| μεσότητα ἐμβάλλω εἰς τοὺς προκειμένους ἀρτίους ὅρους , τὰ τῆς γεωμετρικῆς ἰδιώματα ἀνακύπτει , ἐξαπόλλυνται δὲ τὰ τῆς ἀριθμητικῆς : | ||
| . παραινεῖ τε πρῶτον μὲν ἔμπειρον γενέσθαι ἀριθμητικῆς , ἔπειτα γεωμετρικῆς , τρίτον δὲ στερεομετρίας , τέταρτον ἀστρονομίας , ἥν |
| διαλαβεῖν : κοινὸν γὰρ τοῦτο τὸ βιβλίον γεωμετρίας τε καὶ ἀριθμητικῆς καὶ μουσικῆς καὶ πάσης ἁπλῶς τῆς μαθηματικῆς ἐπιστήμης . | ||
| Ϛʹ τοῦ εʹ : κοινὸν τὸ θεώρημα γεωμετρικῆς ἀναλογίας καὶ ἀριθμητικῆς . Ἐν τῷ λόγῳ ἄρα εἰσὶ τῆς ἀριθμητικῆς ἀναλογίας |
| . εἴπωμεν λοιπὸν περὶ τῆς μουσικῆς ὅ ἐστι περὶ τῆς ἁρμονικῆς ἀναλογίας . ἰστέον ὅτι ἐν τῇ γεωμετρικῇ ἡ ὑπεροχὴ | ||
| . Εἶτα διὰ τριῶν παραδειγμάτων , ἰατρικῆς , ποιητικῆς , ἁρμονικῆς , βούλεται ἀναιρεῖν τὰ λεγόμενα καὶ δεῖξαι ὅτι τὰ |
| ἀιδίοις ἀπολείπουσιν οἱ ἄνδρες , οἷον τὸ τῆς ὁμοιότητος ἢ ἰσότητος ἢ ταυτότητος εἶδος , οὗ μετέχει μὲν καὶ ὁ | ||
| Τῷ δὴ ἑνὶ μὴ ὄντι , ὡς ἔοικε , καὶ ἰσότητος ἂν μετείη καὶ μεγέθους καὶ σμικρότητος . Ἔοικεν . |
| φαίνεται . Ἀκμάσαντος δὲ τοῦ θέρους μείω μὲν τῷ ἐξ ἀναλογίας ποσῷ τὰ χύματα καὶ πρὸς τὸ πυρρὸν ἤδη καὶ | ||
| σοφῶν ἀνδρῶν παντέλεια , περιέχει δ ' ἐν αὑτῇ τὰς ἀναλογίας πάσας , τήν τε ἀριθμητικὴν καὶ τὴν ἁρμονικὴν καὶ |
| ὕστερον δὲ γλαφυρώτατα δείξει ὅτι καὶ ἡ ἰσότης προτέρα τῆς ἀνισότητος . δείκνυσιν οὖν ὅτι τὸ πολλαπλάσιον πρῶτόν ἐστι τῶν | ||
| πόλοι ἐπὶ τοῦ ὁρίζοντος πίπτουσιν , ἀναιρουμένου τοῦ αἰτίου τῆς ἀνισότητος τῶν ἡμερῶν , τοῦτο δὲ ἦν τὸ ἔγκλιμα , |
| , ἀφ ' ὧν λαμβάνεται πᾶσα μεσότης , ἀριθμητική , ἁρμονική , γεωμετρική . τούτων ἡ μὲν ἴσῳ ἀριθμῷ ὑπερέχει | ||
| τὸ ποιὸν ἀντὶ τοῦ περὶ τοὺς ὅρους . ἡ μέντοι ἁρμονική , ὡς περὶ ἑκάτερον ἔχουσα , διὰ τοῦτο τῶν |
| λόγους ὅλα μέρεσι τοῖς αὐτῶν συγκρίνουσα , τὸ δὲ διαστηματικὸν ἀριθμητικὴ γνωματεύουσα , μερίζουσα τὸ ὅλον , τὰς τῶν μερῶν | ||
| , Ϛʹ ηʹ ιβʹ , τουτέστι τῷ τρίτῳ : καὶ ἀριθμητικὴ δὲ μεσότης ληφθέντος τοῦ Ϛʹ ἡμιολίου μὲν λόγου τῶν |
| ἢ μαθηματικῆς πρόκειται ζητῆσαι οὔτε τῆς τελείου ἐξ ἀριθμητικῆς καὶ γεωμετρίας συνεστώσης οὔτε τῆς παρὰ τοῖς περὶ Εὔδοξον καὶ Ἵππαρχον | ||
| περὶ τούτων λόγος ἀστρονομίᾳ ἂν προσήκοι . Ἔκ γε μὴν γεωμετρίας γεωμέτρης , γεωμετρική γεωμετρεῖν , γεωμετρικός γεωμετρικῶς , γεωμετρικώτατα |
| ἐκ τἀγαθοῦ τοῖς πᾶσιν ἐφήκουσαν ἕνωσιν καὶ διὰ τὴν τῆς ταυτότητος ἐν τοῖς ἀύλοις εἴδεσιν ἐπικράτειαν . ἀλλ ' οὗτος | ||
| τῷ ἀνθρώπῳ τὸ μουσικόν . καὶ τὰ τοιαῦτα φύσει τῆς ταυτότητος μετέχουσιν , ἤγουν τῷ εἶναι : τὸ δὲ μουσικὸν |
| ὑπεροχαὶ γὰρ αἱ αὐταί . εἰ δὲ τὸν κ ἡ γεωμετρική : ἡ αὐτὴ γὰρ ἀναλογία , διπλασία γάρ . | ||
| ἐλαττόνων , οἷον βʹ γʹ Ϛʹ . ►βʹ ἀριθμητική ) γεωμετρική ) ἁρμονική τριπλάσιος◄ ) ἐπὶ κόρρης . ἐπὶ κεφαλῆς |
| περιττοῖς κζʹ . ἐν τούτοις τοῖς ἀριθμοῖς οἱ τελειότεροι τῶν συμφωνιῶν εὑρίσκονται λόγοι : συμπεριείληπται δὲ αὐτοῖς καὶ ὁ τόνος | ||
| διὰ πασῶν συγκεῖσθαι συμβέβηκεν ἐκ δύο τῶν ἐφεξῆς καὶ πρώτων συμφωνιῶν , τῆς τε διὰ πέντε καὶ τῆς διὰ τεσσάρων |
| ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον . | ||
| ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν |
| , ὅση δὲ ἐναντία , σμικράν . τὰ δὲ περὶ συμφωνίας αὐτῶν ἐν τοῖς ὕστερον λεχθησομένοις ἀνάγκη ῥηθῆναι . Τέταρτον | ||
| σύμπηξις , θάτερον δὲ θατέρου ὂν διάφορον κατ ' οἰκονομίαν συμφωνίας ἐστὶν ἁρμονία : παραπλησίως καὶ ὁ κόσμος κατὰ τὴν |
| προτέρων μορίων τοῖς δευτέροις ὑπηρετούντων , ἀλλὰ τῇ τάξει τῆς θέσεως , ἣν ὁ τῆς τῶν ζῴων γενέσεως δημιουργὸς ἐμηχανήσατο | ||
| τῷ ἀδελφῷ σπονδῶν κατάρχειν ἐπέτρεψε καὶ κύριον αὐτὸν εἶναι τῆς θέσεως τοῦ ὀνόματος τῷ παιδίῳ . Μηριόνης , * * |
| κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
| γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
| ] ἰσχυρός . ἡμέτερον + ἀλλ ' ἐπεὶ δοκεῖς : ἔκθεσις τοῦ δράματος . οἱ δὲ στίχοι εἰσὶ τροχαϊκοὶ κεʹ | ||
| οὕτω φησί : διήγησίς ἐστι τῶν ἐν τῇ ὑποθέσει πραγμάτων ἔκθεσις εἰς τὸ ὑπὲρ τοῦ λέγοντος πρόσωπον ῥέουσα . Θεόδωρος |
| τρόπον ἀπὸ μὲν τοῦ μείζονος ἀρχομένων ὅρου συνίσταται ἀναλογία ἐν ἐπιμερέσι λόγοις δισεπιτρίτοις : οἷον θʹ Ϛʹ δʹ : ἐκ | ||
| γίνονται γεωμετρικαί , ἀλλὰ καὶ ἐν ἐπιμορίοις εἴδεσιν ἅπασι καὶ ἐπιμερέσι καὶ μικτοῖς , καὶ τὸ ἐξαίρετον ἰδίωμα τῆς μεσότητος |
| τὴν εὕρεσιν τὴν παρὰ τοῦ θεοῦ Ἑρμοῦ εἰς ἀνθρώπους διὰ μεσότητός τινος ἔρχεσθαι , ἡ δὲ δαιμονία φύσις ἐστὶν ἡ | ||
| φανεῖεν χείρους καὶ ἦσαν οὐκ ἀδύνατοι : τὸ οὐκ ἀδύνατοι μεσότητός ἐστι ῥῆμα , οἷον οὔτε τελείως δυνατοὶ οὔτε ἀσθενεῖς |
| ὅλης τῆς ἐπιδέσεως τελαμωνιδίου ὡς διδακτυλιαίου καὶ ποσὸν στενοτέρου ἡ μεσότης τῇ ῥινὶ προστίθεται , οὗ τὰ χαλάσματα δι ' | ||
| ἐν ταῖς λύπαις . περὶ δὲ τὰς ἐν σώματι ἡδονὰς μεσότης μὲν σωφροσύνη , ὑπερβολὴ δὲ ἀκολασία , ἔλλειψις δέ |
| Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
| ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
| διὰ τούτων συμπληροῦσθαι : ἢ εἴη ἂν ὑστέρα ποιότητος καὶ ποσότητος . Ἐν μὲν οὖν ταῖς συνθέταις οὐσίαις καὶ ἐκ | ||
| μὲν ποῖος ἐπὶ ποιότητος τάσσεται , τὸ δὲ πόστος ἐπὶ ποσότητος : ὅθεν ὁ λέγων ποία ἐστὶν ὥρα ; ἀκυρολογεῖ |
| τοῦ ἐπικύκλου : τότε γὰρ τὸ πλεῖστον γίνεται διάφορον τῆς ὁμαλῆς κινήσεως παρὰ τὴν ἀνώ - μαλον . ἐπεὶ γὰρ | ||
| μὲν τοῦ ζῳδιακοῦ κέντρον τὸ Γ , τὸ δὲ τῆς ὁμαλῆς τοῦ ἐπικύκλου κινήσεως τὸ Β , καὶ ἐκβληθείσης τῆς |
| κατηγορούμενα πάντα πῶς θηρεύεται διδάσκων , κἀκ τῆς τούτων ποιᾶς συνθέσεως τὸν ὅρον ἀποτελῶν , ἓν μὲν καὶ αὐτὸν τῶν | ||
| καὶ τοῖς φαυλοτάτοις ὄντα . ταυτί μοι δοκεῖ μηνύματα τῆς συνθέσεως εἶναι τῆς Δημοσθένους ἀνυφαίρετα καὶ χαρακτηρικά , ἐξ ὧν |
| τοιούτῳ ἀναπλασσομένῳ Ἑρμῇ . ἐπεὶ δὲ μονάδος ἀνὰ μέσον καὶ ἑβδομάδος κυβικῶν χωρίων κυβικὸς ὁ δʹ , εἰκότως , κρισίμου | ||
| λοιπάζονται πρὸς τὸ ἕβδομον ἀριθμόν εἰσιν ἀπὸ τῶν ἡμερῶν τῆς ἑβδομάδος . ἔπειτα ἵνα ἐπιδώσεις ἑνὶ ἑκάστῳ ἀστέρι μίαν περίοδον |
| συνεγγίζων τῷ Ε σημείῳ κατὰ τὸ πλάτος ἀπὸ τῆς ΕΖ διαστάσεως φαίνηται πρώτως , ὁ τούτου πλέον ἀφεστὼς ἀπ ' | ||
| καὶ πρῶτον ἐπὶ τῆς ἐν ἀρχαῖς τοῦ Σκορπίου μεγίστης ἑσπερίας διαστάσεως . ἔστω γὰρ ἡ διὰ τοῦ Α ἀπογείου διάμετρος |
| τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
| τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
| χρόνων καὶ τῶν πράξεων ἐν πλείοσι πραγματείαις καὶ διαφόροις συγγραφεῦσι δυσπερίληπτος ἡ τούτων ἀνάληψις γίνεται καὶ δυσμνημόνευτος . ἐξετάσαντες οὖν | ||
| ἄρσην τὸ θηλυκόν . καὶ ἦν εἰς τὸ τοιοῦτο παράθεσις δυσπερίληπτος . καὶ δὴ οὖν ἐπὶ τοῦ προκειμένου ἐκεῖνό φασιν |
| μὲν ταυτότητος διὰ τὸ μονάδι ὁμογενὲς εἶναι , ἄρτιον δὲ ἑτερότητος διὰ τὸ δυάδι . καὶ ἔτι ἐκδηλότερον , τετράγωνον | ||
| τοῖς συνοικοῦσιν ἐν τοῖς ἐνύλως τὸ εἶναι ἔχουσιν ἐπικρατούσης τῆς ἑτερότητος . οὐ γὰρ ἑαυτοῦ δεῖ μόνου φροντίζειν ὡς ἔχῃ |
| ἀντίστροφος , ἡ ὁριστική : χρῆται γὰρ καὶ ὁρισμοῖς ἡ μαθηματική , καὶ τούτους δι ' ἀκριβείας ποιεῖται . τρόπος | ||
| ' ἐκείνην ἡ περὶ τῶν φυσικῶν , καὶ οὕτως ἡ μαθηματική , καὶ ἐσχάτης ἐπὶ τούτοις ἀντιληψόμεθα τῆς θεολογίας . |
| σῴαν ἔχων τὴν φρόνησιν καὶ ταῖς ἀρεταῖς ἁπάσαις κοσμούμενος , εἰδικῶς δ ' ἂν λέγοιτο σώφρων ὁ τοῖς κατὰ γεῦσιν | ||
| ἐπὸς γάρ ἐστιν ἀπὸ τοῦ ἐπεῖναι κατὰ τὴν ἀποτομήν . εἰδικῶς μέντοι Ὅμηρος οἶδεν ὀπόν τινα λεγόμενον , ὡς ὅταν |
| τἆλλα κατὰ τὸ ἑξῆς εἴδη . ὑπόδειγμα δὲ πάντων εὐτάκτων πολυπλασίων σαφὲς ἕξομεν ἐὰν ἐκθέμενοι τὸν ἀπὸ μονάδος συνεχῆ ἀριθμὸν | ||
| ἀρτιοπερίττων δὲ πέντε , πάσας δὲ λόγων τῶν ἐν ἀριθμοῖς πολυπλασίων καὶ ἐπιμερῶν καὶ ὑποεπιμερῶν περιέχει , πάσας δ ' |
| ὑπεροχῆς αὐτῶν τετράγωνος ἐλάσσων τοῦ συναμφοτέρου τοῦ τε τριπλασίονος τῆς ὑπεροχῆς καὶ τῶν μο , καὶ ἔστω ἡ τῶν Ϟῶν | ||
| γὰρ ὑπερέχει , ἴσμεν , ἄγνωστος δὲ ἡ ποσότης τῆς ὑπεροχῆς . καὶ ἐπὶ μὲν τῶν πλευρῶν τοῦ κ καὶ |
| ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
| ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
| ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
| τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
| δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
| δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
| ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
| οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
| μάλιστ ' ἐπόθει καὶ τῆς ἐπ ' αὐτῷ χαλεπῆς καὶ βαρυτάτης ἀνίας ἀπαλλαγῆναι . καὶ ἐπειδὴ παρεγένετο καὶ τὸν ἀδελφὸν | ||
| τόποι τῶν λιχανῶν ἑκάστης : ἥ τε γὰρ βαρυτέρα τῆς βαρυτάτης χρωματικῆς πᾶσά ἐστιν ἐναρμόνιος λιχανὸς ἥ τε τῆς βαρυτάτης |
| τὴν ἐνταῦθα ὑποκειμένην ἐπὶ τοῦ ἐπικύκλου μετάβασιν τὸν ἀπὸ τῆς ἐλαχίστης κινήσεως ἐπὶ τὴν μέσην χρόνον , μείζων ἐστὶν τῆς | ||
| δὴ ταῦτα ἀληθῆ λέγομεν , καὶ τὸ μέγεθος ὥρισται τῆς ἐλαχίστης σαρκός , ἀναγκαίως ἀδύνατον ἐν ἑκάστῳ πάντα μεμῖχθαι . |
| Φιλόνομος καὶ Καλλίας οἱ Καταναῖοι τοὺς ἑαυτῶν πατέρας ἀράμενοι διὰ μέσης τῆς φλογὸς ἐκόμισαν , τῶν ἄλλων κτημάτων καταφρονήσαντες . | ||
| Ὑδροχόου μοίρας ι . καὶ ἐνθάδε ἄρα ἡ μεγίστη τῆς μέσης ἀπόστασις ἑῴα τῶν ἴσων γέγονεν κϚ ∠ ʹ μοιρῶν |
| τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
| εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
| ἴσον ἐστὶ τοῖς ΗΔ , ΑΖ . ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας ἐροῦμεν : ἐπεὶ οὖν | ||
| τοῦ κέντρου τῷ ὁμοίῳ τῷ ἀποτεμνομένῳ , ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας μετὰ τοῦ ἀποτεμνο - |
| εἰρημένων φάλαγγος συστήματα καὶ ἡγεμονίας καὶ τάξεις καὶ ἀριθμὸν ἐπιτήδειον περιεχούσης καὶ ὀνόματα χάριν τῶν παραγ - γελλομένων εἴς τε | ||
| σῶμα εἶναι . ταύτης δὲ τῆς ἐμβολῆς τὴν ἰσχυροτάτην ἀνάγκην περιεχούσης ὁ Βακχεῖος τὴν ἐπὶ τοῦ μοχλοειδοῦς ξύλου λεγομένην ἄμβην |
| , οὔτε φαίνεται ὢν αἴτιος : τὰ γὰρ θεωρήματα τῶν ἀριθμητικῶν πάντα καὶ κατὰ τῶν αἰσθητῶν ὑπάρξει , καθάπερ ἐλέχθη | ||
| δὲ ἐπὶ τέλει τοῦ βʹ θεωρήματος τοῦ ζʹ βιβλίου τῶν ἀριθμητικῶν ἐστιν . ἕπονται δὲ τὰ πορίσματα καὶ θεωρήμασιν , |
| , ὅταν ὁ μὲν ἑνός , ὁ δὲ δυεῖν μετέχῃ συστημάτων , τετάρτη ἡ κατὰ τὸν τῆς φωνῆς τόπον , | ||
| , ἔτι δὲ ἁρμονίαι καὶ συμφωνίαι καὶ τῶν γενῶν καὶ συστημάτων αἱ μεταβολαὶ καὶ πάνθ ' ὅσα κατὰ μουσικὴν ἐπικρίνεται |
| ιʹ τῷ προκειμένῳ ἀριθμῷ . ἐὰν κατὰ τὰ μέσα ἡσδηποτοῦν ἑξάδος ὡς ἐπὶ τῆς δευτέρας δεδήλωται ἀπαρτηθῇ ὁ τριακοστὸς ἀριθμός | ||
| Διὸς ἀνατέλλοντος ἐν ταῖς μοίραις πλησίον : ἀπὸ δ ' ἑξάδος εἰκοστῆς καὶ μέχρι τριαντάδος ὁ Κρόνος ἐπαρέλαβεν , εἰ |
| ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
| δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
| ἑτέρου καὶ τῶν ἐναντίων : καὶ ταῦτα γὰρ πάντα μετέχουσιν ἑνώσεως καὶ ὑπάρξεως . ὥστε διελόμενον ποσαχῶς λέγεται ἕκαστον , | ||
| φορᾷ : καὶ ἄρκτος ἑπτὰ ἄστροις συμπληροῦται , κοινωνίας καὶ ἑνώσεως ἀνθρώπων , οὐκ ἐπιμιξίας αὐτὸ μόνον , οὖσα αἰτία |
| γὰρ ὁ μετέχων ταύτης τῆς δυνάμεως . Ἀρχὴν δὲ τῆς σκεπτικῆς αἰτιώδη μέν φαμεν εἶναι τὴν ἐλπίδα τοῦ ἀταρακτήσειν : | ||
| ὡς ἐκ τῆς ἐπικρίσεως τούτων ἀταρακτήσοντες . συστάσεως δὲ τῆς σκεπτικῆς ἐστιν ἀρχὴ μάλιστα τὸ παντὶ λόγῳ λόγον ἴσον ἀντικεῖσθαι |
| ζῴων τὸν ἄνθρωπον λόγῳ τε καὶ μεταβατικῇ φαντασίᾳ καὶ ἐννοίᾳ ἀκολουθίας , ἀλλ ' οὔ τοί γε καὶ ἐν τοῖς | ||
| συνπλοκῆς ἢ διαζεύξεος ἢ αἰτίας ἢ συλλογισμοῦ ἢ ἀπορίας ἢ ἀκολουθίας ἢ τοῦ μὴ κε - χηνέναι τὴν σύνθεσις . |
| ἐλάχιστα ἀποστήματα λογισμούς , ἃ γίνεται περὶ τὰς τῶν ρκ περιοδικῶν μοιρῶν ἀπὸ τοῦ ἀπογείου διαστάσεις , ἡ μὲν τῆς | ||
| τὰ περὶ τὴν σελήνην ἐξετάζειν δεῖ : περί τε τῶν περιοδικῶν αὐτῆς χρόνων , τουτέστιν τῶν ἀποκαταστατικῶν κινήσεων ἐν ἔτεσιν |
| διαιροῦνται καὶ ποσαχῶς νοοῦνται : τίνα στοιχεῖα καὶ γένη τῆς μαθηματικῆς ἐπιστήμης , καὶ πῶς μὲν στοιχεῖα πῶς δὲ γένη | ||
| σχηματισμούς . Διὰ ταῦτα ἐκείνῃ μὲν οὐδέν τι δεῖ μεθόδου μαθηματικῆς , ἐνταῦθα δὲ τοῦτο μάλιστα προηγεῖται τὸ μέρος . |
| λέγῃ ἡ ἡδονὴ σπουδαία ἐστιν , εἰ μὲν πρὸς τὴν γεωμετρικὴν ἡδονὴν ἀποβλέψας φησίν , οὐ τὸ προκείμενον συνάγεται : | ||
| . διὰ τοῦτο τὸν Βρύσωνος τετραγωνισμὸν οὐκ ἄν τις εἴποι γεωμετρικὴν ἀπόδειξιν : χρῆται γὰρ ἀξιώματι ἀληθεῖ μὲν κοινῷ δέ |
| . ὅταν οὖν μάλιστα ἡ ☾ τῷ φωτὶ καὶ τοῖς ἀριθμοῖς ἀφαιρεῖ , ἔσονται διπλαῖ σημασίαι . καὶ οἱ πυρετοὶ | ||
| ☾ οὔσης ♑ κατακλιθῇ τις ἀφαιρούσης τῆς ☾ καὶ τοῖς ἀριθμοῖς καὶ τῷ φωτὶ ♄ συνόντος αὐτῇ , ἢ ☍ |
| ἐπὶ τὴν βαρυτάτην χρωματικὴν ἑκτημόριον , ἀπὸ δὲ τῆς βαρυτάτης χρωματικῆς ἐπὶ τὴν ἡμιόλιον δωδεκατημόριον τόνου . τὸ δὲ τεταρτημόριον | ||
| ἐναρμόνιος μὲν οὖν ἐστι παρυπάτη πᾶσα ἡ βαρυτέρα τῆς βαρυτάτης χρωματικῆς , χρωματικὴ δὲ καὶ διάτονος ἡ λοιπὴ πᾶσα μέχρι |
| ἐσπούδακε τῆς τε συμπλοκῆς τῶν φωνηέντων γραμμάτων καὶ τῆς κυκλικῆς εὐρυθμίας τῶν περιόδων καὶ τῆς ὁμοειδείας τῶν σχηματισμῶν , πολὺ | ||
| Δημοσθένει πλείονα ποιεῖσθαι πρόνοιαν τῆς ἀκριβείας τῶν κώλων ἢ τῆς εὐρυθμίας . τὰ δ ' αὐτὰ εἰρήσθω μοι καὶ περὶ |
| προνοίας εἴη ἂν λόγων οἰκειότερον καὶ θεολογικῆς θεωρίας ἐχόμενον : ἠθικὴ δὲ ἡ προκειμένη πραγματεία , καὶ ὅσον κατ ' | ||
| τῇ φρονήσει ἕπεται καὶ ἡ σωφροσύνη , ὅτι καὶ πᾶσα ἠθικὴ ἀρετή , ὁ δὲ σώφρων οὐ δύναται ἐγκρατὴς εἶναι |
| , τὸ δὲ μεῖζον ὑπὸ γῆν . Ἡ δ ' ἀνισότης τῶν τμημάτων τὴν αὐτὴν παραλλαγὴν ἔχει ἐπὶ πάντων τῶν | ||
| κεφαλὴν προωθούμενος . ἐν δὲ τοῖς ἀνάντεσιν ἡ τῶν ποδῶν ἀνισότης κατὰ τὴν ἀνωμαλότητα τὴν τῶν τόπων ἀπισοῖ τὸ σῶμα |
| ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
| βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
| τάξιν καὶ τὰ συμπτώματα παραδέδωκεν , αὐτὸς εὑρετὴς ὢν τῆς ἰδιότητος αὐτῶν πᾶσαν εὐθύγραμμον γωνίαν ἐτριχοτόμησεν . ἕτεροι δὲ ἐκ | ||
| : ἡ γὰρ ὁμοιότης κοινὴ μὲν κατὰ τὸ ὁλοσχερὲς τῆς ἰδιότητος , οὐχ ἡ αὐτὴ δὲ ὅμως , ἀλλ ' |
| πρόσεστι τούτοις τὸ λεῖον τῆς ἑρμηνείας καὶ τὸ ἀφελὲς τῆς κατασκευῆς , ὧν μάλιστα δεῖ τοῖς ὑπ ' οἰκείων προοιμιαζομένοις | ||
| εἰς ἃ προσήκει οὐ δυναμένης , κατάρχειν δὲ τῆς τοιαύτης κατασκευῆς δύναται καὶ τῆς ἀπ ' ἄκρων διατεινούσης ἐπὶ τὰ |
| μείζονες ἡγεμονίαι πρὸς αὑτάς . Νῦν δὲ καὶ περὶ τῶν διαστημάτων , ὧν ἀπ ' ἀλλήλων ἀφεστᾶσιν οἱ ὁπλῖται κατά | ||
| ' ἀμφοτέρας τὰς διαιρέσεις φαίνεται , τὰ δὲ μεγέθη τῶν διαστημάτων δῆλον ὅτι οὐ ταὐτὰ ἐν ἑκατέρᾳ τῶν διαιρέσεων . |
| . ἐπικὸν ἕν , μεθ ' ὃ τὰ τῆς δευτέρας περιόδου ὅμοια πέντε . ἐπὶ ταῖς ἀποθέσεσι παράγραφος . σύστημα | ||
| περιέχον λόγους Ϛ αʹ Περὶ τῆς σημασίας τοῦ κυρίου τῆς περιόδου βʹ Περὶ τοῦ περιπάτου τῶν οἴκων καὶ τοῦ περιπάτου |
| . Ἀλλά , φήσει τις , πῶς τοῦ ἑνὸς ἐγκειμένου ἔμφασις δευτέρου πληθυντικοῦ γίνεται ; πρόσκειται ὅτι τάξεως ὀνόματά ἐστινἄλλως | ||
| οὐκ ἀδίκημα μόνον τούτῳ πεπρᾶχθαι δοκεῖ . Κατὰ δὲ σχῆμα ἔμφασις γίνεται , ὅταν τις δεικτικοῖς χρῆται , οἷον οὗτος |
| τῷ κανόνι καταμετρήσεως ἐπιλογιζόμενοι τὸ τοιοῦτον , ἀλλὰ διά τινων σεληνιακῶν ἐκλείψεων . τὸ μὲν γὰρ πότε ἴσην ὑποτείνει γωνίαν | ||
| οὐδὲν διημάρτηται ἐν τῷ τὰς ἀποδείξεις τὰς διὰ τῶν Ϛ σεληνιακῶν ἐκλείψεων , τουτέστιν περί τε τὸν λόγον τῶν ξ |
| τοῦ διπλασίονος τοῦ τρίτου ὑπερέχουσι μο κ . Ὁ ἄρα διπλασίων τοῦ τρίτου ἔσται Ϟ β ↑ μο κ : | ||
| διπλασίου καὶ τοῦ τριπλασίου τῶν κατὰ τὸ ἑξῆς συντιθεμένων , διπλασίων μὲν αʹ βʹ δʹ ηʹ : δ ' ἐστὶ |
| , μάλιστα δὲ τῶν τῆς σελήνης , ἀπὸ τῶν αὐτῶν λαμβανομένων , τὰς κατὰ μῆκος αὐτῶν ἀκριβεῖς ἐποχὰς διακρινοῦμεν ἀπό | ||
| δύο προτάσεων δείκνυταί τι , λέγειν καὶ διὰ πλειόνων προσεχῶν λαμβανομένων καὶ μηδὲν ἄλλο ἀλλ ' ἢ τὸ προκείμενον συμπέρασμα |
| σύστασις αὐτῆς τῇ φυσικῇ γενέσει παραπλησίως καὶ τῆς τοῦ παντὸς ἁρμονίας τὴν εἰκὼ φέρει . Πάλιν τὸν αὐτὸν ἡμῖν θεὸν | ||
| καὶ στρέφων ὅλην διέφθορεν , ἐν ἑπτὰ χορδαῖς δώδεχ ' ἁρμονίας ἔχων . ἀλλ ' οὖν ἔμοιγε χοὖτος ἦν ἀποχρῶν |
| φεῦ φεῦ : ἡ ἔκθεσις τοῦ δράματος ἐκ συστηματικῶν ἐστι περιόδων . τὰ δὲ κῶλά ἐστιν ἀναπαιστικὰ κϚʹ . τὸ | ||
| τῶν περιόδων μιμοῖτο , ἐν ταῖς μεταποιήσεσι πλῆθος ἂν εὕροι περιόδων . καὶ γὰρ τὸ ἐκ παραβολῆς σχῆμα ἄριστον ὥσπερ |
| ἔπειτα δὲ οὐδὲ πάντα ἀπὸ τῶν αἰσθητῶν δύναται λαμβάνειν ἡ γεωμετρία : πολλὰ γὰρ σχήματα καὶ πάθη θεωρεῖ σχημάτων , | ||
| σχεδὸν δὲ αἱ αὐταὶ καὶ ἀκριβεῖς καὶ αὐτάρκεις , οἷον γεωμετρία καὶ ἀριθμητική : τῶν γὰρ τοιούτων καὶ ὥρισται τὰ |
| πρῶτον ἐπὶ τοῦ κυλίνδρου δεῖξαι , καὶ κείσθω ἡ αὐτὴ καταγραφὴ τῇ πρότερον , καὶ τῇ ΑΔ ἴση ἔστω ἡ | ||
| πʹ μοιρῶν μόνων , οὐδενὶ γὰρ ἀξιολόγῳ παρὰ τοῦτο ἡ καταγραφὴ διοίσει , κέντρῳ τῷ Λ καὶ διαστήμασι τοῖς Ζ |
| , μηδενὸς εὑρισκομένου κανόνος τῆς κατ ' ἀλήθειαν τῶν πραγμάτων ὑπάρξεως , ἢ ἀνάπαλιν ὡς προπετεῖς ἐλέγχεσθαι τοὺς σκεπτικοὺς καὶ | ||
| εἶναι : τὸ δὲ ἐπ ' ἴσης ὡς κέντρον ὂν ὑπάρξεως καὶ ἀνυπαρξίας : ἴσον γὰρ ἑκατέρας ἀπέχει . τὸ |
| μοι καὶ τὸ τοὺς θεοὺς μετὰ μούσης τινὸς ἐπικαλεῖσθαι καὶ μελῳδίας , οἷον ὕμνων τε καὶ αὐλῶν ἢ τῶν αἰγυπτιακῶν | ||
| παῖδες μήτε ἐπιθυμῶσιν ἄλλων μιμημάτων ἅπτεσθαι κατὰ ὀρχήσεις ἢ κατὰ μελῳδίας , μήτε τις αὐτοὺς πείσῃ προσάγων παντοίας ἡδονάς ; |
| πολλαπλάσιον καὶ ἐπιμόριον καὶ ἐπιμερὲς καὶ πολλαπλασιεπιμόριον καὶ πολλαπλασιεπιμερές , ὑπολόγων δὲ τῶν ἴσων μετὰ τῆς ὑπό προθέσεως ὀνομαζομένων . | ||
| τινα ἄλλον λόγον . διότι γὰρ ἰσάκις εἰσὶν ὑπερέχοντες τῶν ὑπολόγων οἱ πρόλογοι , διὰ τοῦτο καὶ ἐναλλὰξ ἀνάλογόν εἰσιν |
| : τοῖς γοῦν αὐτοῖς λόγοις οἱ ἄκροι τῆς μέσης καὶ παραμέσης ὑπερέχουσι καὶ ὑπερέχονται , ἐπιτρίτῳ καὶ ἡμιολίῳ . τοιαύτη | ||
| τῷ αὑτῆς ὑπερέχουσαν , τὴν δ ' ὑπάτην ὑπὸ τῆς παραμέσης ὑπερεχομένην ὁμοίως : ὡς γίγνεσθαι τὰς αὐτὰς ὑπεροχὰς τῶν |
| κοινὰ τοῖς εἴδεσιν : ὡς εἰ ἀφέλοι τις ἀπὸ τῆς διαιρετικῆς καὶ τῆς ἀναλυτικῆς τὸ πρὸς τοὺς ὁρισμοὺς ἀποβλέπειν καὶ | ||
| στοιχεῖα παραλαμβάνων . τῶν γὰρ λογικῶν ἁπασῶν μεθόδων ἴδιον , διαιρετικῆς λέγω καὶ ἀναλυτικῆς ὁριστικῆς τε καὶ ἀποδεικτικῆς , καθολικὰς |
| ὡμολόγηται , αὕτη δὲ οὔτε ἐκ γενικῆς οὔτε ἐξ εἰδικῆς ἀποδείξεως δύναται ἀποδειχθῆναι , δῆλον ὡς ἄλλου μηδενὸς εὑρισκομένου παρὰ | ||
| τῶν μὲν γὰρ ἀπὸ τῆς αἰτίας λαμβανομένων , οἳ τῆς ἀποδείξεως διαφέρουσι θέσει , καὶ τῶν ἀναποδείκτων θέσεων , οἷοί |
| ἡ μὲν φαινομένη μέση πάροδος καὶ τὸ πλεῖστον διάφορον τῆς ἀνωμαλίας ἔσται κατὰ τὰς σο μοίρας , ἡ δ ' | ||
| καὶ τῆς σελήνης ἀπεχούσης τοῦ ἀκριβοῦς ἀπογείου τὰς ὑποκειμένας τῆς ἀνωμαλίας μοίρας ρκ . Τὰ δὲ τοῦ ηʹ σελιδίου , |
| τοῦτ ' ἔστι κοινὴν ἔννοιαν : χαρακτηρίζει γὰρ τὴν αἵρεσιν συμφωνία μετὰ διαφωνίας , καὶ οὐκ ἐν τοῖς τυχοῦσιν ἀνθρώποις | ||
| ὑπ ' αὐτῶν λόγον . καθόλου γὰρ ἡ διὰ πασῶν συμφωνία , τῶν ποιούντων αὐτὴν φθόγγων ἀδιαφορούντων κατὰ τὴν δύναμιν |
| τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
| λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
| ἐξετάζων κατὰ θεωρίαν δείξει δηλαδή : ἀλλ ' ἥ γε διαίρεσις ἀπαιτεῖ , θαυμαστὸν δὲ οὐδέν , εἰ παρεῖται , | ||
| . Τάχα δ ' ἐκείνη πρός γε τὰ νῦν ἡ διαίρεσις ὅτι τὴν πέψιν τιθέμεθα χρώμασι καὶ χυλοῖς καὶ πυκνότητι |
| ἑπτακαιεικοσαπλασίας : ἐν γὰρ ταύταις ταῖς ποσότησιν ἡ τῶν δύο μεσοτήτων ἐνορᾶται φύσις πρώταις ἐλαχίσταις ἥ τε τοῦ ἀνὰ μέσον | ||
| τῇ ἀριθμητικῇ μεσότης οὐκ ἀλόγως προηγήσεται τῶν ἐν ἐκείναις ὁμωνύμων μεσοτήτων , γεωμετρικῆς τε καὶ ἁρμονικῆς : τῶν γὰρ ὑπεναντίων |
| οὐ γεννᾶι οὔτε γεννᾶται ὑπ ' ἄλλου ἀριθμοῦ πλὴν ὑπὸ μονάδος : διὸ καὶ καλεῖται ὑπὸ τῶν Πυθαγορείων παρθένος ἀμήτωρ | ||
| ιη , καὶ α καὶ ιθ . ἐπὶ μέντοι τῆς μονάδος οὐκέτι τοῦτο , ἀλλὰ τοῦ μὲν μετ ' αὐτὴν |
| ἴσαις ἀνθεῖν καὶ τελειοῦσθαι : τὰ δ ' ἄλλα ἐν ἐλάττοσιν : ἐλαχίσταις δὲ ὁ ἐρέβινθος , εἴπερ ἀπὸ τῆς | ||
| καὶ ἄλλοις ὑπ ' ἄλλων εἰσὶν ἴδιαι καθάπερ ἐν τοῖς ἐλάττοσιν : καὶ γὰρ ἡ ὀροβάγχη καλουμένη φθείρει τὸν ὄροβον |
| ] ⌈ κϘʹ . / [ εἰκοστὴ ἕκτη . ] τετρὰς ] ⌈ κζʹ . / [ εἰκοστὴ ζʹ . | ||
| , οὕτω καὶ ἡ τοῦ μεγίστου παρὰ τὸν μέσον διαφορὰ τετρὰς οὖσα πρὸς τὴν τοῦ μέσου παρὰ τὸν ἐλάχιστον δυάδα |
| ρκ , καὶ αὐτῆς τῆς σελήνης ἐν ἀρχῇ τοῦ Ταύρου ὑποκειμένης πρὸς ἀνατολὰς ἀπέχειν τοῦ μεσημβρινοῦ ὥρας ἰσημερινὰς δ . | ||
| ἐνεπετάννυντο . μετὰ δὲ τοῦτο αἴθριον ἐξεδέχετο τὴν ἐπάνω τῆς ὑποκειμένης προστάδος τάξιν κατέχον : ᾧ κλῖμάξ τε ἑλικτὴ φέρουσα |
| δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον | ||
| , ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ |
| καὶ τρίτου μὴ μετρῇ , ἀδύνατος ἡ τοῦ τετάρτου ἀνάλογον εὕρεσις , εἰ δὲ μετρεῖ , δυνατή . καὶ ἐὰν | ||
| μόνῳ τούτῳ τῷ μέρει τοῦ λόγου εὑρίσκονται : ἡ μέντοι εὕρεσις ἐν παντὶ μέρει λόγου : καὶ γὰρ ἐν τοῖς |
| ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
| ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
| . . . . Παρμενίδης δὲ οὐκ ἂν δόξαι τῆς διαλεκτικῆς ἀπείρως ἔχειν , ἐπείπερ πάλιν Ἀριστοτέλης τὸν γνώριμον αὐτοῦ | ||
| τὰ τοιαῦτα ἄττα ἀτεχνῶς σκοτεινὰ καὶ λοξὰ ῥήματα τῆς Ἀριστοτέλους διαλεκτικῆς , τούτῳ δὲ οὐχ ἕξετε προσενεγκεῖν τι βασανιστήριον οὐδὲ |
| προειρημένην τῆς τριάδος τελειότητα ἢ καὶ διὰ τὸ τρία γένη σκεμμάτων εἶναι , δι ' ὧν ὁ κατὰ φιλοσοφίαν λόγος | ||
| τάδε : Λογικοῦ τόπου Θέσεις λογικαί , Τῶν τοῦ φιλοσόφου σκεμμάτων , Ὅρων διαλεκτικῶν πρὸς Μητρόδωρον Ϛʹ , Περὶ τῶν |
| ' ὅτι οἱ σοφισταὶ ἐλέγχουσι τοὺς ἀμαθεῖς καὶ ἀπείρους τῆς συλλογιστικῆς πραγματείας . ἐν δὲ τῷ τέλει τοῦ πρώτου τμήματος | ||
| κατωρθωκὼς ἂν εἴη τὸ προκείμενον , τουτέστιν ἐπιστήμων ἔσται τῆς συλλογιστικῆς μεθόδου , ὡς ἂν μὴ ἀρκοῦντος τοῦ μόνον εἰδέναι |
| τήρησιν παραλλάξεως διὰ τοῦ παραλλακτικοῦ ὀργάνου δοθείσης μοίρας α καὶ ἑξηκοστῶν ζ , τὸ κατ ' αὐτὴν τὴν τήρησιν τῆς | ||
| καὶ ἐπεὶ ταῖς τοσαύταις ὥραις ἐπιβάλλει κατὰ μῆκος παραλλάξεως ἕως ἑξηκοστῶν μη ἔγγιστα δῆλον ὡς ἂν μηδὲν μὲν διαλαμ - |
| τὰς δύο βραχείας ἴσον τι ἔχει . κατὰ δάκτυλον δὲ ῥυθμός ἐστιν ὁ ἐν ἴσῳ λόγῳ . ὁ δὲ ἐνόπλιος | ||
| πρῶτος , εἶπεν , ἐκληρώθην . ἀντὶ τοῦ ἐξιέναι . ῥυθμός ἐστι Κρητικός . γαλῆ εἶδος ἰχθύος . ἀπὸ τῶν |
| οὔτε ἐλάσσων ; κατασκευάζει τοῦτο διὰ τοῦ βʹ τρόπου τῶν ὑποθετικῶν , ὅτι , εἴ ἐστιν ἡ ΒΑΓ γωνία ἴση | ||
| ἂν εἴη μόνον . Εἰπόντες δὲ περὶ τῶν ἐξ ὁμολογίας ὑποθετικῶν καὶ δείξαντες , ὅτι μὴ γίνεται τοῦ τιθεμένου , |
| κλέπτην καὶ δωροδοκούμενον . Δώριος δὲ οὕτω καλεῖται μία τῶν ἁρμονιῶν , ὡς καὶ Λύδιος καὶ Φρύγιος καὶ Βοιώτιος . | ||
| ὑπὸ Δάμωνος εὑρῆσθαί φασι τοῦ Ἀθηναίου . Τούτων δὴ τῶν ἁρμονιῶν τῆς μὲν θρηνῳδικῆς τινος οὔσης , τῆς δ ' |
| , ὄρθιον δὲ ὅ τι περ ἂν τὸ βάθος τοῦ μήκους . λοξὴ δὲ ὀνομάζεται φάλαγξ ἡ τὸ μὲν ἕτερον | ||
| εἰς ἀσάφειαν προάγομεν τὸν λόγον ἢ διὰ τὸ σαφῶς εἰπεῖν μήκους δεόμεθα . χρὴ τοίνυν τὴν συντομίαν σκοπεῖν , εἰ |
| ἐν θεοῖς ὁλοτελής ἐστι , πάντα ἐν ἑαυτῇ καὶ αὐτὴ περιέχουσα κατὰ τὸ ἑαυτῆς ἰδίωμα . Ἡ μὲν γὰρ ἐν | ||
| ἀριθμόν : ἡ γὰρ ὑστάτη τελειότης αὐτὸς ἦν ἡ πᾶν περιέχουσα ἐν ἑαυτῇ . τοῦ δὲ κενοῦ παράδειγμα μὲν ἐν |
| ὅπερ ἔδει δεῖξαι . Ἐὰν χωρίον περιέχηται ὑπὸ ῥητῆς καὶ ἀποτομῆς πέμπτης , ἡ τὸ χωρίον δυναμένη [ ἡ ] | ||
| ἐστι καὶ μέσης ἀποτομὴ δευτέρα , καὶ τὸ ἀπὸ μέσης ἀποτομῆς δευτέρας παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ ἀποτομήν : ὅπερ |
| ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
| καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
| , αἷς καὶ τοῦ οὐρανοῦ περιφοραὶ συνυπάρχουσι , πῶς ἔχουσι συμμετρίας καὶ κατὰ τίνας ἀριθμούς , καὶ διὰ τί συναρμόζουσι | ||
| τῆς ἀξίας φυλάττει τοὺς ὅρους καὶ κρατοῦντος αὐτοῦ διχόθεν ἐκπίπτει συμμετρίας ὁ γάμος οὔτε τῶν δεομένων οὔτε τῶν εὐπόρων ἀγομένων |