| ἐκ τἀγαθοῦ τοῖς πᾶσιν ἐφήκουσαν ἕνωσιν καὶ διὰ τὴν τῆς ταυτότητος ἐν τοῖς ἀύλοις εἴδεσιν ἐπικράτειαν . ἀλλ ' οὗτος | ||
| τῷ ἀνθρώπῳ τὸ μουσικόν . καὶ τὰ τοιαῦτα φύσει τῆς ταυτότητος μετέχουσιν , ἤγουν τῷ εἶναι : τὸ δὲ μουσικὸν |
| μὲν ταυτότητος διὰ τὸ μονάδι ὁμογενὲς εἶναι , ἄρτιον δὲ ἑτερότητος διὰ τὸ δυάδι . καὶ ἔτι ἐκδηλότερον , τετράγωνον | ||
| τοῖς συνοικοῦσιν ἐν τοῖς ἐνύλως τὸ εἶναι ἔχουσιν ἐπικρατούσης τῆς ἑτερότητος . οὐ γὰρ ἑαυτοῦ δεῖ μόνου φροντίζειν ὡς ἔχῃ |
| ὕστερον δὲ γλαφυρώτατα δείξει ὅτι καὶ ἡ ἰσότης προτέρα τῆς ἀνισότητος . δείκνυσιν οὖν ὅτι τὸ πολλαπλάσιον πρῶτόν ἐστι τῶν | ||
| πόλοι ἐπὶ τοῦ ὁρίζοντος πίπτουσιν , ἀναιρουμένου τοῦ αἰτίου τῆς ἀνισότητος τῶν ἡμερῶν , τοῦτο δὲ ἦν τὸ ἔγκλιμα , |
| ἀιδίοις ἀπολείπουσιν οἱ ἄνδρες , οἷον τὸ τῆς ὁμοιότητος ἢ ἰσότητος ἢ ταυτότητος εἶδος , οὗ μετέχει μὲν καὶ ὁ | ||
| Τῷ δὴ ἑνὶ μὴ ὄντι , ὡς ἔοικε , καὶ ἰσότητος ἂν μετείη καὶ μεγέθους καὶ σμικρότητος . Ἔοικεν . |
| διαλαβεῖν : κοινὸν γὰρ τοῦτο τὸ βιβλίον γεωμετρίας τε καὶ ἀριθμητικῆς καὶ μουσικῆς καὶ πάσης ἁπλῶς τῆς μαθηματικῆς ἐπιστήμης . | ||
| Ϛʹ τοῦ εʹ : κοινὸν τὸ θεώρημα γεωμετρικῆς ἀναλογίας καὶ ἀριθμητικῆς . Ἐν τῷ λόγῳ ἄρα εἰσὶ τῆς ἀριθμητικῆς ἀναλογίας |
| , τὸ δὲ μεῖζον ὑπὸ γῆν . Ἡ δ ' ἀνισότης τῶν τμημάτων τὴν αὐτὴν παραλλαγὴν ἔχει ἐπὶ πάντων τῶν | ||
| κεφαλὴν προωθούμενος . ἐν δὲ τοῖς ἀνάντεσιν ἡ τῶν ποδῶν ἀνισότης κατὰ τὴν ἀνωμαλότητα τὴν τῶν τόπων ἀπισοῖ τὸ σῶμα |
| τὸ ἕν , ἀπὸ δὲ τῆς μονάδος καὶ τῆς ἀορίστου δυάδος τὰ δύο . δὶς γὰρ τὸ ἓν δύο , | ||
| αὐτὴν καλοῦσι καὶ πανδοχέα γε , ὡς παρεκτικὴν οὖσαν καὶ δυάδος τῆς κυρίως ὕλης καὶ πάντων χωρητικὴν λόγων , εἴ |
| τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
| τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
| ἑτέρου καὶ τῶν ἐναντίων : καὶ ταῦτα γὰρ πάντα μετέχουσιν ἑνώσεως καὶ ὑπάρξεως . ὥστε διελόμενον ποσαχῶς λέγεται ἕκαστον , | ||
| φορᾷ : καὶ ἄρκτος ἑπτὰ ἄστροις συμπληροῦται , κοινωνίας καὶ ἑνώσεως ἀνθρώπων , οὐκ ἐπιμιξίας αὐτὸ μόνον , οὖσα αἰτία |
| Ἐν πᾶσι τοῖς πράγμασι τρία ταῦτα θεωροῦνται , οὐσία ταυτότης ἑτερότης . οὐσίαν λέγω οὐ τὴν ἀντικειμένην τοῖς συμβεβηκόσιν , | ||
| πάντα γὰρ τὰ ἐναντία ὑπὸ τὴν ἑτερότητα , ἡ δὲ ἑτερότης ὑπὸ τὰ πολλά , τὰ δὲ πολλὰ καὶ ἓν |
| ἴσον ἐστὶ τοῖς ΗΔ , ΑΖ . ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας ἐροῦμεν : ἐπεὶ οὖν | ||
| τοῦ κέντρου τῷ ὁμοίῳ τῷ ἀποτεμνομένῳ , ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας μετὰ τοῦ ἀποτεμνο - |
| καὶ πεντήκοντα ἐμφανεῖς , τὸν ἀπὸ μονάδος ἄχρι δεκάδος τῆς παντελείας συμπληρούμενον ἀριθμόν . εἰ δὲ βουληθείη τις τοὺς ἐν | ||
| διεκοσμεῖτο αὖθις ἐν ἀριθμῷ τελείῳ τετράδι , ἣν δεκάδος τῆς παντελείας οὐκ ἂν διαμάρτοι εἰς ἀφορμὴν εἶναι λέγων καὶ πηγήν |
| μεσότητα ἐμβάλλω εἰς τοὺς προκειμένους ἀρτίους ὅρους , τὰ τῆς γεωμετρικῆς ἰδιώματα ἀνακύπτει , ἐξαπόλλυνται δὲ τὰ τῆς ἀριθμητικῆς : | ||
| . παραινεῖ τε πρῶτον μὲν ἔμπειρον γενέσθαι ἀριθμητικῆς , ἔπειτα γεωμετρικῆς , τρίτον δὲ στερεομετρίας , τέταρτον ἀστρονομίας , ἥν |
| ιʹ τῷ προκειμένῳ ἀριθμῷ . ἐὰν κατὰ τὰ μέσα ἡσδηποτοῦν ἑξάδος ὡς ἐπὶ τῆς δευτέρας δεδήλωται ἀπαρτηθῇ ὁ τριακοστὸς ἀριθμός | ||
| Διὸς ἀνατέλλοντος ἐν ταῖς μοίραις πλησίον : ἀπὸ δ ' ἑξάδος εἰκοστῆς καὶ μέχρι τριαντάδος ὁ Κρόνος ἐπαρέλαβεν , εἰ |
| οὐ γεννᾶι οὔτε γεννᾶται ὑπ ' ἄλλου ἀριθμοῦ πλὴν ὑπὸ μονάδος : διὸ καὶ καλεῖται ὑπὸ τῶν Πυθαγορείων παρθένος ἀμήτωρ | ||
| ιη , καὶ α καὶ ιθ . ἐπὶ μέντοι τῆς μονάδος οὐκέτι τοῦτο , ἀλλὰ τοῦ μὲν μετ ' αὐτὴν |
| . εἴπωμεν λοιπὸν περὶ τῆς μουσικῆς ὅ ἐστι περὶ τῆς ἁρμονικῆς ἀναλογίας . ἰστέον ὅτι ἐν τῇ γεωμετρικῇ ἡ ὑπεροχὴ | ||
| . Εἶτα διὰ τριῶν παραδειγμάτων , ἰατρικῆς , ποιητικῆς , ἁρμονικῆς , βούλεται ἀναιρεῖν τὰ λεγόμενα καὶ δεῖξαι ὅτι τὰ |
| τρόπον ἀπὸ μὲν τοῦ μείζονος ἀρχομένων ὅρου συνίσταται ἀναλογία ἐν ἐπιμερέσι λόγοις δισεπιτρίτοις : οἷον θʹ Ϛʹ δʹ : ἐκ | ||
| γίνονται γεωμετρικαί , ἀλλὰ καὶ ἐν ἐπιμορίοις εἴδεσιν ἅπασι καὶ ἐπιμερέσι καὶ μικτοῖς , καὶ τὸ ἐξαίρετον ἰδίωμα τῆς μεσότητος |
| ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
| βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
| καὶ τῆς τετράδος ἀποτελουμένῃ πεντάδι διὰ τὸ μὴ προϋποκεῖσθαι τῆς προσθέσεως τὴν πεντάδα καὶ ἀεί ποτε ὀφείλειν τὸ προστιθέμενον προϋποκειμένῳ | ||
| καθ ' αὑτὸ ὑπαρχόντων συμβεβηκότων εἶναι ὁρισμούς , ἐπειδὴ ἐκ προσθέσεως ὑπάρχουσιν , ἅτε δὴ συμπαραλαμβανόντων αὐτοῖς καὶ τὰ ὑποκείμενα |
| τοῦ ποσοῦ , δύο μὲν τοῦ διωρισμένου καὶ πέντε τοῦ συνεχοῦς , ὅτι τὰ δύο τοῦ διωρισμένου καὶ τὰ πέντε | ||
| ποίας διαφορὰς κρίνεται . ἀρξώμεθα δὲ ἐντεῦθεν . Ἡ τοῦ συνεχοῦς καὶ ἡ τοῦ διῃρημένου φύσις πᾶσα τοῖς οὖσιν , |
| τὴν εὕρεσιν τὴν παρὰ τοῦ θεοῦ Ἑρμοῦ εἰς ἀνθρώπους διὰ μεσότητός τινος ἔρχεσθαι , ἡ δὲ δαιμονία φύσις ἐστὶν ἡ | ||
| φανεῖεν χείρους καὶ ἦσαν οὐκ ἀδύνατοι : τὸ οὐκ ἀδύνατοι μεσότητός ἐστι ῥῆμα , οἷον οὔτε τελείως δυνατοὶ οὔτε ἀσθενεῖς |
| πενταγώνοις οἱ τρίγωνοι προστιθοῖντο τῇ αὐτῇ τάξει , τοὺς εὐτάκτους γεννήσουσιν ἑξαγώνους καὶ πάλιν ἐκείνοις οἱ αὐτοὶ προσπλεκόμενοι τοὺς ἐν | ||
| , δεικνύτωσαν , πῶς ἀλλήλας καταλήψονται ἢ πῶς συμπλακήσονται καὶ γεννήσουσιν ἕτερον . ὅτι μὲν οὖν ἀναιρεῖ κίνησιν μᾶλλον τὸ |
| : τοῖς γοῦν αὐτοῖς λόγοις οἱ ἄκροι τῆς μέσης καὶ παραμέσης ὑπερέχουσι καὶ ὑπερέχονται , ἐπιτρίτῳ καὶ ἡμιολίῳ . τοιαύτη | ||
| τῷ αὑτῆς ὑπερέχουσαν , τὴν δ ' ὑπάτην ὑπὸ τῆς παραμέσης ὑπερεχομένην ὁμοίως : ὡς γίγνεσθαι τὰς αὐτὰς ὑπεροχὰς τῶν |
| τῷ τριπλασιασμῷ τῆς ἡμιτονιαίας διαστάσεως ἐπιδεικνύον : τὸ δ ' ἐναρμόνιον κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον τοῖς μὲν διεσιαίοις | ||
| τίθεται , ἣν ὡς κατὰ τοὺς Πυθαγορικοὺς κύβον οὖσαν καὶ ἐναρμόνιον ἐπίηρον κατωνόμασεν . ὁ κύβος δὲ ἐναρμόνιον διὰ τοὺς |
| τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ | ||
| μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις |
| πρὸς δὲ τούτοις ὥσπερ νόμον κατεστήσατο ὁ Κῦρος , ὅσα διακρίσεως δέοιτο εἴτε δίκῃ εἴτε ἀγωνίσματι , τοὺς δεομένους διακρίσεως | ||
| διακεκριμένον διακεκριμένου διακέκριται , εἰ καὶ ἄλλος ἑκατέρου ὁ τῆς διακρίσεως τρόπος . Καὶ γὰρ τὸ καλὸν τοῦ δικαίου ἕτερον |
| πρὸς ἄλληλα : καὶ αὖθις αὖ ἐὰν ὑποθῇ εἰ ἔστιν ὁμοιότης ἢ εἰ μὴ ἔστιν , τί ἐφ ' ἑκατέρας | ||
| ὦ θαυμάσιε καὶ αὐτοδίδακτε ποιητά , οὐχ ἡ τῶν τεχνῶν ὁμοιότης τὸν κότον ποιεῖ καὶ τὴν ἔριν , ἀλλ ' |
| χερουβὶμ τὸν θεὸν ὑπὲρ ἀνθρώπων . ἕκτῃ ἀγγέλων παράστασις καὶ διάκρισις πάσης κτίσεως . ὥρα ζʹ * ἐν ᾗ αἰνοῦσιν | ||
| καὶ τὸ ἐκ ταύτης ὠφελούμενον . μόνη γὰρ ἡ τούτων διάκρισις προθυμίαν εἰς ἀρετῆς ἄσκησιν ἂν παράσχοι καὶ πρὸς τὴν |
| ἀριθμοῦ καὶ μο β ὑπάρξεως ἐπὶ Ϟ καὶ μο β λείψεως ποιεῖ δυ α ↑ μο δ . Πῶς ; | ||
| μο λϚ , καὶ κοινῆς προσκειμένης τῆς τῶν κδ ἀριθμῶν λείψεως καὶ τῆς μιᾶς μονάδος , γενήσεται κζ ἀριθμοὶ ἴσοι |
| ρκ , καὶ αὐτῆς τῆς σελήνης ἐν ἀρχῇ τοῦ Ταύρου ὑποκειμένης πρὸς ἀνατολὰς ἀπέχειν τοῦ μεσημβρινοῦ ὥρας ἰσημερινὰς δ . | ||
| ἐνεπετάννυντο . μετὰ δὲ τοῦτο αἴθριον ἐξεδέχετο τὴν ἐπάνω τῆς ὑποκειμένης προστάδος τάξιν κατέχον : ᾧ κλῖμάξ τε ἑλικτὴ φέρουσα |
| διὰ τούτων συμπληροῦσθαι : ἢ εἴη ἂν ὑστέρα ποιότητος καὶ ποσότητος . Ἐν μὲν οὖν ταῖς συνθέταις οὐσίαις καὶ ἐκ | ||
| μὲν ποῖος ἐπὶ ποιότητος τάσσεται , τὸ δὲ πόστος ἐπὶ ποσότητος : ὅθεν ὁ λέγων ποία ἐστὶν ὥρα ; ἀκυρολογεῖ |
| , ταύτην προτάττει , ἐπείπερ ἀπὸ μονάδος συντιθέντες μέχρι τῆς τετράδος πρώτως τὸν δέκα ἀριθμὸν ποιοῦμεν , οἷον ἓν δύο | ||
| ἄλλων θεῶν ἁψόμεθα συνουσιῶν ἐν τούτῳ δὴ τῷ μηνὶ τῆς τετράδος τὰ πρῶτα δεχομένης . Ἦλθον αὖθις ἡμῖν ἐπιστολαὶ παρ |
| ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
| σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
| εἰσιν , ἀμφότεροι γραμματικοὶ ὀνομάζονται , καθὸ ὑπέκειτο μέν τις δυὰς ἡ διὰ τοῦ ἀμφότεροι , τὸ δ ' ἐπιγεγενημένον | ||
| δὲ τὰ ἀναρίθμητα . Μονὰς ἀπὸ τοῦ μένω μονὰς , δυὰς ἀπὸ τοῦ δύω τὸ ὑπεισέρχομαι , τριὰς ἀπὸ τοῦ |
| τῆς ἰσότητος τῶν λόγων τὸ ἔσχατον εἶδος ἐμφαίνει καὶ ἡ καμπυλότης τῆς ἀνισότητος : εἰ μέντοι καμπυλότητά τις λαμβάνοι τὴν | ||
| , καθὸ εὐμόρφους ἢ δυσμόρφους λέγομεν . εὐθύτης δὲ καὶ καμπυλότης περὶ τὰ θέσιν ἔχοντα τὸ ποιὸν ἀφορίζουσιν . ὡς |
| δὲ οὕτως ὥστε ἵστασθαι μέχρι τοῦ γένους . οἷον τῇ τριάδι ὑπάρχει μὲν [ ἀριθμὸς καὶ ] τὸ ὄν , | ||
| ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ ἐπιμόριοι ἀφ ' ἡμιολίου ἀρχόμενοι |
| οἰκεῖον τῇ τετράδι . ἡ γὰρ πρώτη πυραμὶς ἐν τῇ τετράδι θεωρεῖται , τριγώνου μὲν βάσεως ὑποτεθείσης τοῦ τρία , | ||
| τὸ ὑπὸ τῶν ἄκρων ἔλαττόν ἐστι τοῦ ἀπὸ τοῦ μέσου τετράδι . διὰ τί τετράδι ; ἐπειδὴ καὶ ἡ ὑπεροχὴ |
| ὡς ἀπαντᾷ ὁ σύνδεσμος , ἐν ᾧ ἡ τελευταία περισπωμένη καταλαμβάνεται . ὁμοίως ὡς τὸ ἐπίρρημα τῇ ὑστέρᾳ ὀξεῖαν ἀναδέχεται | ||
| πήγανον . Ἐκλέγεσθαι χρὴ ἀπὸ τῶν ἀλεκτρυόνων τοὺς πολεμικωτάτους : καταλαμβάνεται δὲ τοῦτο ἐξ αὐτῆς τῆς χρείας καὶ πείρας , |
| περιττώματα , ἐν ὅσῳ ἐν ἡμῖν ἐστι , μετέχει τινὸς ζωτικῆς θέρμης , ἔξω δὲ προελθόντα ἀποψύχεται : ἔχει οὖν | ||
| , ἰσχνότεροι δὲ , ὅτι ἐν τῷ ἀχρήστῳ ἐξαγομένης καὶ ζωτικῆς θερμασίας . οἱ μέντοι πεπυκνωμένοι , τὸ ἐναντίον , |
| . ὅταν οὖν μάλιστα ἡ ☾ τῷ φωτὶ καὶ τοῖς ἀριθμοῖς ἀφαιρεῖ , ἔσονται διπλαῖ σημασίαι . καὶ οἱ πυρετοὶ | ||
| ☾ οὔσης ♑ κατακλιθῇ τις ἀφαιρούσης τῆς ☾ καὶ τοῖς ἀριθμοῖς καὶ τῷ φωτὶ ♄ συνόντος αὐτῇ , ἢ ☍ |
| ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος , | ||
| δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , |
| τοῦ ἐπικύκλου : τότε γὰρ τὸ πλεῖστον γίνεται διάφορον τῆς ὁμαλῆς κινήσεως παρὰ τὴν ἀνώ - μαλον . ἐπεὶ γὰρ | ||
| μὲν τοῦ ζῳδιακοῦ κέντρον τὸ Γ , τὸ δὲ τῆς ὁμαλῆς τοῦ ἐπικύκλου κινήσεως τὸ Β , καὶ ἐκβληθείσης τῆς |
| . ταῦτα οὖν διορίζεσθαι καὶ πειρᾶσθαι κατὰ τὸ ποσὸν τῆς ἁπλῆς διαθέσεως ἐξευρίσκειν τὸ ποσὸν τῆς τοῦ φαρμάκου δυνάμεως , | ||
| , καὶ τῇ μὲν ἐκ μεταθέσεως ἀποφάσει ἐπὶ πλέον τῆς ἁπλῆς , καὶ τῇ καταφάσει αὐτῆς κατὰ τὸ ἀκόλουθον ἐπ |
| , διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ | ||
| , οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων |
| καὶ ἐλάχιστον καταληγόντων . ἐάν τε δὲ πάντα εἰς ἄπειρον τέμνηται , ἐάν τε πάντα εἰς ἀμερὲς καταλήγῃ , ἄπορος | ||
| ΗΘ . Ἐὰν ἄρα δύο ἐπίπεδα παράλληλα ὑπὸ ἐπιπέδου τινὸς τέμνηται , αἱ κοιναὶ αὐτῶν τομαὶ παράλληλοί εἰσιν : ὅπερ |
| ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου | ||
| : ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον |
| , ὅση δὲ ἐναντία , σμικράν . τὰ δὲ περὶ συμφωνίας αὐτῶν ἐν τοῖς ὕστερον λεχθησομένοις ἀνάγκη ῥηθῆναι . Τέταρτον | ||
| σύμπηξις , θάτερον δὲ θατέρου ὂν διάφορον κατ ' οἰκονομίαν συμφωνίας ἐστὶν ἁρμονία : παραπλησίως καὶ ὁ κόσμος κατὰ τὴν |
| , τῇ δὲ γεωμετρίᾳ περὶ τὴν τοῦ μένοντος καὶ ἑστῶτος πηλίκου ἐξέτασιν καταγιγνομένῃ συλλήπτρια ὑπῆρξεν ἡ σφαιρικὴ κινουμένου πηλίκου ἐπιγνώμων | ||
| μηδεμίαν ὑπερβαῖνον ὑπερβολήν ; καὶ ἁπλῶς ὅλοις ἐξελεύσῃ τοῖς τοῦ πηλίκου τρόποις . ΜΕΤΑ τὴν λύσιν τοῦ παραγραφικοῦ ἐρεῖς , |
| μηκέτι μὲν καμπτῆρι , ὕσπληγι δὲ χρησαίμεθα καὶ ἀρχῇ τῆς προόδου μέχρις ἑκατοντάδος , ἀφ ' ἧς πάλιν ἡ ἐπάνοδος | ||
| : ἀλλὰ τί αὐτοῦ οἷον εἴδωλον , ὃ καὶ τῆς προόδου χεῖρον φανεῖται ; ἀλλ ' οὐδὲν ὀρέγεται τοῦ εἰδώλου |
| ἐπὶ τὴν βαρυτάτην χρωματικὴν ἑκτημόριον , ἀπὸ δὲ τῆς βαρυτάτης χρωματικῆς ἐπὶ τὴν ἡμιόλιον δωδεκατημόριον τόνου . τὸ δὲ τεταρτημόριον | ||
| ἐναρμόνιος μὲν οὖν ἐστι παρυπάτη πᾶσα ἡ βαρυτέρα τῆς βαρυτάτης χρωματικῆς , χρωματικὴ δὲ καὶ διάτονος ἡ λοιπὴ πᾶσα μέχρι |
| ] ⌈ κϘʹ . / [ εἰκοστὴ ἕκτη . ] τετρὰς ] ⌈ κζʹ . / [ εἰκοστὴ ζʹ . | ||
| , οὕτω καὶ ἡ τοῦ μεγίστου παρὰ τὸν μέσον διαφορὰ τετρὰς οὖσα πρὸς τὴν τοῦ μέσου παρὰ τὸν ἐλάχιστον δυάδα |
| περιττοῖς κζʹ . ἐν τούτοις τοῖς ἀριθμοῖς οἱ τελειότεροι τῶν συμφωνιῶν εὑρίσκονται λόγοι : συμπεριείληπται δὲ αὐτοῖς καὶ ὁ τόνος | ||
| διὰ πασῶν συγκεῖσθαι συμβέβηκεν ἐκ δύο τῶν ἐφεξῆς καὶ πρώτων συμφωνιῶν , τῆς τε διὰ πέντε καὶ τῆς διὰ τεσσάρων |
| ὢν πολλαπλάσιός ἐστιν ἁπλῶς , ὁ δὲ ι τοῦ δ διπλασιεφήμισυς ὢν ἐπιδιμερής ἐστιν αὐτοῦ , τὸ δὲ ἐπιδιμερὲς τοῦ | ||
| τῇ μικτῇ σχέσει . ἐπεὶ γὰρ ἡμιόλιος ἡ γεννῶσα σχέσις διπλασιεφήμισυς ἡ γεννωμένη , ἐπεὶ δὲ ἐπίτριτος διπλασιεπίτριτος , καὶ |
| τὰ ἐν ἡμῖν συνιστάμενα ἐκείνων εἴδωλα , τῆς ἐκείνων φύσεως ἀμερίστου οὔσης καὶ αἰωνίου , τούτων δὲ μεριστῶν ἐν ἡμῖν | ||
| ὁρατοῦ . πέπηγε δ ' ὁ οὐρανὸς ἔκ τε τῆς ἀμερίστου φύσεως καὶ τῆς μεριστῆς : ἡ μὲν οὖν ἀμέριστος |
| καὶ τοῦ εἶναι τῷ υἱῷ ὡς ἀνθρώπῳ αἴτιος καὶ τῆς σχέσεως , ὁ δὲ υἱὸς τῆς σχέσεως μόνης τῷ πατρὶ | ||
| , ὡς δύνασθαι ῥᾷστά τινα , διὰ τῆς πρὸς ἄλληλα σχέσεως αὐτῶν , τὴν ὅλην οἰκουμένην μηδὲν εἰκόνος δεηθέντα τῷ |
| λόγους ὅλα μέρεσι τοῖς αὐτῶν συγκρίνουσα , τὸ δὲ διαστηματικὸν ἀριθμητικὴ γνωματεύουσα , μερίζουσα τὸ ὅλον , τὰς τῶν μερῶν | ||
| , Ϛʹ ηʹ ιβʹ , τουτέστι τῷ τρίτῳ : καὶ ἀριθμητικὴ δὲ μεσότης ληφθέντος τοῦ Ϛʹ ἡμιολίου μὲν λόγου τῶν |
| σῴαν ἔχων τὴν φρόνησιν καὶ ταῖς ἀρεταῖς ἁπάσαις κοσμούμενος , εἰδικῶς δ ' ἂν λέγοιτο σώφρων ὁ τοῖς κατὰ γεῦσιν | ||
| ἐπὸς γάρ ἐστιν ἀπὸ τοῦ ἐπεῖναι κατὰ τὴν ἀποτομήν . εἰδικῶς μέντοι Ὅμηρος οἶδεν ὀπόν τινα λεγόμενον , ὡς ὅταν |
| , ἀφ ' ὧν λαμβάνεται πᾶσα μεσότης , ἀριθμητική , ἁρμονική , γεωμετρική . τούτων ἡ μὲν ἴσῳ ἀριθμῷ ὑπερέχει | ||
| τὸ ποιὸν ἀντὶ τοῦ περὶ τοὺς ὅρους . ἡ μέντοι ἁρμονική , ὡς περὶ ἑκάτερον ἔχουσα , διὰ τοῦτο τῶν |
| ] ἂν [ ἑνότης ] : δύναται γὰρ ἐκ τῆς ὁμοιότητος ὑπάρχουσι διαιώνιον ἔχειν τὴν τελείαν εὐδαιμονίαν , ἐπειδήπερ οὐχ | ||
| . αἱ δὲ βάλανοι καλούμενοι ἀπὸ τῆς πρὸς τὰς δρυινὰς ὁμοιότητος διαφέρουσι παρὰ τοὺς τόπους . αἱ μὲν γὰρ Αἰγύπτιαι |
| μεγέθεσιν ἢ βάρεσιν ἢ χρόνοις ἤ τισιν ἄλλοις διπλασίοις ἢ τριπλασίοις ἤ τισι τοιούτοις πολλαπλασίοις ἢ ἐπιμορίοις ] . γεωμετρικὴ | ||
| : ἀεὶ γὰρ ὁ ἀπὸ μονάδος συντιθέμενος ἐν διπλασίοις ἢ τριπλασίοις ἢ συνόλως ἀναλογοῦσιν ἕβδομος ἀριθμὸς κύβος τε καὶ τετράγωνός |
| ἐνδελεχῶς ἡμέρας . Ἀλλ ' ὅμως , τοσαύτης οὔσης τῆς τοπικῆς διαστάσεως , ἀνυπέρβλητον ἔχουσι πρὸς ἀλλήλους οἱ ἄνθρωποι τῶν | ||
| τὸ ἔνθα τὸ ἐνθάδε . ὅτι γὰρ οὐκ ἔστι τῆς τοπικῆς παραγωγῆς , σαφὲς ἐντεῦθεν . τὰ τοπικὰ παραχθέντα μετὰ |
| τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
| . Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
| καὶ ἡμέρας ο καὶ ὥρας κβ , μοίρας δὲ τῆς φαινομένης τοῦ ἀστέρος παρόδου ξη κζ , ἡ δ ' | ||
| καὶ κατὰ τύχην : ἢ ὡς τῆς ἀληθείας ἐν ὑστέρῳ φαινομένης : ὡς καὶ Ἡσίοδός φησι [ . ] : |
| τοιούτῳ ἀναπλασσομένῳ Ἑρμῇ . ἐπεὶ δὲ μονάδος ἀνὰ μέσον καὶ ἑβδομάδος κυβικῶν χωρίων κυβικὸς ὁ δʹ , εἰκότως , κρισίμου | ||
| λοιπάζονται πρὸς τὸ ἕβδομον ἀριθμόν εἰσιν ἀπὸ τῶν ἡμερῶν τῆς ἑβδομάδος . ἔπειτα ἵνα ἐπιδώσεις ἑνὶ ἑκάστῳ ἀστέρι μίαν περίοδον |
| μάλιστ ' ἐπόθει καὶ τῆς ἐπ ' αὐτῷ χαλεπῆς καὶ βαρυτάτης ἀνίας ἀπαλλαγῆναι . καὶ ἐπειδὴ παρεγένετο καὶ τὸν ἀδελφὸν | ||
| τόποι τῶν λιχανῶν ἑκάστης : ἥ τε γὰρ βαρυτέρα τῆς βαρυτάτης χρωματικῆς πᾶσά ἐστιν ἐναρμόνιος λιχανὸς ἥ τε τῆς βαρυτάτης |
| αὐτῷ , τὰ μὲν αἰσθήσεως δεῖσθαι , τὰ δ ' ἐπιστημονικῆς , τὰ μὲν καὶ τὰ τῆς , τὸ δ | ||
| οὕτω καὶ ἡ ἐπιστημονικὴ αἴσθησις φυσικῶς παρὰ τοῦ λόγου τῆς ἐπιστημονικῆς μεταλαμβάνει τριβῆς πρὸς ἀπλανῆ τῶν ὑποκειμένων διάγνωσιν . , |
| γινόμενος . οἱ δὲ οὕτως . παλμός ἐστιν ἔπαρσις καὶ ὕφεσις σωμάτων μυωδῶν ὑπὸ πνεύματος ἀποτελούμενος , οὐκ ἀεὶ γινόμενος | ||
| αὔξησις ἥ τε κατ ' αὔξησιν τελείωσις , τελειωθέντων δὲ ὕφεσις τῶν φυσικῶν δυνάμεων μέχρι γήρως , εἶτα πεπονηκότων τῶν |
| ἐν τῷ θεάτρῳ : καὶ γὰρ ἡ φωνὴ ἐνέργειά ἐστιν ἀμέριστος πανταχοῦ ὅλη ἡ αὐτὴ χωριστῶς αὐτῷ παροῦσα , ἅτε | ||
| πρὸς τὰς ἄλλας ἀμέριστον ἕνωσιν . καὶ γὰρ αὕτη ἡ ἀμέριστος ἕνωσις τοῖς χωρὶς τῶν σωμάτων προσήκει εἴδεσιν . εἰ |
| δὲ ἡμιτονίου , ὡς ἐλάχιστον μελῳδητὸν διάστημα , τῶν Πυθαγορείων δίεσιν καλούντων τὸ νῦν λεγόμενον ἡμιτόνιον . καλεῖσθαι δέ φησιν | ||
| τὸ δὲ ἡμιόλιον κατὰ δίεσιν ἡμιόλιον τῆς ἐναρμονίου διέσεως καὶ δίεσιν τὴν ἴσην καὶ ἑπτὰ τεταρτημορίων διέσεων ἀσύνθετον διάστημα . |
| περιεχόμενον ὑπὸ δύο φθόγγων ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις | ||
| οἱ τοῦ διὰ τεσσάρων ὅροι σύμφωνοι : ἀπὸ δὲ τοῦ ὀξυτέρου αὐτῶν λαμβάνεται φθόγγος σύμφωνος ἐπὶ τὸ ὀξὺ διὰ τεσσάρων |
| ἀντίστροφος , ἡ ὁριστική : χρῆται γὰρ καὶ ὁρισμοῖς ἡ μαθηματική , καὶ τούτους δι ' ἀκριβείας ποιεῖται . τρόπος | ||
| ' ἐκείνην ἡ περὶ τῶν φυσικῶν , καὶ οὕτως ἡ μαθηματική , καὶ ἐσχάτης ἐπὶ τούτοις ἀντιληψόμεθα τῆς θεολογίας . |
| , τὴν φυγήν . ἦν γάρ , οἶμαι , μᾶλλον ἐμμελὲς πείσαντα ἀπαγαγεῖν ἢ πέμψαντα πρὸς τὰς θύρας εἰς στρατιωτῶν | ||
| εἴ τι τῆς διανοίας κατεαγὸς καὶ κεκλασμένον ἐγείροντες καὶ ὅσον ἐμμελὲς αὐτῆς ἁρμοζόμενοι φύσεως καὶ ἀρετῆς ὀργάνοις : ἐφ ' |
| προτέρων μορίων τοῖς δευτέροις ὑπηρετούντων , ἀλλὰ τῇ τάξει τῆς θέσεως , ἣν ὁ τῆς τῶν ζῴων γενέσεως δημιουργὸς ἐμηχανήσατο | ||
| τῷ ἀδελφῷ σπονδῶν κατάρχειν ἐπέτρεψε καὶ κύριον αὐτὸν εἶναι τῆς θέσεως τοῦ ὀνόματος τῷ παιδίῳ . Μηριόνης , * * |
| τάξιν καὶ τὰ συμπτώματα παραδέδωκεν , αὐτὸς εὑρετὴς ὢν τῆς ἰδιότητος αὐτῶν πᾶσαν εὐθύγραμμον γωνίαν ἐτριχοτόμησεν . ἕτεροι δὲ ἐκ | ||
| : ἡ γὰρ ὁμοιότης κοινὴ μὲν κατὰ τὸ ὁλοσχερὲς τῆς ἰδιότητος , οὐχ ἡ αὐτὴ δὲ ὅμως , ἀλλ ' |
| περιττοί , καὶ τοῦτο ἐπ ' ἄπειρον , ὥστε ἡ ταυτότης πρὸς τῆς μονάδος καὶ τῶν περιττῶν . ἰστέον δὲ | ||
| ἐκ τῶν αὐτῶν πεφυκέναι . ἡ γὰρ πρὸς τοὺς γονεῖς ταυτότης καὶ αὐτοῖς ταυτότητα ποιεῖ πρὸς ἀλλήλους , ὥσπερ τοὺς |
| οὐρανόθεν ἀποστέλλει . παραμένοντος γὰρ ἐν ψυχῇ τοῦ θεοειδεστάτου καὶ ἀσωμάτου φωτὸς ἀποδώσομεν τὸν ἐνεχυρασθέντα λόγον , ὡς ἱμάτιον , | ||
| σώματος , εἰς ἄπειρον ἐκβαλλόμεθα : εἰ δὲ δι ' ἀσωμάτου , εἰς τὸν διάλ - ληλον τρόπον ἐκπίπτομεν . |
| , ὅτι ἀμετάθετος καὶ ἀμετάβλητός ἐστιν ὁ καθ ' ἕκαστα διορισμὸς ἐξ ἀιδίων χρόνων : Κλωθὼ δέ , ὅτι ἡ | ||
| . Τίς μὲν οὖν ὀρθότης ἦν τῆς παρούσης ἐρωτήσεως καὶ διορισμὸς αὐτῆς , πῶς ἀδύνατος καὶ πῶς δυνατὴ γίγνεσθαι , |
| παράθεσις ἀπότασις : τὸ δ ' οὗ ἕνεκεν , ὀρθότης εὐθύτης : καὶ ἐπὶ τῶν ἄλλων ὁμοίως . Τὰ μὲν | ||
| τὸ δὲ ἐναντίον τούτου θηλυδρίαν καὶ ἀμαθέστερον σημαίνει ἄνδρα . εὐθύτης ῥινὸς γλώττης ἀκρασίαν τινὰ λέγει . ῥὶς ἡ μείζων |
| ἀνεγερθείη τρόπον κίονος ἑνός , μυρίοις τῆς αἰθερίου σφαίρας ἀπολειφθήσεται διαστήμασι , καὶ μάλιστα κατὰ τοὺς ζητητικοὺς τῶν φιλοσόφων , | ||
| τοῦ μονοχόρδου κανόνος . Ὅτι οὐ δεόντως οἱ Ἀριστοξένειοι τοῖς διαστήμασι καὶ οὐ τοῖς φθόγγοις παραμετροῦσι τὰς συμφωνίας . Ὅτι |
| ἡ δὲ σελήνη ἑβδόμη οὖσα τάξιν ἐπέχει φθόγγου τοῦ λεγομένου ὑπάτης μέσης . τὸ δὲ ἀπὸ γῆς διάστημα μέχρι τῆς | ||
| ἔχει λόγον , τὸν δὲ βαρὺν τὸν Κρόνον , εἴπερ ὑπάτης . Οἱ δὲ δὴ πρῶτοι ἀπὸ τῶν πρὸς ἡμᾶς |
| ἢ μαθηματικῆς πρόκειται ζητῆσαι οὔτε τῆς τελείου ἐξ ἀριθμητικῆς καὶ γεωμετρίας συνεστώσης οὔτε τῆς παρὰ τοῖς περὶ Εὔδοξον καὶ Ἵππαρχον | ||
| περὶ τούτων λόγος ἀστρονομίᾳ ἂν προσήκοι . Ἔκ γε μὴν γεωμετρίας γεωμέτρης , γεωμετρική γεωμετρεῖν , γεωμετρικός γεωμετρικῶς , γεωμετρικώτατα |
| ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
| οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
| γίνεται . Τόνος δὲ λέγεται τετραχῶς : καὶ γὰρ ὡς φθόγγος καὶ ὡς διάστημα καὶ ὡς τόπος φωνῆς καὶ ὡς | ||
| τἀναντία συνισταμένῃ : ὅτε γὰρ τῷ διὰ τεσσάρων τινὸς βαρύτερος φθόγγος τῷ διὰ πέντε τοῦ ὁμοφώνου αὐτῷ κατὰ τὸ βαρύτερον |
| ἔρωτος σῶμα , οὗτος μένει ἐν τῷ σκότει πλανώμενος , αἰσθητῶς πάσχων τὰ τοῦ θανάτου . Τί τοσοῦτον ἁμαρτάνουσιν , | ||
| τοῦ ἐπὶ κʹ , ὁ δὲ Β τοῦ ϝ βαρύτερος αἰσθητῶς , ὥστε ἐλάττονα εἶναι καὶ τὸν τῶν ΒΓ λόγον |
| πολὺ καὶ ὀλίγον , ἔστι δὲ ὅτε εἰς ὑπερέχον καὶ ὑπερεχόμενον , ὅταν ἐπὶ τῆς πρώτης δυάδος παραλαμβάνηται , συμβολικῶς | ||
| : τινὰ γὰρ καὶ διχῶς ἀποδίδοται , οἷον τὸ ὑπερέχον ὑπερεχόμενον ὑπερέχει καὶ τὸ ὑπερέχον ὑπεροχῇ ὑπερέχει . τέταρτον ἵνα |
| ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
| ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
| τὴν ἐνταῦθα ὑποκειμένην ἐπὶ τοῦ ἐπικύκλου μετάβασιν τὸν ἀπὸ τῆς ἐλαχίστης κινήσεως ἐπὶ τὴν μέσην χρόνον , μείζων ἐστὶν τῆς | ||
| δὴ ταῦτα ἀληθῆ λέγομεν , καὶ τὸ μέγεθος ὥρισται τῆς ἐλαχίστης σαρκός , ἀναγκαίως ἀδύνατον ἐν ἑκάστῳ πάντα μεμῖχθαι . |
| τροφή . δαιτρός βʹ : ὁ μάγειρος . καὶ ὁ μεριστής . δαΐφρων γʹ : κυρίως ὁ συνετὸς ἐν πολέμῳ | ||
| μεριστής . θ χρηματοδαίτης ] μοιραστής . χρηματοδαίτης ] χρημάτων μεριστής . Ξ πικρὸς ] ἀπηνής . ὠμόφρων ] ἀπηνής |
| οἰκεῖα πληρώματα ὁ νοῦς , ἐξ ὧν ὁ σύμπας ὁμοῦ συμπληροῦται , ἐπιδεὴς ἂν εἴη αὐτὸς ἑαυτοῦ , οὐ μόνον | ||
| περιττοῦ φύσιν ἔχουσι : μὴν δὲ καθ ' ἑβδομάδας τέσσαρας συμπληροῦται , τῇ μὲν πρώτῃ ἑβδομάδι διχοτόμου τῆς σελήνης ὁρωμένης |
| καὶ ταῦτα σοφὸς ὤν , ἀλλὰ λέληθέν σε ὅτι ἡ ἰσότης ἡ γεωμετρικὴ καὶ ἐν θεοῖς καὶ ἐν ἀνθρώποις μέγα | ||
| ὅταν ἀνάλογον ᾖ τῶν πλευρῶν πρὸς ἀλλήλας καὶ τῶν γωνιῶν ἰσότης τοῦδε τοῦ σχήματος πρὸς τόδε : ἐπὶ δὲ τῶν |
| οὐκ ἐνεργεῖ , οὐκ ἄρα οὐδὲ τῆς δόξης ἢ τῆς νοήσεώς εἰσι τὰ ἐνύπνια . Ἔτι παρὰ τὸ ἐνύπνιον πολλάκις | ||
| οὐδέποτε συντελέσει . οὐδέποτε οὖν ἔσται νενοηκώς : καίτοι πάσης νοήσεώς ἐστι πέρατα , καὶ τῆς πρακτικῆς καὶ τῆς θεωρητικῆς |
| κινήσεως τάξις τε καὶ ἀλόγων συμμετρία ἥ τε ἐν ἀριθμοῖς συμφώνοις ἢ συμφωνίαν περιέχουσιν εὐμετρία ἀπὸ τῆς κατ ' οὐσίαν | ||
| συγκε - χυμένη μὲν ἐγέννησεν ἁρμονίαν , λόγοις δὲ τοῖς συμφώνοις τεταγμένη ῥυθμόν . ἀλλ ' ἐπεὶ παθῶν ψυχικῶν ἡ |
| τῶν σνϚ πρὸς τὰ σμγ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους λόγους ἐν πρώτοις ἀριθμοῖς τούτοις : | ||
| ἀπὸ προσλαμβανομένου ἐπὶ νήτην συνημμένων . ὑπάρχει δὲ ἐν αὐτῷ τετράχορδα τρία συνημμένα τάδε : ὑπάτων μέσων συνημμένων , καὶ |
| λόγου δύναμιν δείκνυσι τὴν ῥητορικήν , ὅτι πρᾶγμά ἐστιν ἐν μεσότητι θεωρούμενον , ᾧ ἔξεστι χρήσασθαι καὶ καλῶς καὶ κακῶς | ||
| τοῦ ἴσου καὶ τοῦ προσήκοντος , ἐμπεριεχομένη ἀριθμοῦ τετραγώνου περισσοῦ μεσότητι . πρῶτον δὴ ἐκθετέον στιχηδὸν τοὺς μέχρι τούτου ἀριθμοὺς |
| ὑπεροχῆς αὐτῶν τετράγωνος ἐλάσσων τοῦ συναμφοτέρου τοῦ τε τριπλασίονος τῆς ὑπεροχῆς καὶ τῶν μο , καὶ ἔστω ἡ τῶν Ϟῶν | ||
| γὰρ ὑπερέχει , ἴσμεν , ἄγνωστος δὲ ἡ ποσότης τῆς ὑπεροχῆς . καὶ ἐπὶ μὲν τῶν πλευρῶν τοῦ κ καὶ |
| τοῖς πᾶσι , καὶ ἅμα ὑλικόν ἐστι μᾶλλον τὸ τῆς ἀοριστίας πάθος ἤπερ εἰδητικόν : οὔτε τῶν ἄλλοτε ἄλλως ἐχόντων | ||
| ἑτερομήκεις τε διὰ τοῦτο καὶ ἑτερότητος ἐπιδεκτικοὶ ἀπειρίας τε καὶ ἀοριστίας . τῇ δὲ ἄρα διχοστατεῖ καὶ διανενέμηται καὶ ἐναντία |
| : διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί | ||
| μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν |
| οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
| πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
| , δέον δὲ ἐν λόγοις ἐπιμορίοις εἶναι τὰ ἐμμελῆ . Τοιαύτης δὴ τυγχανούσης τῆς περὶ τὰς συμφωνίας τῶν Πυθαγορείων ὑποθέσεως | ||
| . ἀλλὰ καὶ χεῖρον ποιεῖ τὸ πρεσβύτερον καὶ τελειότερον . Τοιαύτης δὲ ἀνομοιότητος μετέχει τὰ εἴδη ἐν τῇ ὕλῃ γινόμενα |
| ἀνάγκη ἑαυτοῦ ὁμοιότητα αὐτῷ εἶναι ; Πῶς ; Εἰ ἑνὸς ἀνομοιότης ἔστι τῷ ἑνί , οὐκ ἄν που περὶ τοῦ | ||
| οὐδ ' ἀπὸ τοῦ ἀνόμοιος ῥῆμα , πρᾶγμα δὲ ἡ ἀνομοιότης . καὶ ἐπίρρημα δὲ ἀπ ' ἀμφοῖν , ἀνομοίως |
| τελειοτάτη ἡ δὶς διὰ πασῶν . ἐκδηλότερόν γε μὴν ἡ σφαιρικὴ δι ' ἀριθμητικῆς τυγχάνει πάντων τῶν προσηκόντων αὐτῇ σκεμμάτων | ||
| ἀστρονομία περὶ μόνα τὰ οὐράνια σώματα καταγίνεται , ἡ δὲ σφαιρικὴ περὶ πᾶσαν σφαῖραν καταγίνεται : λέγει γὰρ τὰ συμβαίνοντα |