δὲ οὕτως ὥστε ἵστασθαι μέχρι τοῦ γένους . οἷον τῇ τριάδι ὑπάρχει μὲν [ ἀριθμὸς καὶ ] τὸ ὄν , | ||
ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ ἐπιμόριοι ἀφ ' ἡμιολίου ἀρχόμενοι |
οἰκεῖον τῇ τετράδι . ἡ γὰρ πρώτη πυραμὶς ἐν τῇ τετράδι θεωρεῖται , τριγώνου μὲν βάσεως ὑποτεθείσης τοῦ τρία , | ||
τὸ ὑπὸ τῶν ἄκρων ἔλαττόν ἐστι τοῦ ἀπὸ τοῦ μέσου τετράδι . διὰ τί τετράδι ; ἐπειδὴ καὶ ἡ ὑπεροχὴ |
ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
ἡ μονὰς ἢ τῇ τετράδι ἢ τῇ ἐξ ἀμφοτέρων ἀποτελουμένῃ πεντάδι . οὔτε δὲ ἑαυτῇ προστίθεται διὰ τὸ τὸ μὲν | ||
ἀπὸ μονάδος τετράδι διαφερόντων , καὶ ἑπταγωνικὸς ὁ ἐκ τῶν πεντάδι καὶ ἑξῆς ἀκολούθως , καὶ κατὰ δυάδος ὑπεροχὴν τῶν |
ὁ ἀνὴρ ὡς μοναδικῇ προσελθὼν τῇ παρὰ τῶν πρεσβυτέρων ἀνυμνηθείσῃ δεκάδι : ὥσπερ οὖν καὶ τὰ ἑξῆς αὐτῷ κατὰ τὴν | ||
τοῦ δὶς τέσσαρα , γεννᾷ δ ' οὐδένα τῶν ἐν δεκάδι : ὁ δ ' αὖ τέσσαρα τὴν ἀμφοῖν καὶ |
ἡ φίλησις γίνηται : καὶ τὸ δίκαιον δὲ ἐν τῇ ἰσότητι σώζεται . ἀλλ ' οὐχ ὁμοίως ἔχει τὸ ἴσον | ||
πάθεσιν εἴκουσι . παυσάσθωσαν οἷοί εἰσι , καὶ ἀγαπήσουσι πάντας ἰσότητι ἀρετῆς . τί δὲ οἴεσθε , ὦ ἄνθρωποι , |
] ⌈ κϘʹ . / [ εἰκοστὴ ἕκτη . ] τετρὰς ] ⌈ κζʹ . / [ εἰκοστὴ ζʹ . | ||
, οὕτω καὶ ἡ τοῦ μεγίστου παρὰ τὸν μέσον διαφορὰ τετρὰς οὖσα πρὸς τὴν τοῦ μέσου παρὰ τὸν ἐλάχιστον δυάδα |
. ἐπεὶ δὲ βούλονταί τινες ὑπεναντίαν ἀμφοτέραις ἀριθμητικῇ τε καὶ γεωμετρικῇ ταύτην ἐκδέχεσθαι , ἔφαμεν δὲ ἡμεῖς τῇ ἀριθμητικῇ μόνῃ | ||
α˙ωιϚιγ˙τκα / . β . Εὑρεῖν τρεῖς ἀριθμοὺς ἐν τῇ γεωμετρικῇ ἀναλογίᾳ , ὅπως ἕκαστος αὐτῶν προσλαβὼν τὸν δοθέντα ποιῇ |
, κέχρηται δὲ ἤδη τὸ πρότερον εἶδος τῇ τοῦ πηλίκου ἀναλογίᾳ δὲ χρήσεται καὶ τοῦτο τῇ τοῦ ποσοῦ ὡς ἂν | ||
τοῦτον ὁ βασιλεὺς πρὸς τὸν λαόν καὶ χρήσασθαι οὕτω τῇ ἀναλογίᾳ , μὴ εἴποι οὕτως ἀλλὰ ποιμένα καλέσαι λαῶν τὸν |
συντεθέντων ἀποτελεῖται ἑβδομάς . ἀμήχανον δ ' ἦν τὰ σώματα ἑβδομάδι μετρεῖσθαι κατὰ τὴν ἐκ διαστάσεων τριῶν καὶ περάτων τεττάρων | ||
συντεθέντων ἀποτελεῖται ἑβδομάς : ἀμήχανον δ ' ἦν τὰ σώματα ἑβδομάδι μετρεῖσθαι κατὰ τὴν ἐκ διαστάσεων τριῶν καὶ περάτων τεττάρων |
εἴ σε ἐγὼ ἐροίμην εἰ τῇ αὐτῇ τέχνῃ γιγνώσκομεν τῇ ἀριθμητικῇ τὰ αὐτὰ ἐγώ τε καὶ σὺ ἢ ἄλλῃ , | ||
εὑρίσκονται , δείκνυσιν ὁ γεωμέτρης . ὅτι δὲ ἐν τῇ ἀριθμητικῇ οὐ δύναται εὑρεθῆναι , δῆλον ἐκεῖθεν : ἔστωσαν γὰρ |
οἳ ἐδόκουν λέγειν ἀριθμοὺς ἐκ τοῦ ἀνάλογον , οἷον δικαιοσύνην τετράδα καὶ ἄλλον ἄλλως : ἐκείνως δὲ μᾶλλον τῷ πλήθει | ||
δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς εὑρήσεις τοῦτο . μετέχει |
ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
τῇ αʹ . εἶτα ἀπ ' ἄλλης ἀρχῆς ἡ τρίτη ἑβδομὰς τὰς αὐτὰς διαθέσεις ποιεῖ τῇ ὑδατικῇ σφαίρᾳ , ἃς | ||
ἑβδομάς . . . § : καλεῖται δ ' ἡ ἑβδομὰς ὑπὸ τῶν κυρίως τοῖς ὀνόμασιν εἰωθότων χρῆσθαι καὶ τελεσφόρος |
τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
. Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
λόγου δύναμιν δείκνυσι τὴν ῥητορικήν , ὅτι πρᾶγμά ἐστιν ἐν μεσότητι θεωρούμενον , ᾧ ἔξεστι χρήσασθαι καὶ καλῶς καὶ κακῶς | ||
τοῦ ἴσου καὶ τοῦ προσήκοντος , ἐμπεριεχομένη ἀριθμοῦ τετραγώνου περισσοῦ μεσότητι . πρῶτον δὴ ἐκθετέον στιχηδὸν τοὺς μέχρι τούτου ἀριθμοὺς |
ὁρᾶται : φανερὸν δέ , καθ ' ἃ ἠναντίωται τῇ ἁρμονικῇ : τῶν γὰρ αὐτῶν ἄκρων ἀμφοτέραις ὑπαρχόντων καὶ ἐν | ||
Ζ ὑπεροχήν , ὅπερ ἐστὶ κατὰ τὴν μεσότητα τὴν τῇ ἁρμονικῇ ὑπεναντίαν . δῆλον δ ' ὅτι καί , μονάδων |
, ταύτην προτάττει , ἐπείπερ ἀπὸ μονάδος συντιθέντες μέχρι τῆς τετράδος πρώτως τὸν δέκα ἀριθμὸν ποιοῦμεν , οἷον ἓν δύο | ||
ἄλλων θεῶν ἁψόμεθα συνουσιῶν ἐν τούτῳ δὴ τῷ μηνὶ τῆς τετράδος τὰ πρῶτα δεχομένης . Ἦλθον αὖθις ἡμῖν ἐπιστολαὶ παρ |
διὰ ποιότητα καὶ διὰ μὲν τὴν περιουσίαν τῆς ὕλης ἢ ποσότητι ἢ ποιότητι ἢ τῷ συναμφοτέρῳ : ποσότητι μὲν ὡς | ||
τὰ αὑτοῦ μέρη συντεθέντα πλείονα ἀποδίδωσιν αὐτοῦ καὶ ὑπερπαίοντα τῇ ποσότητι : διὰ τοῦτο γὰρ καὶ οὕτως ὠνόμασται , ὡς |
καὶ ψυχρῶν καὶ ξηρῶν καὶ ὑγρῶν ἀντιλαμβάνεται , καὶ ἔστι πεντὰς αὕτη συζυγιῶν ἀνώνυμος ἑνὶ καθάπερ εἶπον ὀνόματι . οὐ | ||
ἀριθμητικὴν ἀναλογίαν , ὡς δηλοῖ τὸ διάγραμμα . ὅτι ἡ πεντὰς πρώτη μεσότητος τῆς ἀρίστης καὶ φυσικωτάτης ἐμφαντικὴ κατὰ διάζευξιν |
οὐ γεννᾶι οὔτε γεννᾶται ὑπ ' ἄλλου ἀριθμοῦ πλὴν ὑπὸ μονάδος : διὸ καὶ καλεῖται ὑπὸ τῶν Πυθαγορείων παρθένος ἀμήτωρ | ||
ιη , καὶ α καὶ ιθ . ἐπὶ μέντοι τῆς μονάδος οὐκέτι τοῦτο , ἀλλὰ τοῦ μὲν μετ ' αὐτὴν |
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
ἀποδείκνυσι λόγον . ἐπεὶ οὖν κατὰ Πυθαγόραν τὸν Σάμιον ἡ τριὰς εἰς γάμον συνελθοῦσα τῇ τετράδι ἀπεγέννησε τὴν ἑβδομάδα καὶ | ||
τῷ τέλει τῆς στροφῆς καὶ ἀντιστροφῆς παράγραφος . ἔστι δὲ τριὰς ἐπῳδική . ἥκω σεβίζων ] αἱ ἑξῆς αὗται συστημάτων |
Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ ἢ ἐν σώματι . ἐν γοῦν | ||
δὲ τῷ τρίτῳ τῶν γεωγραφικῶν καθιστάμενος τὸν τῆς οἰκουμένης πίνακα γραμμῇ τινι διαιρεῖ δίχα ἀπὸ δύσεως ἐπ ' ἀνατολὴν παραλλήλῳ |
τὸ ἕν , ἀπὸ δὲ τῆς μονάδος καὶ τῆς ἀορίστου δυάδος τὰ δύο . δὶς γὰρ τὸ ἓν δύο , | ||
αὐτὴν καλοῦσι καὶ πανδοχέα γε , ὡς παρεκτικὴν οὖσαν καὶ δυάδος τῆς κυρίως ὕλης καὶ πάντων χωρητικὴν λόγων , εἴ |
εἰσιν , ἀμφότεροι γραμματικοὶ ὀνομάζονται , καθὸ ὑπέκειτο μέν τις δυὰς ἡ διὰ τοῦ ἀμφότεροι , τὸ δ ' ἐπιγεγενημένον | ||
δὲ τὰ ἀναρίθμητα . Μονὰς ἀπὸ τοῦ μένω μονὰς , δυὰς ἀπὸ τοῦ δύω τὸ ὑπεισέρχομαι , τριὰς ἀπὸ τοῦ |
, ταύτης τὴν λαμπρότητα ἀφανῆ ποιήσει . πάντων γὰρ τῇ ὑπεροχῇ διαφέρει . ” καταπλαγεὶς δὲ Νεκτεναβὼ τὴν εὐστοχίαν τῶν | ||
τῶν ἐκκειμένων ὅρων . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , περισσοὶ τὸ πλῆθος , |
τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
ἔχει καθόλου τὴν δύναμιν . ἡμεῖς μέντοι τῇ τῶν θερμῶν διαφορᾷ προσέ - χοντες , διάφορον αὐτοῦ καὶ τὴν δύναμιν | ||
καὶ τὸ ἐλλείπειν τὰς τῶν ἄλλων ποιότητας καὶ ἅμα τῇ διαφορᾷ διδάξαι καὶ τὴν αἰτίαν , δι ' ἣν διαφέρουσιν |
καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους , | ||
δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα |
τῶν δέκα πληρώσει ἀριθμόν : ὥστε ὁ ἀριθμὸς κατὰ μὲν μονάδα ἐν τοῖς δέκα κατὰ δὲ δύναμιν ἐν τοῖς τέσσαρσι | ||
εὑρίσκεται ἔχων ὁλοκλήρως τὰς δ μονάδας καὶ ἐπέκεινα τούτων μίαν μονάδα , ἥ ἐστιν τῶν δ δʹ , καὶ διὰ |
ʹ γʹ νο νγ Ϛʹ δʹ τῶν ἐν τῇ ἑξῆς διαστάσει γ ὁ ἑπόμενος . . . . . . | ||
κζʹ , ἐπὶ δὲ τοῦ δευτέρου τὸ κατὰ Ἀριστόξενον ἐν διαστάσει μοιρῶν κδʹ καὶ γʹ καὶ γʹ , ἐπὶ δὲ |
, οἷον μονῆς μὲν ἐν ἰσότητι , κινήσεως δὲ ἐν ἀνισότητι . ὡσαύτως δὲ τὸ μὲν κατὰ φύσιν ἐν ἰσότητι | ||
ἐστιν , ἑτέρας φύσεως ἔσται καὶ τῆς ἐναντίας γε τῇ ἀνισότητι , καὶ διὰ τοῦτο οὐ συγκαταριθμηθήσεται τοῖς εἴδεσι τῆς |
εἰκότως οὖν οὐ βραχέσι χρήσεται προοιμίοις , ἀλλὰ γραμματικῇ , γεωμετρίᾳ , ἀστρονομία , ῥητορικῇ , μουσικῇ , τῇ | | ||
ἄρα ἀιδίων εἶναι καὶ μενόντων , οἷα καὶ τὰ ἐν γεωμετρίᾳ . Εἰ δὲ ἀιδίων καὶ μενόντων , οὐ σωμάτων |
. πρόσκειται δὲ μηδὲ περὶ θείων δογμάτων , τῶν τῇ Πυθαγορικῇ φιλοσοφίᾳ δοκούντων : ταῦτα γὰρ ὑπὸ μαθημάτων καὶ ἐπιστήμονος | ||
ζῆν τοῖς Ὀλυμπίοις θεοῖς . οἴεται γὰρ ἀναβιοῦν τὰς ψυχὰς Πυθαγορικῇ δόξῃ χρώμενος . Διὸς ἀρχὴν τοὺς ἐπιγείους βούλεται εἶναι |
ὁμωνύμως καὶ ταῦτα λεγόμενα τοῖς ἑαυτῶν πρακτικοῖς , τῇ τε στροφῇ καὶ ἀντιστρόφῳ καὶ ἐπῳδῷ ἤτοι ἐξόδῳ καὶ ἐξελεύσει καὶ | ||
καὶ ὁ ἐμπρόσθιος ἄξων : τῇ δὲ τῶν τριῶν ἀξόνων στροφῇ εἰσάγονται αἱ ἔκθετοι τῶν κάλων ἀρχαί , αἷς ἀποδέδενται |
τοιούτῳ ἀναπλασσομένῳ Ἑρμῇ . ἐπεὶ δὲ μονάδος ἀνὰ μέσον καὶ ἑβδομάδος κυβικῶν χωρίων κυβικὸς ὁ δʹ , εἰκότως , κρισίμου | ||
λοιπάζονται πρὸς τὸ ἕβδομον ἀριθμόν εἰσιν ἀπὸ τῶν ἡμερῶν τῆς ἑβδομάδος . ἔπειτα ἵνα ἐπιδώσεις ἑνὶ ἑκάστῳ ἀστέρι μίαν περίοδον |
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ | ||
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις |
, τὸ δὲ μεῖζον ὑπὸ γῆν . Ἡ δ ' ἀνισότης τῶν τμημάτων τὴν αὐτὴν παραλλαγὴν ἔχει ἐπὶ πάντων τῶν | ||
κεφαλὴν προωθούμενος . ἐν δὲ τοῖς ἀνάντεσιν ἡ τῶν ποδῶν ἀνισότης κατὰ τὴν ἀνωμαλότητα τὴν τῶν τόπων ἀπισοῖ τὸ σῶμα |
τὸν ἰσημερινὸν οἰκήσεως : αὕτη δέ ἐστιν ἐν μέσῃ τῇ διακεκαυμένῃ ζώνῃ . Καί φησιν οἰκεῖσθαι τοὺς τόπους καὶ εὐκρατοτέραν | ||
τε καὶ φωτισμῶν τοῦ ἀέρος . Ἐν μὲν γὰρ τῇ διακεκαυμένῃ ἴσαι διὰ παντὸς αἱ νύκτες ταῖς ἡμέραις , ἐν |
ἡμῖν ἕτερόν ποτε σύμφωνον , ὅπερ ἂν τῇ ἕκτῃ χαρισαίμεθα συζυγίᾳ , ἐξ ἀνάγκης διὰ γυμνοῦ τοῦ ω ἡ ἕκτη | ||
. Μ . Ν . Ρ . τῇ πέμπτῃ ταῦτα συζυγίᾳ προσανατίθεσο καὶ ἴδε μοι τὸν ἀριθμὸν τῶν συμφώνων , |
ὑπάρχουσαν . οὐδὲν γὰρ διαφέρει ἢ προσθεῖναί τινα ὁρισμὸν τῇ ὑπαρχούσῃ ὡς κατὰ χρόνον ὁρίζειν αὐτὴν ἢ ἐνδεχομένην τοιαύτην αὐτῇ | ||
τὸ δὲ τοῦ κύβου σχῆμα ἀπεδίδου τῇ γῇ , στερεωτάτῃ ὑπαρχούσῃ καὶ ἑδραιοτάτῃ : τῷ δὲ σχήματι τῷ δωδεκαέδρῳ πρὸς |
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
μετ ' αὐτόν , ὥστε μεταξὺ ἀμφοῖν γενέσθαι τῇ τε ἑτερότητι τῆς πρὸς τὸ ἄνω ἀποτομῆς καὶ τῷ ἀνέχοντι ἀπὸ | ||
, ὡς αἱ συμφωνίαι τῇ τῶν ἐν τοῖς φθόγγοις λόγων ἑτερότητι . τοῦτο δὲ οὐκ ἄλλο τι εὑρεθήσεται ὂν ἢ |
λεπτῶν συγκρίσει γίνονται , τὰ δὲ λεπτὰ ἐκ τῶν παχέων διακρίσει . τοῦτο δὲ πάνυ διαφέρει πρὸς τὸ πρότερον καὶ | ||
καὶ ἄφθαρτα , φαίνεσθαι δὲ γινόμενα καὶ ἀπολλύμενα συγκρίσει καὶ διακρίσει μόνον , πάντων μὲν ἐν πᾶσιν ἐνόντων , ἑκάστου |
: ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
τετράκις δʹ ιϚʹ . οἱ μὲν οὖν τετράγωνοι πάντες τοὺς ἑτερομήκεις περιλαμβάνουσι κατὰ τὴν γεωμετρικὴν ἀναλογίαν καὶ μέσους αὐτοὺς ποιοῦσι | ||
πρὸς ἑαυτοὺς διαφορὰς τοὺς περισσοὺς μόνον ἔχουσιν , οἱ δὲ ἑτερομήκεις τοὺς ἀρτίους : ἂν δὲ καὶ τὸν πρῶτον ἑτερομήκη |
τοῦ διὰ πέντε συμπληρώσεως . ἡ γὰρ τῷ ἡγουμένῳ φθόγγῳ συναπτομένη διάζευξις ποιοῦσα λόγον ἐπόγδοον οὐκέτι περὶ μόνας τὰς τρεῖς | ||
ἑβδομάδι ἐν τῇ διὰ πάντων ἐνεργείᾳ , εἴτε καὶ ἄλλως συναπτομένη τῇ ἑβδομάδι δεκάδα ἀποτελεῖ τετάρτην κυβικῆς τετάρτης χώρας παρεκτικήν |
ὅστις οὔτε τρυφῆς οὔτε ἀκαθαρσίας ἀνέξεται τῇ κατ ' αὐτὸν ἀξίᾳ πάντα λογιζόμενος δεῖν εἶναι σύμμετρα . ἵν ' οὖν | ||
: καὶ τὰ μὲν μείζω αὐτῶν καὶ ἐν πλείονι τῇ ἀξίᾳ πολλὰ ποιεῖ καὶ μεγάλα καὶ πρὸς τὴν τοῦ ὅλου |
, ὑποβαλόντεϲ κοπάριον ἢ μηλωτίδα διὰ τοῦ ϲτομίου ἐκτέμωμεν ἁπλῇ διαιρέϲει τὸ ὑποκείμενον δέρμα : εἰ δὲ εἰϲ τὸ βάθοϲ | ||
κατὰ τὴν μεϲότητα τοῦ βλεφάρου πρὸϲ τὸν ταρϲὸν τόποϲ ἐπιπολαίῳ διαιρέϲει . μετὰ δὲ τὴν ϲημείωϲιν ἐκϲτρέψαν - τεϲ τὸ |
οὔτ ' ἀνῃρημένου παντάπασι τοῦ νόμου τοῦ τε πάντων κρατοῦντος μεταλαμβάνοντος ὡς καλοῦ , ἅμα δὲ αὐτοῖς ἀθάνατος ἡ προσηγορία | ||
τήν τε πρώτην καὶ τὴν μέσην καὶ τὴν τρίτην χώραν μεταλαμβάνοντος κατὰ τὸ τετράχορδον . ἐν δὲ Πυθαγορικῇ τῇ ὀκταχόρδῳ |
πολὺ ἔλαττον τῶν τρισχιλίων καὶ μάλιστα πρὸς τῇ Πυρήνῃ τῇ ποιούσῃ τὴν ἑῴαν πλευράν : ὄρος γὰρ διηνεκὲς ἀπὸ νότου | ||
ὅπερ ἔδει δεῖξαι . Τῇ μετὰ μέσου μέσον τὸ ὅλον ποιούσῃ μία μόνη προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ |
παρ ' οὐδέν . ὁ δ ' ὑπ ' αὐτὸν πεντάγωνος ὁ κβʹ σύστημα τοῦ ὑπὲρ αὐτὸν τετραγώνου τοῦ ιϚʹ | ||
ἐστιν , ὁ δὲ δ τετράγωνος , ὁ δὲ ε πεντάγωνος , ὁ δὲ Ϛ ἑξάγωνος , ὁ δὲ ζ |
ἐπεχείρησε μεθ ' Ἱπποκράτην μεθόδῳ τὴν ἰατρικὴν συστήσασθαι , τοιαύτῃ διαιρέσει χρώμενος . καὶ εἰ δοκεῖ , τὴν ἐκείνου διαίρεσιν | ||
ὡς παῖς πάϊς . Συναίρεσις δὲ ἡ τοὐναντίον ποιοῦσα τῇ διαιρέσει , οἷον Δημοσθένεϊ Δημοσθένει . Παρένθεσις δέ ἐστι προσθήκη |
ιʹ τῷ προκειμένῳ ἀριθμῷ . ἐὰν κατὰ τὰ μέσα ἡσδηποτοῦν ἑξάδος ὡς ἐπὶ τῆς δευτέρας δεδήλωται ἀπαρτηθῇ ὁ τριακοστὸς ἀριθμός | ||
Διὸς ἀνατέλλοντος ἐν ταῖς μοίραις πλησίον : ἀπὸ δ ' ἑξάδος εἰκοστῆς καὶ μέχρι τριαντάδος ὁ Κρόνος ἐπαρέλαβεν , εἰ |
αὐξανομένη . πάλιν γὰρ μεταξὺ τοῦ Ϛ καὶ τοῦ ιβ ἑτερομηκῶν ὄντων ἀπόθου τὸν θ τετράγωνον : καὶ ἡ ὑπεροχὴ | ||
ἡ διαγώνιος ἔσται μόνων τετραγώνων , ἑκάστου παρασπιζομένου ὑπὸ δύο ἑτερομηκῶν κατά τε μῆκος καὶ πλάτος , ὡς κἀνταῦθα σῴζεσθαι |
γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση ἐστὶ τῇ τοῦ τετραγώνου πλευρᾷ τοῦ ἐγγραφομένου εἰς τὸν μέγιστον κύκλον . καὶ ἐπεζεύχθωσαν | ||
ἡμῶν δὲ εἷς [ καὶ ] ὁ κυβερνήτης , τρίγλης πλευρᾷ διαπαρεὶς τὸ μετάφρενον . ἐκείνην μὲν οὖν τὴν ἡμέραν |
ἐπὶ κλίνης τὰς φυσικὰς ἀνάγκας ἐπλήρου . Ἑνδεκάτῃ ἐπὶ τῇ ἐπιφανείᾳ τὸ παρυφιστάμενον ἐνήχετο λευκὸν μέν , ὑπόγλισχρον δὲ καὶ | ||
ὀρθὰς οὖσαν τῇ ΒΓ , καὶ πεποίηκε τομὴν ἐν τῇ ἐπιφανείᾳ τὴν ΔΕΖ , ἡ δὲ διάμετρος ἡ ΜΕ ἐκβαλλομένη |
, ἀρτία καὶ περιττή , ἡ μὲν ἀρτία ἐν λόγῳ διπλασίῳ , πρῶτος γὰρ τῶν ἀρτίων ὁ βʹ καὶ αὐτὸς | ||
διὰ πέντε ἐν ἡμιολίῳ , τοὺς δὲ διὰ πασῶν ἐν διπλασίῳ , καὶ τοὺς μὲν διὰ πασῶν καὶ διὰ τεσσάρων |
ὀρθίως ἡ τέμνουσα τῇ τεμνομένῃ , κατ ' ἀνάγκην ὀφείλει στιγμῇ ἑαυτῆς ἐπιζεύγνυσθαι τῇ κατὰ τὴν διαιρουμένην γραμμὴν στιγμῇ . | ||
τοῦτο συμβαίνει τοῖς περὶ τῆς τετράδος ἀξιώμασιν . εἰ γὰρ στιγμῇ μὲν ἡ μονὰς ἀνάλογος , γραμμῇ δὲ ἡ δυάς |
κοινὴ πάντων , ὀγδοάδα δὲ Ἀφροδίτη , ἐννεάδα δὲ καὶ δεκάδα ἥλιος Ἄρης Ἑρμῆς ὡροσκόπος , καὶ Ζεὺς δὲ τὴν | ||
δέκα λέγομεν , ὅταν δὲ ἐκ πολλῶν γίνηται ἕν , δεκάδα , ὡς κἀκεῖ οὕτως . Ἀλλ ' εἰ οὕτως |
πενταγώνοις οἱ τρίγωνοι προστιθοῖντο τῇ αὐτῇ τάξει , τοὺς εὐτάκτους γεννήσουσιν ἑξαγώνους καὶ πάλιν ἐκείνοις οἱ αὐτοὶ προσπλεκόμενοι τοὺς ἐν | ||
, δεικνύτωσαν , πῶς ἀλλήλας καταλήψονται ἢ πῶς συμπλακήσονται καὶ γεννήσουσιν ἕτερον . ὅτι μὲν οὖν ἀναιρεῖ κίνησιν μᾶλλον τὸ |
, μέση διὰ τεσσάρων πρὸς ἀμφότερα ἄκρα ἔν γε τῇ ἑπταχόρδῳ κατὰ τὸ παλαιὸν διεστῶσα καθάπερ καὶ ὁ Ἥλιος ἐν | ||
κατὰ ἀριθμὸν οἰκονομεῖται τὰ ἐν τοῖς φθόγγοις . Ὅτι τῇ ἑπταχόρδῳ λύρᾳ τὴν ὀγδόην Πυθαγόρας προσθεὶς τὴν διὰ πασῶν συνεστήσατο |
πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ | ||
οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν |
λέγῃ ἡ ἡδονὴ σπουδαία ἐστιν , εἰ μὲν πρὸς τὴν γεωμετρικὴν ἡδονὴν ἀποβλέψας φησίν , οὐ τὸ προκείμενον συνάγεται : | ||
. διὰ τοῦτο τὸν Βρύσωνος τετραγωνισμὸν οὐκ ἄν τις εἴποι γεωμετρικὴν ἀπόδειξιν : χρῆται γὰρ ἀξιώματι ἀληθεῖ μὲν κοινῷ δέ |
ὑποκειμένοις ἐπιβάλλουσα . Ἀλλὰ γὰρ καὶ τὴν τῶν πρώτων στοιχείων πεντάδα τούτοις ἀναλογοῦσαν εὑρήσομεν , τῷ μὲν ὑπάτων γῆν ὡς | ||
καὶ ὀκτασήμου . μερίζω τὴν ὀκτάδα πάλιν εἰς τριάδα καὶ πεντάδα : οὐδ ' οὕτως ἔσται ῥυθμικὸς λόγος . τὸν |
. α . Εὑρεῖν τρίγωνον ὀρθογώνιον ὅπως ὁ ἐν τῇ ὑποτεινούσῃ λείψας τὸν ἐν ἑκατέρᾳ τῶν ὀρθῶν ποιῇ κύβον . | ||
ἐν τῷ ἐμβαδῷ ʂ α , τὸν δὲ ἐν τῇ ὑποτεινούσῃ Μο κυβικῶν # ʂ α , ἔρχεται ζητεῖν τίς |
ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . . | ||
λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ |
θάλατταν καὶ τὴν νοτίαν τῆς Ἀτλαντικῆς . ἐν δὲ τῇ νοτίᾳ ταύτῃ θαλάττῃ πρόκειται τῆς Ἰνδικῆς νῆσος οὐκ ἐλάττων τῆς | ||
προηγούμενος τοῦ μεσημβρινοῦ , καὶ ὁ ἑπόμενος τῶν ἐν τῇ νοτίᾳ σιαγόνι τοῦ Κήτους , μικρὸν ὑπολειπόμενος τοῦ μεσημβρινοῦ , |
οἱ Ἀθηναῖοι μὲν οὔπω † θέλοντες ἐξυφερουμένοις † ἐπὶ τῇ ἴσῃ καταλύεσθαι ” . μάλιστα δὲ οἱ τῶν δεδεμένων συγγενεῖς | ||
παραταξαμένων ἰσχυρὰ μάχη γίνεται καὶ ἱππέων καὶ πεζῶν καὶ ψιλῶν ἴσῃ πάντων χρωμένων προθυμίᾳ τε καὶ ἐμπειρίᾳ , καὶ τὸ |
γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν | ||
τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον |
καὶ πεντήκοντα ἐμφανεῖς , τὸν ἀπὸ μονάδος ἄχρι δεκάδος τῆς παντελείας συμπληρούμενον ἀριθμόν . εἰ δὲ βουληθείη τις τοὺς ἐν | ||
διεκοσμεῖτο αὖθις ἐν ἀριθμῷ τελείῳ τετράδι , ἣν δεκάδος τῆς παντελείας οὐκ ἂν διαμάρτοι εἰς ἀφορμὴν εἶναι λέγων καὶ πηγήν |
ἰατρικήν , Ὁμοπολῶν διὰ τὴν μαγικήν : τὰ πάντα γὰρ ἁρμονίᾳ πολεῖ . οὗτος δὲ ἐπιστατεῖ τῇ ἁρμονίᾳ . Ἄρτεμις | ||
ἐπακτικὴν ἀκρόασιν πράσσουσι τῇ τῶν λόγων συνθήκῃ ἢ καὶ μέτρου ἁρμονίᾳ θέλγοντες τοὺς ἀκούοντας μυθώδεις καὶ ἐπιπλάστους ἐπιφερόμενοι σκοτεινολογίας . |
Α , καὶ τῇ ΓΔ παράλληλος ἤχθω ἐν τῇ ἑτέρᾳ τομῇ ἡ ΕΖ , καὶ τετμήσθω δίχα κατὰ τὸ Η | ||
τυχόντα σημεῖα , καὶ ἀπ ' αὐτῶν ἀχθῶσιν ἐν τῇ τομῇ παρὰ τὰς ἐφαπτομένας τέμνουσαι ἀλλήλας τε καὶ τὴν γραμμήν |
τῇ ΓΛ , ἡ δὲ ὑπὸ ΖΚΓ γωνία τῇ ὑπὸ ΖΛΓ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΚΓ τῇ ΓΛ | ||
ΖΓΛ ἴση . δύο δὴ τρίγωνά ἐστι τὰ ΖΚΓ , ΖΛΓ τὰς δύο γωνίας ταῖς δυσὶ γωνίαις ἴσας ἔχοντα καὶ |
τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
ἐκ τἀγαθοῦ τοῖς πᾶσιν ἐφήκουσαν ἕνωσιν καὶ διὰ τὴν τῆς ταυτότητος ἐν τοῖς ἀύλοις εἴδεσιν ἐπικράτειαν . ἀλλ ' οὗτος | ||
τῷ ἀνθρώπῳ τὸ μουσικόν . καὶ τὰ τοιαῦτα φύσει τῆς ταυτότητος μετέχουσιν , ἤγουν τῷ εἶναι : τὸ δὲ μουσικὸν |
εἰς ἀθυμίαν ἐνέπεσεν . οὐ μὴν ἀλλ ' ἐν τῇ προειρημένῃ πόλει μείνας ἡμέρας τινὰς καὶ τὸ στρατόπεδον ἐκ τῆς | ||
μὲν προφερόμενος μόνην ἀντιτιθεμένην αὑτῷ φάσιν ἕξει τὴν ἀντικειμένην τῇ προειρημένῃ : ἀποδεικνὺς δὲ διὰ λόγου ἀκούσεται , ὅτι δεῖ |
ἑστῶτος , τοῦ δ ' ἐν κινήσει ἤδη καὶ εὐτάκτῳ μεταβάσει σφαιρική . εἰ δὲ τῶν ὄντων εἶδος ὁ ἀριθμός | ||
ἑστῶτος , τοῦ δ ' ἐν κινήσει ἤδη καὶ εὐτάκτῳ μεταβάσει σφαιρική . εἰ δὲ τῶν ὄντων εἶδος ὁ ἀριθμός |
ἑαυτοῦ ; ἢ τῷ μὲν ὑποκειμένῳ μία , τῇ δὲ σχέσει διττή . Καθόσον μὲν γὰρ ἑαυτὸ περιέγραψεν , ὡς | ||
: ἐφιστάνειν τῇ θείᾳ διοικήσει , τῇ αὑτῶν πρὸς τἆλλα σχέσει : ἐπιβλέπειν , πῶς πρότερον εἴχομεν πρὸς τὰ συμβαίνοντα |
ἐκείνης ἐπικληθῆναι , τὴν δὲ πάλαι τρίτην παραμέσην ἐν τῇ διαζεύξει γενέσθαι . τὸν δὲ Φιλόλαον τῷ προτέρῳ ὀνόματι τὴν | ||
ἄκρων ἶσον τῷ ἀπὸ τοῦ μέσου , τῶν δὲ ἐν διαζεύξει ἢ καὶ ἐν πλείοσιν ὅροις , κἂν μὴ συνημμένοι |
τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
, πρόσθησον ἄλλα ἐννέα καὶ τέλειον πάλιν ἀριθμὸν καὶ πάλιν ἑνδεκάδα : εἰ βάλλεις ἄλλα ἕνδεκα , γίνονται ἑξήντα τρία | ||
Ἄρης Ἑρμῆς ὡροσκόπος , καὶ Ζεὺς δὲ τὴν δεκάδα καὶ ἑνδεκάδα , καὶ Ἀφροδίτη τὴν δωδεκάδα . ἄγει δὲ τὸ |
τὰς ἰδέας πρεσβεύοντες οἱ μὲν τὸ παράδειγμα τῆς γραμμῆς τὴν δυάδα λέγουσιν , οἱ δὲ τὴν ἰδέαν τῆς γραμμῆς . | ||
; ἢ τὰ δύο : καὶ μετὰ τὴν μονάδα τὴν δυάδα καὶ οὕτω γε τὸν λοιπὸν ἀριθμὸν προελθεῖν . Οὕτω |
πρὸς ἀλλήλας καὶ τοῦ ὑπ ' αὐτῶν γινομένου χωρίου τὴν τετραγωνικὴν πλευρὰν ἐκβαλόντες ἔχομεν μέσην τὴν β λζ νε : | ||
τριγωνικὴν γωνίαν ὁ Φιλόλαος τέτταρσιν ἀνῆκεν θεοῖς , τὴν δὲ τετραγωνικὴν τρισίν , ἐνδεικνύμενος αὐτῶν τὴν δι ' ἀλλήλων χώρησιν |
θαυμάστῃ : ταῦτα τῆς διαχωρίσεως . φιλότητι : κοινωνίᾳ , συμφωνίᾳ , ἑνώσει , φιλίᾳ . διακρίνας : χωρίσας , | ||
, τὸ δὲ τῆς διανοίας ἐν ἁρμονίᾳ δογμάτων καὶ ἀρετῶν συμφωνίᾳ , μὴ χρόνου μήκει μαραινόμενον , ἀλλ ' ἐφ |
δύο σημείων τῶν Β Ε κλάσαι τὴν ΒΝΞΕ καθόλου τῇ δοθείσῃ εὐθείᾳ ἴσην τῶν κλασμάτων τὸ πλῆθος δοθὲν ἔχουσαν . | ||
ΒΓ . Διὰ τοῦ δοθέντος ἄρα σημείου τοῦ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ παράλληλος εὐθεῖα γραμμὴ ἦκται ἡ ΕΑΖ |
ὑποδιαίρεσιν ἂν πειραθείης συγχωρήσας ἀνελεῖν , εἶτα ἀνελὼν ἐπενέγκοις , πολλαπλασιάσεις τὸν λόγον δριμέως λέγων οὕτως εἰ μὲν τόδε ἐποίησας | ||
σμγ . Ὡσαύτως καὶ εἴτε τὸν κύβον ἐφ ' ἑαυτὸν πολλαπλασιάσεις , εἴτε τὴν πλευρὰν αὐτοῦ ἐπὶ τὸν δυναμόκυβον , |
ἐμπίπτουσιν ἀριθμοὶ ὅ τε ἓξ καὶ ὁ ιη ἐν λόγῳ τριπλασίονι . ἔστι δὲ καὶ ὁ νδ τοῦ δύο ἑπτακαιεικοσαπλάσιος | ||
δὲ ϘϚ τοῦ ιβ ὀκταπλάσιος , ὃ ταὐτὸν δύναται τῷ τριπλασίονι . Διὰ τὸν ὅρον τοῦ εʹ τὸν λέγοντα : |
Εἰ μὲν οὖν σύμμετρός ἐστιν ἡ ΒΖΕ περιφέρεια τῇ ΑΒΓ περιμέτρῳ τοῦ κύκλου , ἐπεὶ διαιρεθείσης τῆς ΑΒΓ περιμέτρου τοῦ | ||
τῶν περὶ Μαιῶτιν καὶ τὸν ὅλον Πόντον ᾠκισμένων ἐθνῶν ἐν περιμέτρῳ τρισμυρίων σταδίων . Ῥωμαίων δὲ στρατηγὸς μὲν Παμφυλίας Κόιντος |
τῷ τριπλασιασμῷ τῆς ἡμιτονιαίας διαστάσεως ἐπιδεικνύον : τὸ δ ' ἐναρμόνιον κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον τοῖς μὲν διεσιαίοις | ||
τίθεται , ἣν ὡς κατὰ τοὺς Πυθαγορικοὺς κύβον οὖσαν καὶ ἐναρμόνιον ἐπίηρον κατωνόμασεν . ὁ κύβος δὲ ἐναρμόνιον διὰ τοὺς |
τρισὶ συμφωνίαις ὑφεστάναι , τῇ διὰ τεσσάρων , ἥτις ἐν ἐπιτρίτῳ κεῖται λόγῳ , τῇ διὰ πέντε ἐν ἡμιολίῳ , | ||
μικρὰν ἡ ὀκτὼ πρὸς μὲν τὴν τὰ ἓξ ἔχουσαν ἐν ἐπιτρίτῳ ἦν , πρὸς δὲ τὴν τὰ δώδεκα ἐν ἡμιολίῳ |
καὶ ἐμμελὲς καὶ ὑποβάλλειν τοὺς δακτύλους εὐαφῶς ὑπὸ πυκνῇ τῇ ἄρσει καὶ θέσει καὶ βαίνειν ἐν ῥυθμῷ καὶ σύμφωνα εἷναι | ||
πεφύκασι σημείοις χρῆσθαι ἄρσει καὶ βάσει , οἱ δὲ τρισὶν ἄρσει καὶ διπλῇ βάσει , οἱ δὲ τέτρασι δύο ἄρσεσι |
ὑπὸ δοθείσης καὶ τῆς ΔΖ : τὸ Ζ ἄρα πρὸς παραβολῇ : δοθὲν ἄρα τὸ Ζ . ἀναλο . . | ||
τοῦ κέντρου ἀγομένων εὐθειῶν , καὶ διότι ἐν μὲν τῇ παραβολῇ αἱ καταγόμεναι ἐφ ' ἑκάστην τῶν διαμέτρων παρὰ τὰς |
τὴν ἔγγιον τῆς ἀπωτέρω , ἐλαχίστην δὲ τὴν πρὸς τῇ ἐφαπτομένῃ , καθ ' ἣν ἡ μέση κίνησίς ἐστιν , | ||
συμπτώσει τῶν ἐφαπτομένων διαφέρει τῷ ἀπολαμβανομένῳ τριγώνῳ πρός τε τῇ ἐφαπτομένῃ καὶ τῇ διὰ τῆς ἁφῆς ἀγομένῃ διαμέτρῳ . ἔστωσαν |
πρόσθεν ἑπόμενος ἔγωγ ' ἂν δύο κατὰ τὴν ἐμὴν ψῆφον τιθείην ἑκατέραν τούτων . Ὀρθῶς . οὗ δ ' ἕνεκα | ||
τὸ ι δεχομένη εὐκτικὸν ποιεῖ : ἦν οὖν τιθείς τιθέντος τιθείην . Δυϊκά . Τιθείητον , τιθειήτην . Πληθ . |
: διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί | ||
μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν |
ἀπὸ τῶν ἑρπετῶν βουλομένοις φυγεῖν περιγιγνόμενον κίνδυνον , χρηστέον τῇ λεγομένῃ καλαμίνθῃ , τότε ὑποστορέσασι τὴν βοτάνην αὑτοῖς . Βουληθεὶς | ||
. διόπερ καὶ τῶν Ἀττικῶν νεῶν ὁρμουσῶν ἐν τῇ Προσωπίτιδι λεγομένῃ νήσῳ , τὸν περιρρέοντα ποταμὸν διώρυξι διαλαβόντες ἤπειρον ἐποίησαν |
. Τὸν δὲ ἵππον τὸν πρὸς ὀχείαν χρὴ εἶναι τῇ περιοχῇ τοῦ σώματος μέγαν , εὐπαγῆ πᾶσι τοῖς μέρεσι . | ||
διὰ τὸ προειλῆφθαι οὕτως ἔχειν , ἐπειδὰν ὅμοιόν τι τῇ περιοχῇ μέλλον ἀποβήσεσθαι ἡ ψυχὴ θέλῃ προαγορεῦσαι , τὴν ἱστορίαν |