Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ ἢ ἐν σώματι . ἐν γοῦν | ||
δὲ τῷ τρίτῳ τῶν γεωγραφικῶν καθιστάμενος τὸν τῆς οἰκουμένης πίνακα γραμμῇ τινι διαιρεῖ δίχα ἀπὸ δύσεως ἐπ ' ἀνατολὴν παραλλήλῳ |
: ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
ἐπὶ κλίνης τὰς φυσικὰς ἀνάγκας ἐπλήρου . Ἑνδεκάτῃ ἐπὶ τῇ ἐπιφανείᾳ τὸ παρυφιστάμενον ἐνήχετο λευκὸν μέν , ὑπόγλισχρον δὲ καὶ | ||
ὀρθὰς οὖσαν τῇ ΒΓ , καὶ πεποίηκε τομὴν ἐν τῇ ἐπιφανείᾳ τὴν ΔΕΖ , ἡ δὲ διάμετρος ἡ ΜΕ ἐκβαλλομένη |
Α , καὶ τῇ ΓΔ παράλληλος ἤχθω ἐν τῇ ἑτέρᾳ τομῇ ἡ ΕΖ , καὶ τετμήσθω δίχα κατὰ τὸ Η | ||
τυχόντα σημεῖα , καὶ ἀπ ' αὐτῶν ἀχθῶσιν ἐν τῇ τομῇ παρὰ τὰς ἐφαπτομένας τέμνουσαι ἀλλήλας τε καὶ τὴν γραμμήν |
δύο σημείων τῶν Β Ε κλάσαι τὴν ΒΝΞΕ καθόλου τῇ δοθείσῃ εὐθείᾳ ἴσην τῶν κλασμάτων τὸ πλῆθος δοθὲν ἔχουσαν . | ||
ΒΓ . Διὰ τοῦ δοθέντος ἄρα σημείου τοῦ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ παράλληλος εὐθεῖα γραμμὴ ἦκται ἡ ΕΑΖ |
ʹ γʹ νο νγ Ϛʹ δʹ τῶν ἐν τῇ ἑξῆς διαστάσει γ ὁ ἑπόμενος . . . . . . | ||
κζʹ , ἐπὶ δὲ τοῦ δευτέρου τὸ κατὰ Ἀριστόξενον ἐν διαστάσει μοιρῶν κδʹ καὶ γʹ καὶ γʹ , ἐπὶ δὲ |
, ὑποβαλόντεϲ κοπάριον ἢ μηλωτίδα διὰ τοῦ ϲτομίου ἐκτέμωμεν ἁπλῇ διαιρέϲει τὸ ὑποκείμενον δέρμα : εἰ δὲ εἰϲ τὸ βάθοϲ | ||
κατὰ τὴν μεϲότητα τοῦ βλεφάρου πρὸϲ τὸν ταρϲὸν τόποϲ ἐπιπολαίῳ διαιρέϲει . μετὰ δὲ τὴν ϲημείωϲιν ἐκϲτρέψαν - τεϲ τὸ |
τὴν ἔγγιον τῆς ἀπωτέρω , ἐλαχίστην δὲ τὴν πρὸς τῇ ἐφαπτομένῃ , καθ ' ἣν ἡ μέση κίνησίς ἐστιν , | ||
συμπτώσει τῶν ἐφαπτομένων διαφέρει τῷ ἀπολαμβανομένῳ τριγώνῳ πρός τε τῇ ἐφαπτομένῃ καὶ τῇ διὰ τῆς ἁφῆς ἀγομένῃ διαμέτρῳ . ἔστωσαν |
ἐκ μὲν τῆς πρὸς μεσημβρίαν πλευρᾶς συνάπτει τῇ καταλεγομένῃ νῦν ζώνῃ ἀραιᾷ σφόδρα οὔσῃ κατὰ τὴν συναφήν , ἄρχεται δὲ | ||
τῆς Αἰθιοπίας φεύγειν , αἰσθομένης δὲ τῆς μητρὸς καὶ τῇ ζώνῃ τὸν τράχηλον αὐτοῦ σφιγγούσης , ταύτῃ μηδὲ καθ ' |
, ὡς εἶναι τὸ μὲν ἑκούσιον . οἱ πύκται , κλίμαξ εἰσεφέρετο , ὥστε διαστάντας καὶ χώραν λαβόντας μένειν ἐν | ||
καὶ λοξὰ τῇ θέσει ἔχουσα κλιμάκια , ἀλλ ' ἔστω κλίμαξ ἰσοπαχὴς ἔχουσα τετράγωνα τὰ κλιμάκια . χάριν δὲ τοῦ |
τοῦ σώματος ὡς διὰ σπεκλαρίου . πληθύνει δὲ ἐν τῇ παραλίᾳ τῆς Συρίας καὶ Παλαιστίνης καὶ Λιβύης . οὗτος οὖν | ||
τὸ Τυρρηνικόν . νῆσοι δ ' εἰσὶν ἐν μὲν τῇ παραλίᾳ τῇ κατὰ τὸ Τυρρηνικὸν πέλαγος μέχρι τῆς Λιγυστικῆς συχναί |
καὶ ὕποπτον ἐν πᾶσιν ἄνδρα σημαίνει . ὁπόσοι δὲ ἐν ῥινὶ φθέγγονται , ψευδεῖς , κακοήθεις , βάσκανοι , πήμασιν | ||
ἀντίληψιν τῆς φωνῆς ἀπεργάζεσθαι . ἀλλὰ καὶ αἱ ὀδμαὶ τῇ ῥινὶ καὶ οἱ χυμοὶ αὖ τῇ γλώττῃ προσπίπτουσιν , καὶ |
οὐ χρή . ἔπειτα τὰϲ κόμαϲ ξυρῷ ἀφαιρέοντα ϲικύην τῇ κορυφῇ προϲβάλλειν προτέρην : τὴν δὲ ἑτέρην [ τὴν ] | ||
, περιφανέστατα δὲ τῆς Αἰνειάδος Ἀφροδίτης ὁ βωμὸς ἐπὶ τῇ κορυφῇ τοῦ Ἐλύμου ἱδρυμένος καὶ ἱερὸν Αἰνείου ἱδρυμένον ἐν Αἰγέστῃ |
διὰ τῶν ἐπιπέδων εὑρεῖν ἔστιν εὐθεῖαν ἴσην τῇ τοῦ κύκλου περιφερείᾳ χρησάμενον τοῖς ἐπὶ τῆς ἕλικος εἰρημένοις θεωρήμασιν . Σοφίας | ||
πάλιν , ἐπεὶ ὁμοία ἐστὶν ἡ ΘΗ περιφέρεια τῇ ΠΝ περιφερείᾳ , ἐν ᾧ ἄρα χρόνῳ τὸ Θ ἐπὶ τὸ |
γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση ἐστὶ τῇ τοῦ τετραγώνου πλευρᾷ τοῦ ἐγγραφομένου εἰς τὸν μέγιστον κύκλον . καὶ ἐπεζεύχθωσαν | ||
ἡμῶν δὲ εἷς [ καὶ ] ὁ κυβερνήτης , τρίγλης πλευρᾷ διαπαρεὶς τὸ μετάφρενον . ἐκείνην μὲν οὖν τὴν ἡμέραν |
εἰς ἀθυμίαν ἐνέπεσεν . οὐ μὴν ἀλλ ' ἐν τῇ προειρημένῃ πόλει μείνας ἡμέρας τινὰς καὶ τὸ στρατόπεδον ἐκ τῆς | ||
μὲν προφερόμενος μόνην ἀντιτιθεμένην αὑτῷ φάσιν ἕξει τὴν ἀντικειμένην τῇ προειρημένῃ : ἀποδεικνὺς δὲ διὰ λόγου ἀκούσεται , ὅτι δεῖ |
. ἐπεὶ δὲ βούλονταί τινες ὑπεναντίαν ἀμφοτέραις ἀριθμητικῇ τε καὶ γεωμετρικῇ ταύτην ἐκδέχεσθαι , ἔφαμεν δὲ ἡμεῖς τῇ ἀριθμητικῇ μόνῃ | ||
α˙ωιϚιγ˙τκα / . β . Εὑρεῖν τρεῖς ἀριθμοὺς ἐν τῇ γεωμετρικῇ ἀναλογίᾳ , ὅπως ἕκαστος αὐτῶν προσλαβὼν τὸν δοθέντα ποιῇ |
ἐξ ὕδατος Πηγάσῳ ἀναφερομένῳ τῇ κινήσει τοῦ οὐρανοῦ καὶ τῇ ἡλιακῇ ἀνιμήσει ἐποχουμένη συναναφέρεται ἡ Ἡμέρα : σφαιροειδὴς γάρ ἐστιν | ||
οἷόν ποτε μέρος ἢ θέσιν στῇ τὸ Γ σημεῖον τῇ ἡλιακῇ ἀκτῖνι , διὰ τοῦ ἐπιπέδου ἐσόπτρου ἡ ἀνάκλασις ἐπ |
τομῆς κατὰ τὸ πέρας τῆς διαμέτρου παράλληλος ἔσται τῇ δίχα τεμνομένῃ εὐθείᾳ . ἔστωσαν ἀντικείμεναι τομαὶ αἱ Α , Β | ||
συζυγὴς αὐτῇ ἡ ἀπὸ τοῦ κέντρου ἀγομένη παράλληλος τῇ δίχα τεμνομένῃ . ἔστωσαν ἀντικείμεναι τομαὶ αἱ Α , Β , |
καὶ ὑδατῶδες περίττωμα . παράκεινται δ ' ἑκατέρωθεν τῇ κοίλῃ φλεβί , τῇ μικρῷ πρόσθεν εἰρημένῃ τῇ μεγίστῃ , μικρὸν | ||
ἥπατος καὶ ἐπὶ τὰ κυρτὰ διαδοθέντος ἐπὶ τῇ κοίλῃ καλουμένῃ φλεβί , ἵν ' ὅπως δηλονότι καὶ τὸ αἷμα διαπορθμευεσθείη |
γὰρ δριμύ , ἀϲῶδεϲ : ὀδύνη κατ ' ὀϲφὺν ἐπὶ ῥάχει βαρεῖα : διάταϲιϲ τῶν μερέων , μᾶλλον δὲ τῶν | ||
παραστάτην ὠνόμαζεν . ὁ δὲ στόμαχος πρόσκειται μὲν ἔνδοθεν τῇ ῥάχει , κατατείνει δ ' εἰς πνεύμονα , ὀνομάζεται δὲ |
. οὕτως ἐστὶν ἡ Ἰβηρία περίκλυστος , ὅτι μὴ τῇ Πυρήνῃ μόνῃ , μεγίστῳ τῶν Εὐρωπαίων ὀρῶν καὶ ἰθυτάτῳ σχεδὸν | ||
τῷ Κεμμένῳ ὄρει καὶ τὰ ὑπ ' αὐτῇ κείμενα τῇ Πυρήνῃ : τὸ μέντοι πλέον τἀντεῦθεν εὐδοκιμεῖ . ἐν δὲ |
τὸν ἰσημερινὸν οἰκήσεως : αὕτη δέ ἐστιν ἐν μέσῃ τῇ διακεκαυμένῃ ζώνῃ . Καί φησιν οἰκεῖσθαι τοὺς τόπους καὶ εὐκρατοτέραν | ||
τε καὶ φωτισμῶν τοῦ ἀέρος . Ἐν μὲν γὰρ τῇ διακεκαυμένῃ ἴσαι διὰ παντὸς αἱ νύκτες ταῖς ἡμέραις , ἐν |
συμπίπτουσα τῇ ΗΑ κατὰ τὸ Κ , ἡ δὲ ΗΛ συμπίπτουσα τῇ ΒΚ κατὰ τὸ Μ . ἐπεὶ οὖν ἴση | ||
ἀχθῇ πρὸς ὁποιανοῦν τῶν τομῶν , καὶ ταύτῃ παράλληλος ἀχθῇ συμπίπτουσα ταῖς ἐφεξῆς τρισὶ τομαῖς , τὸ περιεχόμενον ὑπὸ τῶν |
τῶν ὄντων . Ἆρ ' οὖν τῇ ἐπινοίᾳ καὶ τῇ ἐπιβολῇ ἢ καὶ τῇ ὑποστάσει ; Σκεπτέον δὲ ὧδε : | ||
τῶν δ ' ὀδόντων ἤδη παρακυψάντων χρῆσθαι τρυφερῶν ἐρίων καθαρῶν ἐπιβολῇ τραχήλου καὶ κεφαλῆς καὶ σιαγόνων ἐμβροχῇ τε τῶν αὐτῶν |
τῶν πηγῶν τοῦ Ὤξου ποταμοῦ διὰ τῶν Καυκασίων ὀρῶν ἐκβαλλομένῃ μεσημβρινῇ γραμμῇ μέχρι πέρατος , οὗ ἡ θέσις ἐπέχει μοίρας | ||
μὴ [ πρὸς ] ὀρθὰς δὲ τῇ διὰ Κασπίων πυλῶν μεσημβρινῇ , οὐδὲν ἂν ἐγίνετο πλέον πρὸς τὸν συλλογισμόν . |
κατὰ τὴν ἀνατολικὴν πλευρὰν , καθ ' ἣν συνῆπται τῇ Βελγικῇ κατὰ τὸν Σηκοάναν ποταμὸν , ὡς εἶναι τοῦ μήκους | ||
Ἰάτινον κγʹ μζʹ ∠ ʹʹ Μεθ ' οὓς πρὸς τῇ Βελγικῇ Οὐαδικάσιοι καὶ πόλις Νοιόμαγος κδʹ γʹʹ μϚʹ ∠ ʹʹ |
Ὁ ϲταθμὸϲ βάρει μετρούμενοϲ κρίνεται , τὸ δὲ μέτρον ἀγγείου κοιλότητι : τὸ δὲ ἀγγεῖον ἢ ξηροῦ ποϲοῦ μέτρον ἐϲτὶν | ||
, δελφῖνες λεγόμενοι διὰ τὸ ἐν τῇ δελφύϊ ἢ τῇ κοιλότητι τῆς γῆς αὐτοὺς σύρεσθαι , συνεκόμισαν αὐτῷ τὴν τοιαύτην |
φορὰ καὶ τῶν ἐν αὐτῷ ὄντων ἁπάντων νοῦ κινήσει καὶ περιφορᾷ καὶ λογισμοῖς ὁμοίαν φύσιν ἔχει καὶ συγγενῶς ἔρχεται , | ||
κέντρου τάξιν ἐπέχει πρὸς τὸν κόσμον . Ἐν μιᾷ κόσμου περιφορᾷ ὁ μὲν διὰ τῶν πόλων τῆς σφαίρας κύκλος δὶς |
εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν | ||
ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων |
τομῆς ἀγαγεῖν ἐφαπτομένην , ἥτις πρὸς τῇ διὰ τῆς ἁφῆς ἠγμένῃ διαμέτρῳ ἴσην περιέξει γωνίαν τῇ δοθείσῃ ὀξείᾳ . ἔστω | ||
τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς |
ἐν τοῖς καθ ' ἕκαστα θεωροῦντες , ὁδῷ τινι ἢ κλίμακι τῷ μαθηματικῷ χρώμενοι : οἱ δὲ κατὰ Ἀριστοτέλην βουλόμενοι | ||
ἀναβαθμοί , ἔνθα διελθεῖν ἁμάξαις ἄβατον : κλῖμαξ γὰρ ἐπὶ κλίμακι δίδωσιν ἀεὶ τὸ μεῖζον ὡς ἐξ ἐλάττονος ἄγουσα καὶ |
λι : τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν ἄλλῃ λοξῇ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . τὸ δὲ | ||
οὕτω ] σφαιρῶν , ὁμαλῇ καὶ ἁπλῇ καὶ τεταγμένῃ , λοξῇ δὲ καὶ διὰ βραδυτῆτα μόνον ὑπολειπομένῃ τῶν ἀπλανῶν ἢ |
, κέχρηται δὲ ἤδη τὸ πρότερον εἶδος τῇ τοῦ πηλίκου ἀναλογίᾳ δὲ χρήσεται καὶ τοῦτο τῇ τοῦ ποσοῦ ὡς ἂν | ||
τοῦτον ὁ βασιλεὺς πρὸς τὸν λαόν καὶ χρήσασθαι οὕτω τῇ ἀναλογίᾳ , μὴ εἴποι οὕτως ἀλλὰ ποιμένα καλέσαι λαῶν τὸν |
ἅμα ἐθεώρησεν ὁ Ἀντίοχος , γέγονεν ἡ ἀρτηρία αὐτοῦ ἐν ἀνωμαλίᾳ : ὁ γὰρ Ἐρασίστρατος ἔμεινε σφυγμολογῶν αὐτὸν ἀπ ' | ||
, διὰ τῆς ἰδίας εἰκόνος τὸν τῶν ἀνθρώπων βίον ἐν ἀνωμαλίᾳ δεικνυμένη . Ἡ δὲ μέθοδος τοῦ πολεύοντος καὶ διέποντος |
: ἔσχατον δὲ μεσουρανοῦσι τῆς τε Μεγάλης Ἄρκτου ὁ ἐν ἄκρᾳ τῇ οὐρᾷ , καὶ τοῦ Βοώτου ὁ βορειότερος τῶν | ||
βορειότερος τῶν ἐν τῷ χάσματι , ἔσχατος δὲ ὁ ἐν ἄκρᾳ τῇ οὐρᾷ . Μεσουρανεῖ δὲ ἀστὴρ πρῶτος μὲν τοῦ |
πολυχρονίως ἡ πανήγυρις τελεσθήσεται . ἄλλως : ἐν ταύτῃ πρῶτον ἀγομένῃ τῇ ἑορτῇ τῶν Ὀλυμπίων παρέστησαν αἱ Μοῖραι καὶ ὁ | ||
Ω κάθετος ἀγομένη ἴση ἐστὶ τῇ ἀπὸ τοῦ Χ καθέτῳ ἀγομένῃ ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον , τὰ Ω |
τὰς αἰσθήσεις . ̈ . , Π . , Ἐμπεδοκλῆς ἐλλείψει τροφῆς τὴν ὄρεξιν [ . γίνεσθαι ] . . | ||
: μὴ σπεῖραι παίδων ἄλοκα : παρὰ τὸ αὖλαξ : ἐλλείψει τοῦ υ : καὶ τροπῆ τοῦ α εἰς ο |
ἡ φίλησις γίνηται : καὶ τὸ δίκαιον δὲ ἐν τῇ ἰσότητι σώζεται . ἀλλ ' οὐχ ὁμοίως ἔχει τὸ ἴσον | ||
πάθεσιν εἴκουσι . παυσάσθωσαν οἷοί εἰσι , καὶ ἀγαπήσουσι πάντας ἰσότητι ἀρετῆς . τί δὲ οἴεσθε , ὦ ἄνθρωποι , |
Τί σοι χαρίσωμαι ; Γυμνὸν ἀποδύσαντά με κέλευε πρὸς τῇ σανίδι δεῖν τὸν τοξότην , ἵνα μὴ ' ν κροκωτοῖς | ||
τοῦτο τὸ ξύλον ἔχει κατὰ τὰ πέρατα ἐπιπεπηγότα τῇ ὑπτίᾳ σανίδι ἕτερα ξύλα ποδιαῖα τῷ μήκει , τῷ δ ' |
ταναόποδα , ὁ δὲ Ἡλιόδωρος προσεχέστερον τανύποδα , τεταμένα τῇ πορείᾳ χρώμενα τῶν ποδῶν . τάμνεν ἐπὶ μὲν τοῦ διατέμνειν | ||
. δίαυλος λέγεται ὁ διττὸν ἔχων τὸν δρόμον ἐν τῇ πορείᾳ , τὸ πληρῶσαι τὸ στάδιον καὶ ὑποστρέψαι . δολιχοδρόμοι |
εἰδέναι ὅτι ἐν τῇδε τῇ διαφορᾷ καὶ οὐκ ἐν τῇ ἀντικειμένῃ αὐτῇ πᾶν αὐτὸ περιέχεται . οἷον ὅταν ἄνθρωπον προθείς | ||
ἀπὸ τοῦ Ζ ἐπὶ τὸ Γ ἐπιζευγνυμένη ἐκβαλλομένη συμπεσεῖται τῇ ἀντικειμένῃ τομῇ , καὶ ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ |
ὀνομάτων εἰς τὸ δηλοῦν ἀλλήλοις ἃ ἐννοούμεθα , κρείττονί τινι συναφῇ τῶν ψυχῶν συναπτομένων καὶ μεταδιδουσῶν ἀλλήλαις τῶν οἰκείων διανοημάτων | ||
πασῶν σύστημα ἠλέγχετο τῆς διὰ πέντε καὶ διὰ τεσσάρων ἐν συναφῇ , ὡς ὁ διπλάσιος λόγος ἤτοι ἡμιολίου τε καὶ |
θέλῃ ἀφίστασθαι , σικύην προσβαλὼν ἀφαιρέειν τοῦ αἵματος , κατακεντῶν ἀκίδι τριγώνῳ ἐς τὰ γούνατα , ἢν ἐν τοῖσι γούνασιν | ||
ἁλιεὺς ἢ τρώσῃ τὸν παῖδα αὐτῆς τῇ τριαίνῃ ἢ τῇ ἀκίδι βάλῃ * * ἡ μὲν ἀκὶς τὰ ἄνω τέτρηται |
εἴ σε ἐγὼ ἐροίμην εἰ τῇ αὐτῇ τέχνῃ γιγνώσκομεν τῇ ἀριθμητικῇ τὰ αὐτὰ ἐγώ τε καὶ σὺ ἢ ἄλλῃ , | ||
εὑρίσκονται , δείκνυσιν ὁ γεωμέτρης . ὅτι δὲ ἐν τῇ ἀριθμητικῇ οὐ δύναται εὑρεθῆναι , δῆλον ἐκεῖθεν : ἔστωσαν γὰρ |
προσεχὲς δ ' αὐτῇ τελευταῖόν ἐστι τὸ Κρόνιον πρὸς τῇ νησῖδι : τὸ δ ' Ἡράκλειον ἐπὶ θάτερα τέτραπται τὰ | ||
ὁ δὲ Σεβαστὸς οὐ συνῆψε μάχην , ἀλλὰ ἐν τῇ νησῖδι καθωρμίσατο . Μουρκίου δὲ ἄλλον ὅρμον οὐκ ἔχοντος , |
ἐνταῦθα περὶ αὐτὸ ξυλλέγηται . Περιφεύγειν δὲ χρὴ ἐν τῇ ἐπιδέσει , ὅκως μὴ κατὰ τὴν καμπὴν πολλὸν τοῦ ὀθονίου | ||
βλακεύειν ἐν τῇ κατατάσει , μάλιστα μὲν ἐν τῇ πρώτῃ ἐπιδέσει κατατείνεσθαι , ὅσον ἐφικνέεται αἰεί ποτε πάντα τὰ κατήγματα |
γὰρ καθόλου ἀκίνητα καὶ ἀίδια : [ καὶ ] ἐν ταυτότητι γὰρ ἀεὶ ὑπάρχουσιν . ἄλλως τε δὴ καὶ σύ | ||
μόνον , οὐχ ἑαυτῇ , ἀλλ ' ἑτερότητι ἕτερον καὶ ταυτότητι ταὐτόν . Οὐδὲ δὴ ἡ στέρησις ποιότης οὐδὲ ποιόν |
ἡ μονὰς ἢ τῇ τετράδι ἢ τῇ ἐξ ἀμφοτέρων ἀποτελουμένῃ πεντάδι . οὔτε δὲ ἑαυτῇ προστίθεται διὰ τὸ τὸ μὲν | ||
ἀπὸ μονάδος τετράδι διαφερόντων , καὶ ἑπταγωνικὸς ὁ ἐκ τῶν πεντάδι καὶ ἑξῆς ἀκολούθως , καὶ κατὰ δυάδος ὑπεροχὴν τῶν |
ὁμωνύμως καὶ ταῦτα λεγόμενα τοῖς ἑαυτῶν πρακτικοῖς , τῇ τε στροφῇ καὶ ἀντιστρόφῳ καὶ ἐπῳδῷ ἤτοι ἐξόδῳ καὶ ἐξελεύσει καὶ | ||
καὶ ὁ ἐμπρόσθιος ἄξων : τῇ δὲ τῶν τριῶν ἀξόνων στροφῇ εἰσάγονται αἱ ἔκθετοι τῶν κάλων ἀρχαί , αἷς ἀποδέδενται |
ἕνα τῷ μηρῷ πλησίον τοῦ γόνατος , καὶ ἄλλον τῇ κνήμῃ ὑπὲρ τὴν γαστροκνημίαν , εἶτα πάλιν τοῦ τονίου κάτω | ||
τῶν περιεχόντων τὸ ἕλκος , ἄλλως τε καὶ ἢν ἐν κνήμῃ ἔῃ τὸ ἕλκος ἢ ἐν δακτύλῳ ποδὸς ἢ χειρὸς |
συντονοῦνται , φίλων κούφων δούλων , μονογενῆ δὲ τῇ ἰδίᾳ εὐθείᾳ , πτερά πτερῶν , ξυρά ξυρῶν , ὀστᾶ ὀστῶν | ||
. Πρὸς ἄρα τῷ δοθέντι σημείῳ τῷ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ ἴση εὐθεῖα κεῖται ἡ ΑΛ : ὅπερ |
τὴν οἰκουμένην ἐν σφαίρᾳ καταγράφειν . Ἔκθεσις τῶν ἐντασσομένων τῇ καταγραφῇ μεσημβρινῶν καὶ παραλλήλων . Μέθοδος εἰς τὴν ἐν ἐπιπέδῳ | ||
γεωγραφήσοντα τὰ μὲν διὰ τῶν ἀκριβεστέρων τηρήσεων εἰλημμένα προϋποτίθεσθαι τῇ καταγραφῇ καθάπερ θεμελίους , τὰ δ ' ἀπὸ τῶν ἄλλων |
ΓΑΔ . λέγω , ὅτι ἡ ΓΑΔ τῇ Β οὐ συμπεσεῖται . ἤχθω ἀπὸ τοῦ Α ἐφαπτομένη ἡ ΕΑΖ . | ||
Η σημεῖον κέντρον ἐστὶ τῆς ΑΒ τομῆς , ἡ ΓΖ συμπεσεῖται τῇ ΑΒ , εἴτε μή ἐστιν , ὑποκείσθω τὸ |
τι ἢ ἀπ ' ἄλλου τὸ αὐτό , οὐχ ἡ ἀντικειμένη , ἀλλ ' ἔσται ἐκείνης ἑτέρα , τοῦτο δέ | ||
φερόμενον : ἡ γὰρ ὅλη φορὰ οὐθὲν ἧττον ἑκατέρα ἑκατέρᾳ ἀντικειμένη ἐπ ' ἄπειρον νοεῖται . Καὶ μὴν καὶ ἰσοταχεῖς |
ΜΞ ἐστιν ἡ ῥητὸν καὶ μέσον δυναμένη . ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΑΗ τῇ ΗΕ , ἀσύμμετρον ἄρα ἐστὶ | ||
εἰσὶ σύμμετροι αἱ ΜΝ , ΝΞ ] . καὶ ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΕ τῇ ΕΔ μήκει , ἀλλ ' |
ἡμῖν ἕτερόν ποτε σύμφωνον , ὅπερ ἂν τῇ ἕκτῃ χαρισαίμεθα συζυγίᾳ , ἐξ ἀνάγκης διὰ γυμνοῦ τοῦ ω ἡ ἕκτη | ||
. Μ . Ν . Ρ . τῇ πέμπτῃ ταῦτα συζυγίᾳ προσανατίθεσο καὶ ἴδε μοι τὸν ἀριθμὸν τῶν συμφώνων , |
. ἀμφίπολον δὲ λέγει ἢ τὸν περιπολούμενον διὰ τὸ ἐν μέσῃ εἶναι τῇ πόλει : ἐνταῦθα γὰρ οἱ οἰκισταὶ ἐθάπτοντο | ||
ἔπεμπεν ἐς Σύλλαν : καὶ αὐτὴν ὁ Σύλλας ἐν ἀγορᾷ μέσῃ πρὸ τῶν ἐμβόλων θέμενος ἐπιγελάσαι λέγεται τῇ νεότητι τοῦ |
. Τράγιλος , πόλις μία τῶν ἐπὶ Θρᾴκης πρὸς τῇ χερρονήσῳ καὶ Μακεδονίᾳ . ἐκ ταύτης ἦν Ἀσκληπιάδης ὁ τὰ | ||
ἀνάθημα Μιλτιάδου τοῦ Κίμωνος , ὃς τὴν ἀρχὴν ἔσχεν ἐν χερρονήσῳ τῇ Θρᾳκίᾳ πρῶτος τῆς οἰκίας ταύτης : καὶ ἐπίγραμμα |
τὰς ἀρχὰς ὡς πρὸς τὰ ἀντικείμενα μέρη πρὸς τῇ καταλλήλῳ φλιᾷ . πάλιν τε ὁμοίως τῷ βραχίονι καρχήσιος βρόχος περιτιθέσθω | ||
περιτιθέσθω . τούτου αἱ ἀρχαὶ ἀγέσθωσαν κάτω καὶ ἀποδιδόσθωσαν τῇ φλιᾷ πρὸς κράτημα : αἱ δὲ τῶν κάλων ἀρχαὶ τῷ |
. Τὸν δὲ ἵππον τὸν πρὸς ὀχείαν χρὴ εἶναι τῇ περιοχῇ τοῦ σώματος μέγαν , εὐπαγῆ πᾶσι τοῖς μέρεσι . | ||
διὰ τὸ προειλῆφθαι οὕτως ἔχειν , ἐπειδὰν ὅμοιόν τι τῇ περιοχῇ μέλλον ἀποβήσεσθαι ἡ ψυχὴ θέλῃ προαγορεῦσαι , τὴν ἱστορίαν |
πρὸς τὴν βραχυτάτην λόγον οὔτε γνώμονος πρὸς σκιὰν ἐπὶ τῇ παρωρείᾳ τῇ ἀπὸ Κιλικίας μέχρι Ἰνδῶν , οὐδ ' εἰ | ||
Ἴστρῳ κατὰ τὸ νότιον μέρος , κατὰ δὲ τοὐναντίον τῇ παρωρείᾳ τοῦ Ἑρκυνίου δρυμοῦ , μέρος τι τῶν ὀρῶν καὶ |
δὲ οὕτως ὥστε ἵστασθαι μέχρι τοῦ γένους . οἷον τῇ τριάδι ὑπάρχει μὲν [ ἀριθμὸς καὶ ] τὸ ὄν , | ||
ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ ἐπιμόριοι ἀφ ' ἡμιολίου ἀρχόμενοι |
τὸν αὐχένα κατὰ νῶτα δαφοινὸς καὶ γένεια καθιεὶς ὑπ ' ὀρθῇ καὶ πριονωτῇ τῇ λοφιᾷ βλέπων τε δεινῶς δεδορκὸς καὶ | ||
ποιεῖν ἐμφερὲϲ ταῖϲ τοῦ Κ δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ ϲημαίνουϲι δραχμήν , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
δὲ πρὸς ὄρεξιν καὶ κατάποσιν . παρατέταται δὲ τῇ τραχείᾳ ἀρτηρίᾳ καὶ διατείνει μέχρι διαφράγματος . κοινὴ δὲ πρὸς πέψιν | ||
, ὥσπερ ἡ βήξ : ἀλλὰ τούτῳ τύπτει τὸν ἐν ἀρτηρίᾳ πρὸς αὐτήν : σημεῖον δὲ τούτου : οὐδεὶς γὰρ |
πολὺ ἔλαττον τῶν τρισχιλίων καὶ μάλιστα πρὸς τῇ Πυρήνῃ τῇ ποιούσῃ τὴν ἑῴαν πλευράν : ὄρος γὰρ διηνεκὲς ἀπὸ νότου | ||
ὅπερ ἔδει δεῖξαι . Τῇ μετὰ μέσου μέσον τὸ ὅλον ποιούσῃ μία μόνη προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ |
καὶ βορειοτέρῳ ποδί , ἔσχατος δὲ ὁ ἐν ἄκρᾳ τῇ οὐρᾷ . Μεσουρανεῖ δὲ τῶν ἄλλων πρῶτος μὲν ὁ ἐν | ||
; οὐ γὰρ πρὸ μοίρας ἡ τύχη βιάζεται . ἔσαινεν οὐρᾷ μ ' ὦτα κυλλαίνων κάτω γλώσσης ἀπαυστὶ στάζε μυξώδης |
ἢ ἑτέρᾳ αἰσθήσει κρινούσῃ τὴν ὄψιν . εἰ μὲν δὴ ἑτέρᾳ καὶ οὐ τῇ ὄψει , δύο ἔσονται αἰσθήσεις τοῦ | ||
, οὐκ ἔσται δυὰς κατὰ τὴν παράθεσιν τῆς ἑτέρας τῇ ἑτέρᾳ , ὡς οὐδὲ πρὶν τῆς συνόδου ἐτύγχανεν . εἰ |
λόγου δύναμιν δείκνυσι τὴν ῥητορικήν , ὅτι πρᾶγμά ἐστιν ἐν μεσότητι θεωρούμενον , ᾧ ἔξεστι χρήσασθαι καὶ καλῶς καὶ κακῶς | ||
τοῦ ἴσου καὶ τοῦ προσήκοντος , ἐμπεριεχομένη ἀριθμοῦ τετραγώνου περισσοῦ μεσότητι . πρῶτον δὴ ἐκθετέον στιχηδὸν τοὺς μέχρι τούτου ἀριθμοὺς |
σημείῳ τότε τὴν σελήνην γινομένην ἐν τῷ δι ' Ἀλεξανδρείας παραλλήλῳ , καθ ' ὃν ἐποιούμεθα τὰς τηρήσεις , τὴν | ||
οὕτως ἐστὶν τὸ ἀπὸ ΑΔ πρὸς τὸ ἀπὸ ΘΚ ἐν παραλλήλῳ : ὁ ἄρα μοναχὸς καὶ μέγιστος λόγος ἐστὶν ὁ |
ϲὺν τῷ ξύλῳ , ὥϲτε τὴν μαϲχάλην ἐγκαρϲίωϲ ἐφαρμόζειν τῇ βαθμίδι , τὴν δὲ χεῖρα κάτω ἕλκοντεϲ , ἐάϲομεν ἐπὶ | ||
κάτω ἑλκέτω τὸν βραχίονα . τινὲϲ δὲ ἀντὶ τοῦ ϲτειλειοῦ βαθμίδι κλίμακοϲ ἐχρήϲαντο . ὁ δὲ Ϲωρανὸϲ οὕτωϲ : Καθέδριον |
ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ ὁμοίως ἡ ΧΨ κάθετος , ἣν δεῖ ἐλάσσονα δεῖξαι τῆς ΥΩ καθέτου | ||
ἀπὸ τῆς ΚΓ μείζονα λόγον ἔχει ἤπερ ιβʹ τὰ ἀπὸ ΧΨ πρὸς ιεʹ τὰ ἀπὸ ΩΦ : ὥστε καὶ λϚʹ |
ὀρθίως ἡ τέμνουσα τῇ τεμνομένῃ , κατ ' ἀνάγκην ὀφείλει στιγμῇ ἑαυτῆς ἐπιζεύγνυσθαι τῇ κατὰ τὴν διαιρουμένην γραμμὴν στιγμῇ . | ||
τοῦτο συμβαίνει τοῖς περὶ τῆς τετράδος ἀξιώμασιν . εἰ γὰρ στιγμῇ μὲν ἡ μονὰς ἀνάλογος , γραμμῇ δὲ ἡ δυάς |
τοῦ διὰ πέντε συμπληρώσεως . ἡ γὰρ τῷ ἡγουμένῳ φθόγγῳ συναπτομένη διάζευξις ποιοῦσα λόγον ἐπόγδοον οὐκέτι περὶ μόνας τὰς τρεῖς | ||
ἑβδομάδι ἐν τῇ διὰ πάντων ἐνεργείᾳ , εἴτε καὶ ἄλλως συναπτομένη τῇ ἑβδομάδι δεκάδα ἀποτελεῖ τετάρτην κυβικῆς τετάρτης χώρας παρεκτικήν |
δύναται τὸ ὑπὸ ΒΑΚ ἴσος ἐστὶν τῇ ὑπὸ τῆς ΓΔ γινομένῃ ἐπιφανείᾳ . ὁμοίως δὲ καὶ ὁ κύκλος οὗ ἡ | ||
μετενσωματουμένῃ καὶ τῇ ἐκ σώματος ἀερίνου ἢ πυρίνου εἰς γήινον γινομένῃ , ἣν δὴ μετενσωμάτωσιν οὐ λέγουσιν εἶναι , ὅτι |
ὄντος πρὸς τῷ νʹ [ διὰ τὸ ἴσην εἶναι τὴν ζηʹ περιφέρειαν τῇ λνʹ περιφερείᾳ ] : καὶ ἔσται ὁ | ||
τῷ ηʹ ] : λέγω ὅτι τοῦ ἡλίου διαπορευομένου τὴν ζηʹ περιφέρειαν τὸ εʹ ἄστρον οὐ φαίνεται . Ἔστω γὰρ |
: εἶτα Εἰλειθυίας πόλις καὶ ἱερόν : ἐν δὲ τῇ περαίᾳ Ἱεράκων πόλις τὸν ἱέρακα τιμῶσα : εἶτ ' Ἀπόλλωνος | ||
τοὺς τέττιγας : οἱ μὲν γὰρ ἐν τῇ τῶν Λοκρῶν περαίᾳ φθέγγονται , τοῖς δ ' ἀφώνοις εἶναι συμβαίνει : |
καλοῦσιν , ἐν ἐκείνῃ τῇ αἰτίᾳ περιλαμβάνεται τῇ καὶ πρότερον εἰρημένῃ περὶ τῶν ἀκάρπων ὅτι διὰ πυκνότητα καὶ ἰσχὺν καὶ | ||
τοῦ ἐκκέντρου πάντοτε τὴν θέσιν ἔχον , τὴν ἴσην τῇ εἰρημένῃ πάροδον , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις λζ πρὸς |
. Τοῖς δὲ κατὰ Μερόην καὶ Πτολεμαΐδα τὴν ἐν τῇ Τρωγλοδυτικῇ ἡ μεγίστη ἡμέρα ὡρῶν ἰσημερινῶν ἐστι τρισκαίδεκα : ἔστι | ||
Συήνῃ καὶ Βερενίκῃ τῇ ἐν τῷ Ἀραβίῳ κόλπῳ καὶ τῇ Τρωγλοδυτικῇ κατὰ θερινὰς τροπὰς ὁ ἥλιος κατὰ κορυφῆς γίνεται , |
ΖΕ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ . καὶ βάσις ἡ ΒΕ βάσει τῇ ΕΔ ἐστιν ἴση : τὸ γὰρ Ε σημεῖον | ||
ὑπὸ ΔΗΖ ἴση : καὶ βάσις μὲν ἄρα ἡ ΒΖ βάσει τῇ ΔΖ ἴση ἐστίν , γωνία δὲ ἡ ὑπὸ |
κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ | ||
τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς |
ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ καὶ τὸ | ||
καὶ ἀκούσια τὰ πλημμελήματα , ἐκδιδάσκει τῇ κατ ' ἐπιπέδου κυλινδρικῇ κινήσει ἐοικέναι φήσας τὸν τῶν ἀνοήτων βίον , ὃς |
ἐκβεβλήσθω ἡ ΑΒΕ , καὶ κείσθω ἡ ΒΕ ἴση τῇ ἡμισείᾳ τῆς ἐκ τοῦ κέντρου , καὶ ἐν τῷ ὀρθῷ | ||
αὐτὰς ἐνθέρμους καταβάπτομεν εἰς γλεῦκος καὶ θάλασσαν ἑψημένην ἐφ ' ἡμισείᾳ , καὶ ἀνελόμενοι ἐπιτιθέμεθα εἰς τὴν ληνὸν νύκτα καὶ |
πόδας βʹ , ἔστω κανὼν ἔχων τὸ μῆκος πόδας [ δζʹ ] , τὸ δὲ πλάτος καὶ τὸ ὕψος πόδα | ||
. Εἰ γὰρ μὴ ἔστιν ὁμοία ἡ γεʹ περιφέρεια τῇ δζʹ , ἔστω ὁμοία ἡ γεʹ τῇ δηʹ : ἐν |
πολλάκις , τῆς ὑποδορᾶς ἡλκωμένης , τὴν πόσθην συμφύεσθαι τῇ βαλάνῳ , ὡς μηκέτι μετάγεσθαι δύνασθαι , χρὴ διὰ τοῦτο | ||
ἐπανάκλινε αὐτόν : κοιλίην δὲ μὴ λύσῃς , ἢν μὴ βαλάνῳ , ἢν πουλὺς χρόνος ᾖ ἀδιαχωρήτῳ ἐούσῃ : καὶ |
ἑαυτοὺς μέρος τοῦ λάρυγγος . Δύο μύες πλατεῖς τῇ κάτω γένυϊ συνάπτουσι τὸ ὑοειδὲς ὀστοῦν , ἐκ μὲν τῶν πλαγίων | ||
τὴν ἄμυναν ἐπιτρέπει τῷ στόματι καὶ πολέμιον γένος κεραΐζει τῇ γένυϊ καὶ διόλλυσιν ἑκατέρωθεν ἐπιστρεφόμενος . Ἀλλὰ καίπερ οὕτω πικρῶς |
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
Εἰ μὲν οὖν σύμμετρός ἐστιν ἡ ΒΖΕ περιφέρεια τῇ ΑΒΓ περιμέτρῳ τοῦ κύκλου , ἐπεὶ διαιρεθείσης τῆς ΑΒΓ περιμέτρου τοῦ | ||
τῶν περὶ Μαιῶτιν καὶ τὸν ὅλον Πόντον ᾠκισμένων ἐθνῶν ἐν περιμέτρῳ τρισμυρίων σταδίων . Ῥωμαίων δὲ στρατηγὸς μὲν Παμφυλίας Κόιντος |
τι σῶμα ὅμοιον ἀεὶ διὰ παντὸς φαίνεται ἡμῖν ἐν τῇ σελήνῃ . τί δὲ καὶ τὸ συνεχὲς τοῦ σώματος τούτου | ||
, πάντα δὲ ἀέρα ἀνιπταμένη , συνθέουσα ἡλίῳ , συμπεριφερομένη σελήνῃ , συνδεδεμένη τῷ τῶν ἄλλων ἄστρων χορῷ , καὶ |
ἀντιμεταγέτω βίᾳ τὸν τράχηλον . προστιθέσθω δ ' ἅμα τῇ κατατάσει καὶ τῇ ὑπεραιωρήσει : ἀνίεται γὰρ τὰ περικείμενα τῷ | ||
τὴν δὲ μόχλευσιν πλάτος ἔχοντι μοχλῷ μοχλεύειν χρὴ ἅμα τῇ κατατάσει , ἐκ τοῦ ἔξω μέρεος ἐς τὸ ἔσω ἀναγκάζοντα |
ἐφ ' ἧς τὸ μεῖζον ὄνομα σύμμετρόν ἐστι τῇ ἐκκειμένῃ ῥητῇ , δευτέραν δέ , ἐφ ' ἧς τὸ ἔλασσον | ||
ἄλλαι εὐθεῖαι , αἳ μήκει μὲν ἀσύμμετροί εἰσι τῇ ἐκκειμένῃ ῥητῇ , δυνάμει δὲ μόνον σύμμετροι , καὶ διὰ τοῦτο |
ἐν τῷ Ὑδροχόῳ ὕδατος ὁ ἑπόμενος τῶν ἐν τῇ τετάρτῃ συστροφῇ , τοῦ δὲ Ἵππου ὁ βορειότερος τῶν ἐν τῷ | ||
Μερόην ἀνήκοντες Αἰθίοπες , οὐδ ' οὗτοι πολλοὶ οὔτε ἐν συστροφῇ , ἅτε ποταμίαν μακρὰν καὶ στενὴν καὶ σκολιὰν οἰκοῦντες |
τοῦ κανονίου τῶν μηνῶν τμημάτων σιδ μβ . Ἐν τῇ ἐλαχίστῃ ἄρα ἑπταμήνῳ ἐπειληφυῖα μετὰ κύκλους ἔσται κατὰ πλάτος ἡ | ||
τὴν μέσην ἑπτάμηνον συναγομένων τμημάτων σιδ μβ : ἐν τῇ ἐλαχίστῃ ἄρα ἑπταμήνῳ ἐπειληφυῖα ἔσται κατὰ πλάτος ἡ σελήνη ἐπὶ |
, περόνης ἐμβληθείσης εἰς τὸ ἀξόνιον τῆς κατεχούσης ἐν τῇ περιαγωγῇ τὸν κανόνα . τούτων δὲ οὕτως γενομένων κύβος κύβου | ||
. , , . = , , . ὀνίσκου τε περιαγωγῇ Ὀνίσκους λέγει τοὺς τροχούς , λέγω δὲ τῆς ἁμάξης |
τὸν βραχίονα ἐκπεπτωκέναι . Κεφαλὴ δὲ τοῦ βραχίονος ἐν τῇ μασχάλῃ φαίνεται : αἴρειν γὰρ οὐ δύνανται , οὐδὲ παράγειν | ||
σημεῖα διὰ τούτων ἐκτέθειται : ἀτὰρ τοῦτο μὲν ἐν τῇ μασχάλῃ ἡ κεφαλὴ τοῦ βραχίονος φαίνεται ἐγκειμένη πολλῷ μᾶλλον τοῦ |
μετ ' αὐτόν , ὥστε μεταξὺ ἀμφοῖν γενέσθαι τῇ τε ἑτερότητι τῆς πρὸς τὸ ἄνω ἀποτομῆς καὶ τῷ ἀνέχοντι ἀπὸ | ||
, ὡς αἱ συμφωνίαι τῇ τῶν ἐν τοῖς φθόγγοις λόγων ἑτερότητι . τοῦτο δὲ οὐκ ἄλλο τι εὑρεθήσεται ὂν ἢ |
τῇ μείζονι καθόλου καταφατικῇ ἀναγκαίᾳ καὶ τῇ ἐλάττονι ἐπὶ μέρους καταφατικῇ ἐνδεχομένῃ . εἰ δὲ ἡ ἐλάττων ἀποφατικὴ οὖσα ἀναγκαία | ||
ἐπὶ μέρους ἐνδεχόμενον καταφατικὸν ἔχον συμπέρασμα ἐπὶ τῇ μείζονι καθόλου καταφατικῇ ἀναγκαίᾳ καὶ τῇ ἐλάττονι ἐπὶ μέρους καταφατικῇ ἐνδεχομένῃ . |
ληγούσης ἐφαίνετο ἐπ ' εὐθείας τῷ τε μέσῳ καὶ τῷ νοτίῳ τῶν ἐν τῷ μετώπῳ τοῦ Σκορπίου ἡ νότιος κεραία | ||
ἐν ταῖς χηλαῖς τοῦ Σκορπίου λαμπρῶν τὸν ἐν ἄκρᾳ τῇ νοτίῳ Τιμόχαρις μὲν ἀναγράφει νοτιώτερον τοῦ ἰσημερινοῦ μοίραις ε , |
τε εἶναι ἀφωρισμένον αὐταῖς τὸ μέρος ἐν τῷδε καὶ τῇ ἐπιστροφῇ τοῦ προσδεομένου φροντίσεως , τῆς μὲν οὖν ἐοικυίας τῇ | ||
ἄρκτων Σκυθίᾳ κατὰ παράλληλον γραμμὴν τῇ ἀπὸ τοῦ Ἰαξάρτου ποταμοῦ ἐπιστροφῇ μέχρι πέρατος , οὗ ἡ θέσις ἐπέχει μοίρας . |
ὑπὸ δοθείσης καὶ τῆς ΔΖ : τὸ Ζ ἄρα πρὸς παραβολῇ : δοθὲν ἄρα τὸ Ζ . ἀναλο . . | ||
τοῦ κέντρου ἀγομένων εὐθειῶν , καὶ διότι ἐν μὲν τῇ παραβολῇ αἱ καταγόμεναι ἐφ ' ἑκάστην τῶν διαμέτρων παρὰ τὰς |
ἀπὸ τῶν ἑρπετῶν βουλομένοις φυγεῖν περιγιγνόμενον κίνδυνον , χρηστέον τῇ λεγομένῃ καλαμίνθῃ , τότε ὑποστορέσασι τὴν βοτάνην αὑτοῖς . Βουληθεὶς | ||
. διόπερ καὶ τῶν Ἀττικῶν νεῶν ὁρμουσῶν ἐν τῇ Προσωπίτιδι λεγομένῃ νήσῳ , τὸν περιρρέοντα ποταμὸν διώρυξι διαλαβόντες ἤπειρον ἐποίησαν |