
. ὁ δὲ στόμαχος πρόσκειται μὲν ἔνδοθεν τῇ ῥάχει , κατατείνει δ ' εἰς πνεύμονα , ὀνομάζεται δὲ καὶ οἰσοφάγος | ||
τῷ ὑποτεταμένῳ πρὸς [ τὃ ] προσβάλλον τὸ ὑπεροειδὲς ἀποστηρίζων κατατείνει : τοιούτῳ δέ τινι ἑτέρῳ δεσμῷν [ ] χρὴ |
ἧς ἄξων ὁ ΑΒ , κέντρον δὲ τὸ Ε , ἀσύμπτωτος δὲ ἡ ΕΤ , ἡ δὲ δοθεῖσα γωνία ὀξεῖα | ||
, ΓΕ . Τῶν αὐτῶν ὄντων δεικτέον , ὅτι ἑτέρα ἀσύμπτωτος οὐκ ἔστι τέμνουσα τὴν περιεχομένην γωνίαν ὑπὸ τῶν ΔΓΕ |
διὰ τοῦ Α κέντρου ἤχθω κάθετος ἐπὶ τὴν ΖΗ ἡ ΘΑΗ , καὶ διὰ τῆς ΘΑ καὶ τοῦ ἄξονος ἐκβεβλήσθω | ||
περιφέρεια μοιρῶν ἐστιν λ , εἴη ἂν καὶ ἡ ὑπὸ ΘΑΗ γωνία , οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ |
καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ τῆς κατηγμένης καὶ τῆς ἐφαπτομένης , ἕξει πρὸς αὐτὴν ἡ κατηγμένη | ||
τῶν δύο εὐθειῶν , ὧν ἐστιν ἡ μὲν μεταξὺ τῆς κατηγμένης καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ |
τῆς συμπτώσεως τῶν ἐφαπτομένων ἀχθῇ εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν , διὰ δὲ τῆς διχοτομίας τῆς τὰς ἁφὰς ἐπιζευγνυούσης | ||
διὰ τῆς συμπτώσεως ἀχθῇ τις εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν συμπίπτουσα ἑκατέρᾳ τῶν τομῶν , ἀχθῇ δέ τις ἑτέρα |
ἵνα ἁρμόσῃ ἐφ ' ὧν μεσόκωλον ἁπλῶς ἐπιδῆσαι θέλομεν . ἐγκύκλιος . Θέντες τὴν ἀρχὴν κατὰ τοῦ κώλου ἄγομεν τὴν | ||
τῆς Σελήνης ἐκ παντὸς ἀποτελοῦσα φάσιν , ἡ δὲ ἅλως ἐγκύκλιος ἔγκειται πρὸς ἀστέρα . ἔστι δὲ σέλας ἔξαψις τοῦ |
ἀγαθοποιοῦ , μήτε μὴν ἀγαθοποιὸς ὑπάρχῃ ἐν τῷ ὀγδόῳ , διαμετρῇ δὲ ὁ κύριος τοῦ αἱρετικοῦ φωτὸς τὸν Ἄρη ἢ | ||
μήτε ὡροσκοπῇ μήτε σὺν τῇ Σελήνῃ μήτε τετραγωνίζῃ αὐτὴν μήτε διαμετρῇ : οὕτω γὰρ οὐ μόνον ὁ διαθέμενος τελευτήσει , |
ἔναιμος ἀγωγή , ἄνευ βλάβης δὲ μᾶλλον ἡ ἀφλέγμαντος καὶ πυοποιὸς θεραπεία . Μεγάλου δὲ τραύματος γενομένου καὶ ἐπὶ πλεῖον | ||
, διαμοτούσθω ἡ ἀναστολή , καὶ δι ' ὅλου ἡ πυοποιὸς ἐπιμέλεια ἐγκρινέσθω . Τῆς ἀλωπεκίας ἡ ὑπερμεγέθης ἀθεράπευτός ἐστιν |
δ ' ὥσπερ ἡγεῖται σχεδόν . τὸ γὰρ παραθεῖναι κἀφελεῖν τεταγμένως ἕκαστα , καὶ τὸν καιρὸν ἐπὶ τούτοις ἰδεῖν , | ||
ἔφασαν , τίνος ἕνεκα τοὺς παῖδας συνεθίζομεν προσφέρεσθαι τὴν τροφὴν τεταγμένως τε καὶ συμμέτρως , καὶ τὴν μὲν τάξιν καὶ |
ἐν τῷ ὑπὲρ γῆν αὐτὴν διελεύσεται : ὥστε καὶ τὴν ζαʹ : τοῦ ἄρα ἡλίου τὴν ζαʹ περιφέρειαν ἐν τῷ | ||
ἄστρον καὶ δύσεται καὶ ἀνατελεῖ : ὥστε τοῦ ἡλίου τὴν ζαʹ περιφέ - ρειαν διαπορευομένου ἐν τῷ ὑπὸ γῆν , |
καὶ ὁ πολλαπλασιεπιμερής , ὡς τοῦ τρία ὁ ὀκτώ . ὑπόλογοι δέ εἰσιν οἱ ἐλάσσονες τῶν μειζόνων , ὑποπολλαπλάσιος , | ||
πολλαπλάσια τῶν τοῦ δευτέρου καὶ τετάρτου , εἰ δὲ οἱ ὑπόλογοι προτάττονται , ὑπερέχουσι τὰ τοῦ δευτέρου καὶ τετάρτου ἰσάκις |
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει | ||
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ |
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
ἔργων πλουτήσαντα , σπεύδει καὶ αὐτὸς πλουτῆσαι . . ΕΙΣ ἙΤΕΡΟΝ ΓΑΡ . Τίς γὰρ χρῄζων ἔργου , ἰδὼν εἰς | ||
τῆς ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ |
Οὕτως οὖν ὅμοθεν φησὶ στοιχεῖα καὶ ἀνθρώπους γενέσθαι . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙΝ . Ἴσθι , ὅτι ἀπὸ τῆς αὐτῆς | ||
δὲ ἐπιτυχῶς αὐτὸν ἐν τῷ σῷ λογισμῷ λάμβανε . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙ ΘΕΟΙ . Ὅτι ἐκ τῆς αὐτῆς αἰτίας |
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
τῆς δευτέρας συζυγοῦς διαμέτρου , ὡς δὲ τὸ ὑπὸ τῶν ΠΣ , ΣΑ , τουτέστι τὸ ὑπὸ τῶν ΓΣ , | ||
δύσις ἡ Ρ , καὶ κείσθω τῇ ΡΝ ἴση ἡ ΠΣ [ καθ ' ὑπόθεσιν , καὶ ἔστω ἐπὶ τοῦ |
ξυστῆρος γινέσθω ὁμαλῶς ἰσοβαθής , καὶ πάλιν μετὰ τὴν ξύσιν ἐγκρινέσθω ἡ μικρῷ πρόσθεν δεδηλωμένη θεραπεία . Ἐν πρώτοις διαστείλασθαι | ||
δοκιμαζέσθω . λιπάσματος μὲν οὖν ὄντος ἢ ἐπιπολαίου φθορᾶς , ἐγκρινέσθω ξύσις , οὐχ ἵνα μόνον ἡ ἐπιλιπὴς οὐσία ξυσθῇ |
δ ' ἀὴρ σφαιρικῶς . Ἀναξαγόρας τὴν φωνὴν γίνεσθαι πνεύματος ἀντιπεσόντος μὲν στερεμνίῳ ἀέρι , τῇ δ ' ὑποστροφῇ τῆς | ||
. ̈ . , Ἀ . τὴν φωνὴν γίνεσθαι πνεύματος ἀντιπεσόντος μὲν στερεμνίωι ἀέρι , τῆι δ ' ὑποστροφῆι τῆς |
τῇ τῶν ἀρχῶν ἐναλλαγῇ ὡς ὑπὸ τοπικοῦ ἅμματος κρατηθῇ ὁ τελαμών . τούτων δὲ τῶν ἀρχῶν καθειλκυσμένων , τοῦ πλατυτέρου | ||
, ταλαμών , καὶ τροπῇ τοῦ α εἰς ε , τελαμών . Τέρεν κατὰ δάκρυον εἴβει . παρὰ τὸ θέρω |
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα | ||
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ |
περιφέρεια τοιούτων ἐστὶν α ιδ , οἵων ὁ περὶ τὸ ΔΕΗ τρίγωνον κύκλος τξ , αὐτὴ δὲ ἡ ΕΗ εὐθεῖα | ||
δυσὶν ὀρθαῖς ἴσαι εἰσίν . εἰσὶ δὲ καὶ αἱ ὑπὸ ΔΕΗ , ΔΕΖ δυσὶν ὀρθαῖς ἴσαι : αἱ ἄρα ὑπὸ |
συμπίπτουσα τῇ ΗΑ κατὰ τὸ Κ , ἡ δὲ ΗΛ συμπίπτουσα τῇ ΒΚ κατὰ τὸ Μ . ἐπεὶ οὖν ἴση | ||
ἀχθῇ πρὸς ὁποιανοῦν τῶν τομῶν , καὶ ταύτῃ παράλληλος ἀχθῇ συμπίπτουσα ταῖς ἐφεξῆς τρισὶ τομαῖς , τὸ περιεχόμενον ὑπὸ τῶν |
δὲ φθαρῇ τὰ τῶν ὀστέων πέρατα ἑκατέρωθεν , περιτιτράσθω καὶ ἐκκοπτέσθω . ἐκ πληγῆς δὲ τῆς διαστάσεως γεγενημένης , ἀνυπερθέτως | ||
, ἑκατέρωθεν περιτιτράσθω τῷ τρυπάνῳ τὸ τῆς κεφαλῆς ὀστοῦν καὶ ἐκκοπτέσθω , καὶ τῇ πυοποιῷ ἀγωγῇ θεραπευέσθω , ὡς ἐπὶ |
ἀλλήλαις , ἀχθῶσι δὲ διὰ τῶν ἁφῶν διάμετροι συμπίπτουσαι ταῖς ἐφαπτομέναις , ἴσα ἔσται τὰ πρὸς ταῖς ἐφαπτομέναις τρίγωνα . | ||
τι σημεῖον , καὶ ἀπ ' αὐτοῦ παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις συμπίπτουσαι ταῖς τε ἐφαπτομέναις καὶ ταῖς διαμέτροις , τὸ |
ΘΓΒ . Ἐὰν κώνου τομῆς ἢ κύκλου περιφερείας δύο εὐθεῖαι ἐπιψαύουσαι συμπίπτωσιν , ἀπὸ δέ τινος σημείου τῶν ἐπὶ τῆς | ||
ἐναλλάξ . Ἐὰν κώνου τομῆς ἢ κύκλου περιφερείας δύο εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , ληφθῇ δὲ ἐπὶ τῆς τομῆς δύο τυχόντα |
ὑποδιαίρεσιν ἂν πειραθείης συγχωρήσας ἀνελεῖν , εἶτα ἀνελὼν ἐπενέγκοις , πολλαπλασιάσεις τὸν λόγον δριμέως λέγων οὕτως εἰ μὲν τόδε ἐποίησας | ||
σμγ . Ὡσαύτως καὶ εἴτε τὸν κύβον ἐφ ' ἑαυτὸν πολλαπλασιάσεις , εἴτε τὴν πλευρὰν αὐτοῦ ἐπὶ τὸν δυναμόκυβον , |
ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς ἐφαπτομένης τὸ μεταξὺ τῆς ἁφῆς καὶ τῆς ἀνηγμένης πρὸς τὸ | ||
οὕτως τὸ περιεχόμενον ὑπὸ τῶν μεταξὺ τῆς τομῆς καὶ τῆς ἐφαπτομένης πρὸς τὸ ἀπὸ τῆς ἀπολαμβανομένης πρὸς τῇ ἁφῇ τετράγωνον |
ἡ ἀπὸ τοῦ Θ κάθετος ἐπὶ τὸ ΔΕΖ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΣΤΥ ἐπιπέδου . καί εἰσιν ἴσαι αἱ | ||
παραλληλογράμμου καὶ προσεκβαλλομένη μέχρι τοῦ ἑτέρου μέρους τῆς ἐπιφανείας δίχα τμηθήσεται ὑπὸ τοῦ παραλληλογράμμου . ἤχθω διὰ τοῦ Ε σημείου |
. ἐσθίεται δὲ τὰ μὲν ἐν τῇ θαλάττῃ σηπόμενα ὑπὸ τερηδόνος , τὰ δ ' ἐν τῇ γῇ ὑπὸ σκωλήκων | ||
, μετὰ τῶν ἑκάστῳ πάθει συνεδρευόντων σημείων καὶ τὰ τῆς τερηδόνος συνεδρεύει . διὰ δὲ τῆς μηλώσεως γινώσκεται : λιπασμοῦ |
ἐπιβολῇ , διάληψιν δὲ ἔχουσαν ] , ἐὰν μὲν μὴ ἐπιμαρτυρηθῇ ἢ ἀντιμαρτυρηθῇ , τὸ ψεῦδος γίνεται : ἐὰν δὲ | ||
ἐπιμαρτυρηθῇ ἢ ἀντιμαρτυρηθῇ , τὸ ψεῦδος γίνεται : ἐὰν δὲ ἐπιμαρτυρηθῇ ἢ μὴ ἀντιμαρτυρηθῇ , τὸ ἀληθές . καὶ ταύτην |
ΓΑΔ . λέγω , ὅτι ἡ ΓΑΔ τῇ Β οὐ συμπεσεῖται . ἤχθω ἀπὸ τοῦ Α ἐφαπτομένη ἡ ΕΑΖ . | ||
Η σημεῖον κέντρον ἐστὶ τῆς ΑΒ τομῆς , ἡ ΓΖ συμπεσεῖται τῇ ΑΒ , εἴτε μή ἐστιν , ὑποκείσθω τὸ |
ἀορτήν , τὰ δὲ ἔλαττον ὀλιγεκτοῦσαν καθ ' ἑκάτερον : πλεονεκτοῦσα δὲ γωνία ἡ ἀμβλεῖά ἐστι , τὸν ἰσότατον λόγον | ||
λείπεσθαι χωρὶς παρυφισταμένων τελεῖν τὰ ἐνουρούμενα . Ὅπη γὰρ τύχῃ πλεονεκτοῦσα θερμότης ἄμετρος , ἐκεῖ που καὶ οἱ πλείους τῶν |
, τῆς τοῦ τρυπάνου ἀκμῆς πλαγίας [ ὑπὸ λοξοῦ ] προστιθεμένης , καὶ οὕτως ἡ ἐκκοπὴ γινέσθω . μετὰ δὲ | ||
ἴσα δυ μιᾷ ↑ Ϟῶν β μο μιᾶς . Κοινῆς προστιθεμένης τῆς λείψεως καὶ ἀπὸ ὁμοίων ὁμοίων , καταλείπονται Ϟ |
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
ἑκατέραν τῶν περιεχουσῶν τὴν ἐφεξῆς γωνίαν τῆς περιεχούσης τὴν ὑπερβολὴν τέμνῃ τις εὐθεῖα , συμπεσεῖται τῇ τομῇ καθ ' ἓν | ||
κύκλον τινὰ τῶν ἐν τῇ σφαίρᾳ μὴ μέγιστον ὄντα δίχα τέμνῃ , πρὸς ὀρθάς τε αὐτὸν τεμεῖ καὶ διὰ τῶν |
δοθείσῃ ἐλλείψει τοῦ δοθέντος κώνου : ὅπερ ἔδει ποιῆσαι . Κυλίνδρου δοθέντος καὶ ἐλλείψεως ἐν αὐτῷ εὑρεῖν κῶνον τεμνόμενον τῇ | ||
, καί εἰσιν ὅμοιαι ἀλλήλαις : ὅπερ ἔδει δεῖξαι . Κυλίνδρου δοθέντος εὑρεῖν κῶνον καὶ τεμεῖν ἀμφοτέρους ἑνὶ ἐπιπέδῳ ποιοῦντι |
τῇ καταρχῇ τοῦ χωρισμοῦ ἐπιστρέψαντος αὐτοῦ καὶ προστιθέντος ὁ ἀνὴρ διαλλαγήσεται καὶ μετελεύσεται τὴν γυναῖκα . Εἰ δ ' ὁ | ||
τῇ καταρχῇ τοῦ χωρισμοῦ ἐπιστρέψαντος αὐτοῦ καὶ προστιθέντος ὁ ἀνὴρ διαλλαγήσεται καὶ μετελεύσεται τὴν γυναῖκα . Ἐὰν δὲ ὁ κύριος |
, τοιούτων # λγ . τοσούτων ἐστὶν ἄρα καὶ ἡ ΛΤ τοῦ ζῳδιακοῦ περιφέρεια . ἐπεὶ οὖν καὶ ἐπὶ τῆς | ||
δὴ ἡ μὲν ΙΤ παρὰ τὴν ΔΠ , αἱ δὲ ΛΤ , ΜΥ παρὰ τὰς ΑΠ , ΟΡ . καὶ |
πρὸς τῷ Ἀδρίᾳ λοξὰ παρεμβάλλοντα , ἡ δὲ Ὀμβρικὴ καὶ παραλλάττουσα , ὡς εἴρηται , μέχρι τῆς θαλάττης . περὶ | ||
οὐ φέρουσιν : τῶν δὲ φερουσῶν οὐ συνεχὴς , ἀλλὰ παραλλάττουσα ἡ φορὰ κατὰ τὴν διάθεσιν . Ὁτὲ μὲν γὰρ |
, ΒΓ δοθεῖσά ἐστιν . Ἐὰν δύο εὐθεῖαι δοθὲν χωρίον περιέχωσιν ἐν δεδομένῃ γωνίᾳ , ᾖ δὲ συναμφότερος δοθεῖσα , | ||
τῶν εὐωνύμων , ὁ δὲ Κρόνος ἐκ τῶν δεξιῶν αὐτὴν περιέχωσιν , ὁ φυγὼν ἀνασταυρωθήσεται . Σελήνης μεσουρανούσης ἢ δυνούσης |
Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ ἢ ἐν σώματι . ἐν γοῦν | ||
δὲ τῷ τρίτῳ τῶν γεωγραφικῶν καθιστάμενος τὸν τῆς οἰκουμένης πίνακα γραμμῇ τινι διαιρεῖ δίχα ἀπὸ δύσεως ἐπ ' ἀνατολὴν παραλλήλῳ |
μέν τινος ἑτέρου ἄγγους λεχθήσεται ἐγχέειν , μὴ ὑποτεθέντος δὲ ἐκχέειν , καίπερ μηδεμίαν αὐτὸς τροπὴν καὶ ἀλλοίωσιν ἀναδεξάμενος . | ||
τά τε χρέα καὶ τὸν ἔρανον . εἰώθασιν ὅταν μέλλωσιν ἐκχέειν τὸ ἀπόνιπτρον ἀπὸ τῶν θυρίδων τοῖς παριοῦσιν ἐπιβοᾶν “ |
ὑποληπτέον , ὅτε δὲ οὔ , τοὐναντίον . Ὁ δὲ παλινδρομῶν σφυγμός ἐστιν ὁ πλείονα χρόνον ἐν τῇ συστολῇ μένων | ||
καὶ πρὸς ἐλάχιστον συμπληξαμένη ἀθρόως ἀποκόπτεται . σχέσιν δὲ ὁ παλινδρομῶν πρὸς τὸν διαλείποντα ἔχει τοιαύτην συνυπάρχουσαν ἀλλήλοις . οὔτε |
ὅμως ἐν τῷ μονοειδεῖ θεωρητέον . Οὐδὲ γὰρ ἕνωσις ἡ ἀντίθετος τῇ πληθύι λέγοιτο ἂν ἐκεῖ , συνέσται γὰρ αὐτῇ | ||
; εἰ μὲν γὰρ κίνησις ἡ ζωή , τίς ἡ ἀντίθετος τῇ κινήσει στάσις ; ἢ γὰρ ὁ νοῦς καὶ |
καυθείη , λεπτομερεϲτέρα μέν , δακνώδηϲ δέ , γίνεται , πλυνομένη δὲ τὸ δακνῶδεϲ ἀποτίθεται . Κίϲθοϲ ἢ κίϲθαροϲ ϲτυπτικόϲ | ||
πυρετοῖϲ ἐκθερμαινομένων ἁρμοδία ἡ κηρωτὴ δι ' αὐτοῦ ϲκευαζομένη καὶ πλυνομένη δι ' ὕδατοϲ ψυχροῦ , καὶ πλειϲτάκιϲ ἀλλαϲϲομένου τοῦ |
τῶν μαστῶν ταύτης . οἱ χαλεπαίνοντες τὸ συνουσιάζειν ἔλεγον . διεσπεκλωμένῃ : γεγηρακυίᾳ , ἐξηραμμένῃ , γαμηθείσῃ , ἐν τῇ | ||
εἶτα διαλυθέντων ἐν χρόνῳ . ἢ ὑπεσπληνι - σμένῃ . διεσπεκλωμένῃ οὖν , πρὸς συνουσίαν ἀχρήστῳ γενομένῃ καὶ πεπαλαιωμένῃ καὶ |
τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς | ||
πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως |
. ἀνάλυσις τὸ σχῆμα κατὰ φιλοσόφους : ἀνάλυσις δέ ἐστιν ἀντεστραμμένη ἀπόδειξις τουτέστιν ἀνάπαλιν λύσις . τῷ καὶ ἐπεὶ δαίτηθεν | ||
πρὸ αὐτοῦ . Ἡ αὐτὴ πρότασίς ἐστι τοῦ πρὸ αὐτοῦ ἀντεστραμμένη , διπλῆ μέντοι . ὥσπερ γὰρ τὸ ἀπὸ τῆς |
βούληται . ” καὶ πάλιν : „ τῆς μὲν γενναίας ἁπτέσθω , ἐὰν βούληται : τῆς δὲ ἀγροίκου λεγομένης καὶ | ||
ὀλίγῳ : ἐπιτρωγέτω δὲ ἡδύοσμον , ἑσπέρην δὲ σίτου μὴ ἁπτέσθω , ῥοφεέτω δὲ ὀλίγον , καὶ ἐπιπινέτω οἶνον γλυκὺν |
τότε φαίνεται τὰ ἄστρα , ὅ ἐστιν ὥρας Ϛ . Ἀπόδειξις : δύντος τοῦ ἡλίου , ἄφες ὕδωρ διὰ κλεψύδρας | ||
καθόλου λόγον , ἐπειδὴ οὐκ ἔχουσι καθόλου ἀποφατικὴν ὑπάρχουσαν . Ἀπόδειξις δ ' ἡ αὐτή , ὅτι δύνανται ὁμοιοσχήμονες γενέσθαι |
μονάδι μὲν ὡς ἀρχῇ , δεκάδι δὲ ὡς τέλει , συνεζευγμένη τῇ δυάδι , ὥσπερ γὰρ ἓν πρὸς βʹ , | ||
κρίνει ὡς ἑκόντα ἀποκτείναντα . ὁ δὲ παραγράφεται . Ἡ συνεζευγμένη στάσις τῇ παραγραφῇ στοχαστικὴ τυγχάνει , καὶ οὐχ ἁπλῶς |
ἀρχαίων τῆς Ἀθηνᾶς ξοάνων καθήμενα δείκνυται , καθάπερ ἐν Φωκαίᾳ Μασσαλίᾳ Ῥώμῃ Χίῳ ἄλλαις πλείοσιν . ὁμολογοῦσι δὲ καὶ οἱ | ||
σὸν , ὦ δαιμονία , κλέος οὐκ ἐπῆλθε ; ποίᾳ Μασσαλίᾳ τὸ πένθος τοῦτο ὁρισθήσεται ; ἢ τίνι Βορυσθένει ; |
δὲ μερικὰ τοὐναντίον ἑτοιμότερα πρὸς κατασκευὴν ἤπερ πρὸς ἀνασκευήν . προλαμβάνει γὰρ ὅτι τὸ μὲν παντὶ μοναχῶς δείκνυται , τὸ | ||
, ὡρισμένην ὁμοῦ τοῖς εἰς αὐτὴν εἰσβάλλουσι ποταμοῖς , ὠκεανὸν προλαμβάνει τῇ μνήμῃ καλῶς , εἴγε θεῶν καθ ' Ὅμηρον |
τὴν γζʹ περιφέρειαν διαπορεύεται : λέγω ὅτι τοῦ ἡλίου τὴν γζʹ περιφέρειαν διαπορευομένου ἐν τῷ ὑπὸ γῆν τὸ βʹ ἄστρον | ||
ἐνιαυτοῦ , ὁ χρόνος ἐστὶν ἐν ᾧ ὁ ἥλιος τὴν γζʹ περιφέρειαν διαπορεύεται : λέγω ὅτι τοῦ ἡλίου τὴν γζʹ |
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ | ||
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς |
ὀστέῳ ὑπὸ τὴν ὀξεῖαν καὶ ἀποθραύειν σμιλίῳ ἢ τῇ τοῦ ἐκκοπέως ἀκμῇ , τῆς λαβῆς κρατουμένης καὶ πλησσομένης τῷ σφυρίῳ | ||
, ἵνα μὴ τοῦ ὀστέου ὅλου διακοπέντος ἡ τοῦ ἀντερηρεισμένου ἐκκοπέως ἀκμὴ κενεμβατήσασα διέλῃ τὴν μήνιγγα . τοιγαροῦν ὅταν τὰ |
τῆς πρὸς τὸ ὑλικὸν σῶμα συζεύξεως . διὰ γὰρ τούτων ἀναβιώσκεται τρόπον τινὰ καὶ συλλέγεται καὶ θείου πληροῦται τόνου καὶ | ||
τὸ αὐτό . ἀνεβίωσα καὶ ἀνεβίωσε καὶ ἀνεβίω , καὶ ἀναβιώσκεται καὶ ἀναβιώσκει μᾶλλον ἢ ἀναβιοῖ . λέγουσι δὲ καὶ |
τὴν ἔγγιον τῆς ἀπωτέρω , ἐλαχίστην δὲ τὴν πρὸς τῇ ἐφαπτομένῃ , καθ ' ἣν ἡ μέση κίνησίς ἐστιν , | ||
συμπτώσει τῶν ἐφαπτομένων διαφέρει τῷ ἀπολαμβανομένῳ τριγώνῳ πρός τε τῇ ἐφαπτομένῃ καὶ τῇ διὰ τῆς ἁφῆς ἀγομένῃ διαμέτρῳ . ἔστωσαν |
ὁμοίως ἤχθωσαν : γίνεται δὴ διπλῆ ἡ μὲν ΓΔ τῆς ΓΡ , ἡ δὲ ΗΘ τῆς ΘΣ διὰ τὸ προκείμενον | ||
ΣΓ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ τριπλασίων : ἡ ΓΡ ἄρα πρὸς τὴν ΓΣ μείζονα λόγον ἔχει ἢ ὃν |
Νικησίπολις , ἥτις αὐτῷ ἐγέννησε Θετταλονίκην , ἣ δὲ Λαρισαία Φίλιννα , ἐξ ἧς Ἀρριδαῖον ἐτέκνωσε . προσεκτήσατο δὲ καὶ | ||
Νικησίπολις , ἥτις αὐτῷ ἐγέννησε Θετταλονίκην , ἡ δὲ Λαρισσαία Φίλιννα , ἐξ ἧς Ἀριδαῖον ἐτέκνωσε . Προσεκτήσατο δὲ καὶ |
οἰκείου κλίματος χρόνοις ἀναφορικοῖς , κατὰ δὲ τὴν τοῦ μεσουρανήματος ἰσάριθμον τοῖς χρόνοις τῶν μεσουρανημάτων , κατὰ δὲ τὰς ἀπὸ | ||
οἱ ὀδόντες , ἀνεστήκασι δὲ αἱ κεφαλαί , ζητοῦσι δὲ ἰσάριθμον θήραν . μαντεύομαι οὖν ἐγὼ καὶ Ὅμηρον βούλεσθαι λέγειν |
ἥ τε πόλις καὶ χώρα πάμφορός τε οὖσα καὶ θέσεως ἐπικαίρου λαχοῦσα ἐν καλῷ τε κειμένη τῆς Πελοποννήσου καὶ πρὸς | ||
ἀναποδείκτου λαμβανομένων εἰς οὔρου καὶ χολῆς διάκρισιν δεόμεθα καί τινος ἐπικαίρου θέσεως . ἐν ᾧ μόνον σωφρονεῖν ἔοικεν ὁ Ἐρασίστρατος |
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ | ||
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς |
καρδίᾳ , καὶ τῆς Ἀργοῦς ὁ βορειότερος τῶν ἐν τῇ ἀποτομῇ , μικρὸν προηγούμενος τοῦ μεσημβρινοῦ : ἔσχατον δὲ μεσουρανοῦσι | ||
καὶ πρῶτος μὲν ἀστὴρ ἀνατέλλει ὁ νοτιώτατος τῶν ἐν τῇ ἀποτομῇ τεσσάρων , ἔσχατος δὲ ὁ ἐν ἄκρῳ τῷ δεξιῷ |
ΚΛ δύνει ἤπερ ἡ ΛΞ . πάλιν , ἐπεὶ ἡ ΤΜ τῆς ΗΞ μείζων ἐστὶν ἢ ὁμοία , ἔστω τῇ | ||
μείζων ἐστὶν ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς |
ἑαυτοῦ οὔτε τινα τῶν γνωρίμων εὗρεν . Καὶ εἶπεν : Εὐλογητὸς κύριος , ὅτι μεγάλη ἔκστασις ἐπέπεσεν ἐπ ' ἐμὲ | ||
Ἀραβίας . . : Σούρων Σαλομῶνι βασιλεῖ μεγάλῳ χαίρειν . Εὐλογητὸς ὁ Θεὸς , ὃς τὸν οὐρανὸν καὶ τὴν γῆν |
ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν | ||
ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ |
πρώταις ἡμῖν τετηρημένων ἰσημεριῶν μία τῶν ἀκριβέστατα ληφθεισῶν γέγονεν ἰσημερία μετοπωρινὴ τῷ ιζʹ ἔτει Ἀδριανοῦ κατ ' Αἰγυπτίους Ἀθὺρ ζʹ | ||
Ϙʹ , Καλλίππῳ Ϙβʹ . . . . κη : μετοπωρινὴ ἰσημερία . Αἰγυπτίοις καὶ Εὐδόξῳ ἐπισημαίνει . . . |
Ἴστρος ἐν τῇ ιγʹ περὶ Θησέως λέγων γράφει οὕτως : Ἕνεκα τῆς κοινῆς σωτηρίας νομίσαι τοὺς καλουμένους ὀσχοφόρους καταλέγειν δύο | ||
ἔπαθον . Ἐν γῇ πένεσθαι μᾶλλον ἢ πλουτοῦντα πλεῖν . Ἕνεκα ὄττης : ὅ φασι νῦν οἰωνοῦ χάριν . Ἔνεστι |
, κίνδυνος ἐπὶ τούτων ἐστίν , ἐὰν ἐκτέμῃ τις τὰς πεπονθυίας φλέβας , ἁλῶναι μελαγχολίᾳ : καὶ γὰρ καὶ τοῦτο | ||
οὖν αἴσθησίς ἐστι πάθος ψυχῆς διὰ σώματος ἀπαγγελτικὸν προηγουμένως τῆς πεπονθυίας δυνάμεως : ὁπόταν δὲ ἐν τῇ ψυχῇ διὰ τῶν |
ἐπὶ τῇ ΕΒ γινομένην παράλλαξιν ἑξηκοστῶν α ∠ ʹ ἔγγιστα διαφοροῦσα κατὰ πᾶν τὸ ἀπὸ τῆς γῆς ἀπόστημα τῆς σελήνης | ||
θᾶττον τὴν λέξιν , σαφὴς γὰρ πᾶσα τυγχάνει . οὔτε διαφοροῦσα . ἀντὶ τοῦ οὔτε παρασύρουσα ἕτερον ἀριθμὸν μὴ ὄντα |
ἐπιψαύωσι , καθ ' ἕτερον σημεῖον οὐ συμπεσοῦνται . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΓΔ καὶ ἕτεραι αἱ ΑΓ , | ||
μέν εἰσιν ὑπερτελεῖς , οἱ δὲ ἐλλιπεῖς , καθάπερ ἀκρότητες ἀντικείμεναι ἀλλήλαις , οἱ δὲ ἀνὰ μέσον ἀμφοτέρων , οἳ |