| τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
| τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
| οὐ γεννᾶι οὔτε γεννᾶται ὑπ ' ἄλλου ἀριθμοῦ πλὴν ὑπὸ μονάδος : διὸ καὶ καλεῖται ὑπὸ τῶν Πυθαγορείων παρθένος ἀμήτωρ | ||
| ιη , καὶ α καὶ ιθ . ἐπὶ μέντοι τῆς μονάδος οὐκέτι τοῦτο , ἀλλὰ τοῦ μὲν μετ ' αὐτὴν |
| τὸ ἕν , ἀπὸ δὲ τῆς μονάδος καὶ τῆς ἀορίστου δυάδος τὰ δύο . δὶς γὰρ τὸ ἓν δύο , | ||
| αὐτὴν καλοῦσι καὶ πανδοχέα γε , ὡς παρεκτικὴν οὖσαν καὶ δυάδος τῆς κυρίως ὕλης καὶ πάντων χωρητικὴν λόγων , εἴ |
| , ταύτην προτάττει , ἐπείπερ ἀπὸ μονάδος συντιθέντες μέχρι τῆς τετράδος πρώτως τὸν δέκα ἀριθμὸν ποιοῦμεν , οἷον ἓν δύο | ||
| ἄλλων θεῶν ἁψόμεθα συνουσιῶν ἐν τούτῳ δὴ τῷ μηνὶ τῆς τετράδος τὰ πρῶτα δεχομένης . Ἦλθον αὖθις ἡμῖν ἐπιστολαὶ παρ |
| Ἀλλ ' εἰ εἰδοποιήσει αὐτὸ ὥσπερ ὕλην καὶ ἔσται παρουσίᾳ δεκάδος δέκα καὶ δεκάς , δεῖ πρότερον ἐφ ' ἑαυτῆς | ||
| ἔχει πρότερον ἔχων , ἀποβέβληκεν , αὐτὸ δηλαδὴ τὸ τῆς δεκάδος εἶδος : ὅσα δὲ μὴ ἔχει ᾗ ὅσα , |
| τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
| πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
| καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
| τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
| πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος | ||
| . Καὶ μὴν εἰς δύο διαιρουμένων ἴσα , τοῦ μὲν περισσοῦ μονὰς ἐν μέσῳ περίεστι , τοῦ δὲ ἀρτίου κενὴ |
| εἰσιν , ἀμφότεροι γραμματικοὶ ὀνομάζονται , καθὸ ὑπέκειτο μέν τις δυὰς ἡ διὰ τοῦ ἀμφότεροι , τὸ δ ' ἐπιγεγενημένον | ||
| δὲ τὰ ἀναρίθμητα . Μονὰς ἀπὸ τοῦ μένω μονὰς , δυὰς ἀπὸ τοῦ δύω τὸ ὑπεισέρχομαι , τριὰς ἀπὸ τοῦ |
| ὕστερον δὲ γλαφυρώτατα δείξει ὅτι καὶ ἡ ἰσότης προτέρα τῆς ἀνισότητος . δείκνυσιν οὖν ὅτι τὸ πολλαπλάσιον πρῶτόν ἐστι τῶν | ||
| πόλοι ἐπὶ τοῦ ὁρίζοντος πίπτουσιν , ἀναιρουμένου τοῦ αἰτίου τῆς ἀνισότητος τῶν ἡμερῶν , τοῦτο δὲ ἦν τὸ ἔγκλιμα , |
| ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
| τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
| δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον | ||
| , ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ |
| καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους , | ||
| δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα |
| οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
| πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
| ἀιδίοις ἀπολείπουσιν οἱ ἄνδρες , οἷον τὸ τῆς ὁμοιότητος ἢ ἰσότητος ἢ ταυτότητος εἶδος , οὗ μετέχει μὲν καὶ ὁ | ||
| Τῷ δὴ ἑνὶ μὴ ὄντι , ὡς ἔοικε , καὶ ἰσότητος ἂν μετείη καὶ μεγέθους καὶ σμικρότητος . Ἔοικεν . |
| ἐκ δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω | ||
| καὶ ὀκτάδος οὐκ ἔσται ῥυθμός : οὐ γὰρ ἔρρυθμος ὁ τετραπλασίων λόγος , ὥστ ' οὐδὲ ὁ δεκάσημος ἔσται ἐκ |
| ] ⌈ κϘʹ . / [ εἰκοστὴ ἕκτη . ] τετρὰς ] ⌈ κζʹ . / [ εἰκοστὴ ζʹ . | ||
| , οὕτω καὶ ἡ τοῦ μεγίστου παρὰ τὸν μέσον διαφορὰ τετρὰς οὖσα πρὸς τὴν τοῦ μέσου παρὰ τὸν ἐλάχιστον δυάδα |
| στερεῶν σωμάτων λόγοι δῆλοι , ἐπεὶ καὶ ὁ τοῦ αʹ κύβος τοῦ αὐτοῦ ἐστιν αʹ , ὁ δ ' ἀπὸ | ||
| οἱ ἕνα διαλείποντες πάντες , ὁ δὲ τέταρτος ὁ Γ κύβος καὶ οἱ δύο διαλείποντες πάντες , ὁ δὲ ἕβδομος |
| τῶν δέκα πληρώσει ἀριθμόν : ὥστε ὁ ἀριθμὸς κατὰ μὲν μονάδα ἐν τοῖς δέκα κατὰ δὲ δύναμιν ἐν τοῖς τέσσαρσι | ||
| εὑρίσκεται ἔχων ὁλοκλήρως τὰς δ μονάδας καὶ ἐπέκεινα τούτων μίαν μονάδα , ἥ ἐστιν τῶν δ δʹ , καὶ διὰ |
| , καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
| ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
| σῴαν ἔχων τὴν φρόνησιν καὶ ταῖς ἀρεταῖς ἁπάσαις κοσμούμενος , εἰδικῶς δ ' ἂν λέγοιτο σώφρων ὁ τοῖς κατὰ γεῦσιν | ||
| ἐπὸς γάρ ἐστιν ἀπὸ τοῦ ἐπεῖναι κατὰ τὴν ἀποτομήν . εἰδικῶς μέντοι Ὅμηρος οἶδεν ὀπόν τινα λεγόμενον , ὡς ὅταν |
| τοιούτῳ ἀναπλασσομένῳ Ἑρμῇ . ἐπεὶ δὲ μονάδος ἀνὰ μέσον καὶ ἑβδομάδος κυβικῶν χωρίων κυβικὸς ὁ δʹ , εἰκότως , κρισίμου | ||
| λοιπάζονται πρὸς τὸ ἕβδομον ἀριθμόν εἰσιν ἀπὸ τῶν ἡμερῶν τῆς ἑβδομάδος . ἔπειτα ἵνα ἐπιδώσεις ἑνὶ ἑκάστῳ ἀστέρι μίαν περίοδον |
| , καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν , | ||
| ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ |
| , ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
| λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
| ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
| σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
| ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
| ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
| τετράκις δʹ ιϚʹ . οἱ μὲν οὖν τετράγωνοι πάντες τοὺς ἑτερομήκεις περιλαμβάνουσι κατὰ τὴν γεωμετρικὴν ἀναλογίαν καὶ μέσους αὐτοὺς ποιοῦσι | ||
| πρὸς ἑαυτοὺς διαφορὰς τοὺς περισσοὺς μόνον ἔχουσιν , οἱ δὲ ἑτερομήκεις τοὺς ἀρτίους : ἂν δὲ καὶ τὸν πρῶτον ἑτερομήκη |
| β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
| β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
| ἀποδείκνυσι λόγον . ἐπεὶ οὖν κατὰ Πυθαγόραν τὸν Σάμιον ἡ τριὰς εἰς γάμον συνελθοῦσα τῇ τετράδι ἀπεγέννησε τὴν ἑβδομάδα καὶ | ||
| τῷ τέλει τῆς στροφῆς καὶ ἀντιστροφῆς παράγραφος . ἔστι δὲ τριὰς ἐπῳδική . ἥκω σεβίζων ] αἱ ἑξῆς αὗται συστημάτων |
| καὶ ψυχρῶν καὶ ξηρῶν καὶ ὑγρῶν ἀντιλαμβάνεται , καὶ ἔστι πεντὰς αὕτη συζυγιῶν ἀνώνυμος ἑνὶ καθάπερ εἶπον ὀνόματι . οὐ | ||
| ἀριθμητικὴν ἀναλογίαν , ὡς δηλοῖ τὸ διάγραμμα . ὅτι ἡ πεντὰς πρώτη μεσότητος τῆς ἀρίστης καὶ φυσικωτάτης ἐμφαντικὴ κατὰ διάζευξιν |
| ἰδέα οὐδέποτε ἥξει . Οὐ δῆτα . Ἄμοιρα δὴ τοῦ ἀρτίου τὰ τρία . Ἄμοιρα . Ἀνάρτιος ἄρα ἡ τριάς | ||
| τοιούτοις . ἔοικε γὰρ ὁ γεωμέτρης πάντα ἀριθμὸν τὸν ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενον κατὰ ἄρτιον ἀριθμὸν ἀρτιάκις ἄρτιον ὀνομάζειν , |
| ἐκ τἀγαθοῦ τοῖς πᾶσιν ἐφήκουσαν ἕνωσιν καὶ διὰ τὴν τῆς ταυτότητος ἐν τοῖς ἀύλοις εἴδεσιν ἐπικράτειαν . ἀλλ ' οὗτος | ||
| τῷ ἀνθρώπῳ τὸ μουσικόν . καὶ τὰ τοιαῦτα φύσει τῆς ταυτότητος μετέχουσιν , ἤγουν τῷ εἶναι : τὸ δὲ μουσικὸν |
| περιττοῖς κζʹ . ἐν τούτοις τοῖς ἀριθμοῖς οἱ τελειότεροι τῶν συμφωνιῶν εὑρίσκονται λόγοι : συμπεριείληπται δὲ αὐτοῖς καὶ ὁ τόνος | ||
| διὰ πασῶν συγκεῖσθαι συμβέβηκεν ἐκ δύο τῶν ἐφεξῆς καὶ πρώτων συμφωνιῶν , τῆς τε διὰ πέντε καὶ τῆς διὰ τεσσάρων |
| μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
| ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
| οὖν ἐν τῷ Γοργίᾳ κατὰ διοριστικὴν ἔφοδον τοιοῦτον ἔοικεν ἐξ ἐπισυνθέσεως ὅρον τῆς ῥητορικῆς ἀποδιδόναι ῥητορική ἐστι πειθοῦς δημιουργὸς διὰ | ||
| ἐφεξῆς γνώμονος προστιθεμένου : καὶ εἶεν ἂν οἱ ἐκ τῆς ἐπισυνθέσεως ἀπογεννώμενοι τρίγωνοι οἵδε : γʹ Ϛʹ ιʹ ιεʹ καʹ |
| ιʹ τῷ προκειμένῳ ἀριθμῷ . ἐὰν κατὰ τὰ μέσα ἡσδηποτοῦν ἑξάδος ὡς ἐπὶ τῆς δευτέρας δεδήλωται ἀπαρτηθῇ ὁ τριακοστὸς ἀριθμός | ||
| Διὸς ἀνατέλλοντος ἐν ταῖς μοίραις πλησίον : ἀπὸ δ ' ἑξάδος εἰκοστῆς καὶ μέχρι τριαντάδος ὁ Κρόνος ἐπαρέλαβεν , εἰ |
| ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
| βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
| Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ , | ||
| γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι |
| διαλαβεῖν : κοινὸν γὰρ τοῦτο τὸ βιβλίον γεωμετρίας τε καὶ ἀριθμητικῆς καὶ μουσικῆς καὶ πάσης ἁπλῶς τῆς μαθηματικῆς ἐπιστήμης . | ||
| Ϛʹ τοῦ εʹ : κοινὸν τὸ θεώρημα γεωμετρικῆς ἀναλογίας καὶ ἀριθμητικῆς . Ἐν τῷ λόγῳ ἄρα εἰσὶ τῆς ἀριθμητικῆς ἀναλογίας |
| ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος , | ||
| δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , |
| οἳ ἐδόκουν λέγειν ἀριθμοὺς ἐκ τοῦ ἀνάλογον , οἷον δικαιοσύνην τετράδα καὶ ἄλλον ἄλλως : ἐκείνως δὲ μᾶλλον τῷ πλήθει | ||
| δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς εὑρήσεις τοῦτο . μετέχει |
| μὲν ταυτότητος διὰ τὸ μονάδι ὁμογενὲς εἶναι , ἄρτιον δὲ ἑτερότητος διὰ τὸ δυάδι . καὶ ἔτι ἐκδηλότερον , τετράγωνον | ||
| τοῖς συνοικοῦσιν ἐν τοῖς ἐνύλως τὸ εἶναι ἔχουσιν ἐπικρατούσης τῆς ἑτερότητος . οὐ γὰρ ἑαυτοῦ δεῖ μόνου φροντίζειν ὡς ἔχῃ |
| ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
| καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
| γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν | ||
| τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον |
| μέχρι τετάρτου συμφώνου : πρῶτον γὰρ ἐν αὐτῷ τὸ διὰ τεσσάρων , δεύτερον τὸ διὰ πέντε , τρίτον τὸ διὰ | ||
| πασῶν σύστημα ἠλέγχετο , ἤτοι τῆς διὰ πέντε καὶ διὰ τεσσάρων ἐν συναφῇ , ὡς ὁ διπλάσιος λόγος ἡμιολίου τε |
| ἀλλήλων διαφέροντες , διπλάσιοι ἄρτιοι περισσῶν , ἐπίπλαστος περισσάρτιοι εὔτακτοι εὐτάκτων . εἶτ ' ἀπ ' ἄλλης ἀρχῆς οἱ αὐτῶν | ||
| δὲ ἐπὶ τούτοις γενήσονται καθεξῆς προσσωρευομένων τῶν κατὰ τριάδος ὑπεροχὴν εὐτάκτων μετὰ τὴν ἑβδομάδα ὄντων , οἷον τοῦ ι , |
| κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
| μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
| φαίνεται . Ἀκμάσαντος δὲ τοῦ θέρους μείω μὲν τῷ ἐξ ἀναλογίας ποσῷ τὰ χύματα καὶ πρὸς τὸ πυρρὸν ἤδη καὶ | ||
| σοφῶν ἀνδρῶν παντέλεια , περιέχει δ ' ἐν αὑτῇ τὰς ἀναλογίας πάσας , τήν τε ἀριθμητικὴν καὶ τὴν ἁρμονικὴν καὶ |
| ἥδε . Τῶν μερῶν τοῦ λόγου ἃ μὲν μετασχηματίζεται εἰς ἀριθμοὺς καὶ πτώσεις , ὡς τὸ ὄνομα καὶ τὰ ἄλλα | ||
| αὐτὰ ἄτοπα συμβαίνει καὶ εἴ τινες τῶν παρ ' ἡμῖν ἀριθμοὺς ὡς ἐπὶ τοῦ κροκοδείλου λαμβάνουσι τὴν ἑξηκοντάδα ὡς οἰκείαν |
| ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ | ||
| ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν |
| , ὅση δὲ ἐναντία , σμικράν . τὰ δὲ περὶ συμφωνίας αὐτῶν ἐν τοῖς ὕστερον λεχθησομένοις ἀνάγκη ῥηθῆναι . Τέταρτον | ||
| σύμπηξις , θάτερον δὲ θατέρου ὂν διάφορον κατ ' οἰκονομίαν συμφωνίας ἐστὶν ἁρμονία : παραπλησίως καὶ ὁ κόσμος κατὰ τὴν |
| δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία | ||
| χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ |
| τὰ τρία εἴδη ἄρτια καλοῦνται , καὶ γὰρ ὁ ἀρτιάκις ἄρτιος , ὁ ἀρτιοπέριττος καὶ ὁ περισσάρτιος . συμβέβηκε δὲ | ||
| εἶναι ἀριθμόν ; διότι πᾶς ἀριθμὸς ἢ περιττός ἐστιν ἢ ἄρτιος . καὶ πᾶς ἄρτιος δύναται εἶναι , ἡ δὲ |
| ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος | ||
| ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς |
| δὲ οὕτως ὥστε ἵστασθαι μέχρι τοῦ γένους . οἷον τῇ τριάδι ὑπάρχει μὲν [ ἀριθμὸς καὶ ] τὸ ὄν , | ||
| ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ ἐπιμόριοι ἀφ ' ἡμιολίου ἀρχόμενοι |
| κλιμακτηρίζει . μεταβαίνω ἐπὶ τὴν πεντάδα : χρηματίζει δὲ τῆς πεντάδος ἡ Σελήνη καὶ Κρόνος καὶ εὑρίσκονται οὗτοι ἀλλήλοις ἀποκαθιστανόμενοι | ||
| καὶ αὐτῶν ὁμοκαταλήκτων ὄντων , ὡς ὁ ρκεʹ ἀπὸ πλευρᾶς πεντάδος ὢν καὶ ὁ σιϚʹ ἀπὸ πλευρᾶς ἑξάδος . κἂν |
| . εἴπωμεν λοιπὸν περὶ τῆς μουσικῆς ὅ ἐστι περὶ τῆς ἁρμονικῆς ἀναλογίας . ἰστέον ὅτι ἐν τῇ γεωμετρικῇ ἡ ὑπεροχὴ | ||
| . Εἶτα διὰ τριῶν παραδειγμάτων , ἰατρικῆς , ποιητικῆς , ἁρμονικῆς , βούλεται ἀναιρεῖν τὰ λεγόμενα καὶ δεῖξαι ὅτι τὰ |
| ἡ δὲ λοιπὴ μικτὴ σχέσις ἡ πολλαπλασιεπιμερὴς γεννᾶται ἐκ τῆς ἐπιμεροῦς , καὶ ἐκ μὲν τῆς ἐπιδιμεροῦς ἢ δὶς ἐπιτρίτου | ||
| τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , ὧν ἕκαστον |
| οἰκεῖον τῇ τετράδι . ἡ γὰρ πρώτη πυραμὶς ἐν τῇ τετράδι θεωρεῖται , τριγώνου μὲν βάσεως ὑποτεθείσης τοῦ τρία , | ||
| τὸ ὑπὸ τῶν ἄκρων ἔλαττόν ἐστι τοῦ ἀπὸ τοῦ μέσου τετράδι . διὰ τί τετράδι ; ἐπειδὴ καὶ ἡ ὑπεροχὴ |
| ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
| δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
| ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου | ||
| : ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον |
| ἁπλῆ τίς ἐστι κατηγορία , ἡ δὲ τῶν πρός τι σύνθετος , ῥᾷον δὲ τὰ ἁπλᾶ μανθάνομεν τῶν πολυσχεδῶν ; | ||
| καὶ ὁ τῇδε ἵππος ἐκ τῶν τῇδε φύσεων ἀνομοίων οὐσῶν σύνθετος ᾖ . πάντα γὰρ ταῦτα κωμῳδοῦντός ἐστι μᾶλλον ἢ |
| μηκέτι μὲν καμπτῆρι , ὕσπληγι δὲ χρησαίμεθα καὶ ἀρχῇ τῆς προόδου μέχρις ἑκατοντάδος , ἀφ ' ἧς πάλιν ἡ ἐπάνοδος | ||
| : ἀλλὰ τί αὐτοῦ οἷον εἴδωλον , ὃ καὶ τῆς προόδου χεῖρον φανεῖται ; ἀλλ ' οὐδὲν ὀρέγεται τοῦ εἰδώλου |
| τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
| . Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
| ὢν πολλαπλάσιός ἐστιν ἁπλῶς , ὁ δὲ ι τοῦ δ διπλασιεφήμισυς ὢν ἐπιδιμερής ἐστιν αὐτοῦ , τὸ δὲ ἐπιδιμερὲς τοῦ | ||
| τῇ μικτῇ σχέσει . ἐπεὶ γὰρ ἡμιόλιος ἡ γεννῶσα σχέσις διπλασιεφήμισυς ἡ γεννωμένη , ἐπεὶ δὲ ἐπίτριτος διπλασιεπίτριτος , καὶ |
| τὸν κζ λόγον , ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμὸν τετραγώνων ἀμφοτέρων ὄντων καὶ τοῦ λϚ καὶ τοῦ κζ ; | ||
| τῆς ΑΓ ἔλαττόν ἐστι τῶν ἀπὸ τῶν ΓΒ , ΒΑ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΒ , ΒΔ περιεχομένῳ ὀρθογωνίῳ |
| εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
| λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
| δὲ ἡ μονὰς κατὰ τὸν ἕνα θεόν : πᾶς γὰρ ἀριθμὸς νεώτερος κόσμου , ὡς καὶ χρόνος , ὁ δὲ | ||
| γὰρ ἄλλα πάντα τὸν ἀριθμὸν φαίνεται μιμούμενα , ὁ δὲ ἀριθμὸς παρ ' ἑαυτοῦ ἀρχὰς μονάδα καὶ δυάδα . ὡς |
| δ ' ἡ Θρᾴκη σύμπασα ἐκ δυεῖν καὶ εἴκοσιν ἐθνῶν συνεστῶσα : δύναται δὲ στέλλειν καίπερ οὖσα περισσῶς ἐκπεπονημένη μυρίους | ||
| συναλείφουσα τὰ δύο συλλαβή , ἐξ ἀφώνου τε καὶ δυεῖν συνεστῶσα φωνηέντων : εἰ γοῦν τις αὐτῆς ἀφέλοι τὸ τ |
| ' ὧν τὰ Β στερεὸς ἴσος ἐστὶν τῷ διὰ τῶν ἑκατοντάδων στερεῷ ἐπὶ τὸν ἐκ τῶν πυθμένων στερεόν , τουτέστιν | ||
| καὶ τεσσαράκοντα γίνονται ἑκατόν , ὁμοίως δὲ καὶ χιλιάδα ἐξ ἑκατοντάδων καὶ μυριάδα ἐκ χιλιάδων , μονὰς δὲ καὶ δεκὰς |
| δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
| καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
| διὰ δʹ οὐκ ἀποκαθίσταται οὐδενί . ἑξῆς ἐπὶ τὸν τῆς ἐννεάδος κλιμακτῆρα : κυριεύσουσι δὲ τῆς ἐννεάδος Ἥλιος Ἄρης Ἑρμῆς | ||
| δεκάδος ἀξιοῦν ἀφαιρεῖσθαι μονάδα . καὶ μὴν ἀπὸ τῆς περιλειπομένης ἐννεάδος οὐκ ἂν εἴποιμεν ταύτην ἀφαιρεῖσθαι . εἰ γὰρ ἀπὸ |
| , τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ | ||
| τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ |
| ἡ δεῖξις προβήσεται . Ἔστωσαν μείζονες αἱ ρ μο λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν | ||
| ἄπειρον αὐτὸν οὐ τῷ ἀδιεξιτήτῳ ἢ τοῦ μεγέθους ἢ τοῦ ἀριθμοῦ , ἀλλὰ τῷ ἀπεριλήπτῳ τῆς δυνάμεως . Ὅταν γὰρ |
| τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
| ٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
| αὐξανομένη . πάλιν γὰρ μεταξὺ τοῦ Ϛ καὶ τοῦ ιβ ἑτερομηκῶν ὄντων ἀπόθου τὸν θ τετράγωνον : καὶ ἡ ὑπεροχὴ | ||
| ἡ διαγώνιος ἔσται μόνων τετραγώνων , ἑκάστου παρασπιζομένου ὑπὸ δύο ἑτερομηκῶν κατά τε μῆκος καὶ πλάτος , ὡς κἀνταῦθα σῴζεσθαι |
| . Τὸ δέ γε τοιοῦτον ἐκ πολλῶν μερῶν ὂν οὐ συμφωνήσει τῷ [ ὅλῳ ] λόγῳ . Μανθάνω . Πότερον | ||
| καὶ φανερὸν ὡς καθ ' ἑκατέραν τὴν ὑπόθεσιν τὰ αὐτὰ συμφωνήσει μέγιστα καὶ πάλιν ἐλάχιστα καὶ μέσα εἶναι ἀποστήματα . |
| ἴσον καὶ μεμετρημένον ὀργυιᾷ . * περιβάλλεται : εἰκάζεται , μετρεῖται ἔχει εἰκάζεται * ὅσσον : πλάτος αἰγανέη δὲ τὸ | ||
| ἀπὸ τῆς πυγμῆς : ἐπεὶ μὴ ὥσπερ ὁ πῆχυς προτεταμένους μετρεῖται δακτύλους , οὕτω καὶ ὁ πυγὼν , ἀλλὰ συνεστρωμμένη |
| τοῦ ἀπὸ τῆς ΑΜ κύβου πρὸς τὸν ἀπὸ τῆς ΜΗ κύβον . ἀλλ ' ὡς μὲν ἡ ΓΜ πρὸς ΜΗ | ||
| προσδήσαντες εἶτα μέντοι ἀπαλλάττονται , τοῦτο δήπου τὸ λεγόμενον ἀτεχνῶς κύβον ἀναρρίψαντες . οἱ δὲ τίγρεις ἐντυχόντες αὐταῖς , ἀθηρίᾳ |
| καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
| δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
| τις ἑνάς , ὥσπερ ἐν χορῷ , ἀλλ ' ἡ δεκὰς αὕτη τῶν ἀνθρώπων ἐν σοὶ τῷ ἀριθμοῦντι τὴν ὑπόστασιν | ||
| ὁ μὲν δʹ , ὁ δὲ θʹ . ἡ μέντοι δεκὰς πάντα περαίνει τὸν ἀριθμόν , ἐμπεριέχουσα πᾶσαν φύσιν ἐντὸς |
| τὸ πρῶτον αʹ . ὁ δ ' ὑπ ' αὐτὸν ἑπτάγωνος ὁ ιηʹ ἐκ τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ ιεʹ | ||
| τρίγωνον τὸν γʹ . ὁ δ ' ὑπ ' αὐτὸν ἑπτάγωνος ὁ λδʹ σύστημά ἐστι τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ |
| λόγον , ἡμιόλιον τυχὸν ἢ ἐπίτριτον ἢ ἄλλον τινὰ τῶν ἐπιμορίων ἢ τῶν ἐπιμερῶν , τὰ μὲν ἀπ ' αὐτῶν | ||
| . ἐκ τούτων πάλιν κατὰ ἀναστροφὴν γίνονται τὰ εἴδη τῶν ἐπιμορίων : οἷόν ἐστι πρῶτον εἶδος τῶν πολλαπλασίων τὸ διπλάσιον |
| τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν | ||
| τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται |
| χωρίζεται ταῦτα ; ὥστ ' εἴπερ ἀδύνατον ἐξ ἁφῶν ἢ στιγμῶν εἶναι τὰ μεγέθη , ἀνάγκη εἶναι σώματα ἀδιαίρετα καὶ | ||
| καὶ ἐξ ὧν τὸ σῶμα μονάδες τῶν ψυχικῶν μονάδων καὶ στιγμῶν , ἑνοῦται δὲ ψυχὴ σώματι , ἀνάγκη καὶ ταύτας |
| καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ , | ||
| τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β |
| γίνεται μονάδων ιβ καὶ λεπτῶν μδ καὶ δευτέρων με καὶ τρίτων νδ καὶ τετάρτων ιϚ , συντιθέμενα δὲ ὁμοῦ γίνεται | ||
| ὅλη γῆ , σφαιροειδὴς λογιζομένη , στερεῶν σταδίων ἔχει μυριάδας τρίτων μὲν ἀριθμῶν σξθʹ , δευτέρων δὲ ͵θυιʹ , πρώτων |
| ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
| τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
| πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ | ||
| οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν |
| ἤπερ γὰρ ἄλλος καλοῖτο ὁ ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενος κατὰ ἄρτιον ὥσπερ τὸν κδ : ὑπὸ γὰρ ἀρτίου κατὰ ἄρτιον | ||
| , ἔχων ἄρρενα μὲν τὸν περιττόν , θῆλυν δὲ τὸν ἄρτιον , ἐξ ὧν εἰσιν αἱ γενέσεις κατὰ φύσεως θεσμοὺς |
| μείζονες ἡγεμονίαι πρὸς αὑτάς . Νῦν δὲ καὶ περὶ τῶν διαστημάτων , ὧν ἀπ ' ἀλλήλων ἀφεστᾶσιν οἱ ὁπλῖται κατά | ||
| ' ἀμφοτέρας τὰς διαιρέσεις φαίνεται , τὰ δὲ μεγέθη τῶν διαστημάτων δῆλον ὅτι οὐ ταὐτὰ ἐν ἑκατέρᾳ τῶν διαιρέσεων . |
| . τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας | ||
| ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι |
| ἀφαίρεσιν ὑπολείπηταί τι : τούτῳ γὰρ διαφέρειν δοκεῖ τῆς παντελοῦς ἄρσεως ἡ ἀφαίρεσις : οὔτε τὸ μεῖζον ἐν τῷ μικροτέρῳ | ||
| σύστημά τι συγκείμενον ἐκ τῶν ποδικῶν χρόνων ὧν ὁ μὲν ἄρσεως , ὁ δὲ βάσεως , ὁ δὲ ὅλου ποδός |
| ἡ δὲ σελήνη ἑβδόμη οὖσα τάξιν ἐπέχει φθόγγου τοῦ λεγομένου ὑπάτης μέσης . τὸ δὲ ἀπὸ γῆς διάστημα μέχρι τῆς | ||
| ἔχει λόγον , τὸν δὲ βαρὺν τὸν Κρόνον , εἴπερ ὑπάτης . Οἱ δὲ δὴ πρῶτοι ἀπὸ τῶν πρὸς ἡμᾶς |
| ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . . | ||
| λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ |
| ὑπεροχῆς αὐτῶν τετράγωνος ἐλάσσων τοῦ συναμφοτέρου τοῦ τε τριπλασίονος τῆς ὑπεροχῆς καὶ τῶν μο , καὶ ἔστω ἡ τῶν Ϟῶν | ||
| γὰρ ὑπερέχει , ἴσμεν , ἄγνωστος δὲ ἡ ποσότης τῆς ὑπεροχῆς . καὶ ἐπὶ μὲν τῶν πλευρῶν τοῦ κ καὶ |
| τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
| πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
| : τοῖς γοῦν αὐτοῖς λόγοις οἱ ἄκροι τῆς μέσης καὶ παραμέσης ὑπερέχουσι καὶ ὑπερέχονται , ἐπιτρίτῳ καὶ ἡμιολίῳ . τοιαύτη | ||
| τῷ αὑτῆς ὑπερέχουσαν , τὴν δ ' ὑπάτην ὑπὸ τῆς παραμέσης ὑπερεχομένην ὁμοίως : ὡς γίγνεσθαι τὰς αὐτὰς ὑπεροχὰς τῶν |
| δ τῆς δυάδος διπλάσιος : μεῖζον δὲ τὸ τριπλάσιον τοῦ διπλασίου . ὡσαύτως καὶ ἐπὶ πλειόνων , οἷον ἀπὸ β | ||
| ἀδιαιρέτου γοῦν τῆς μονάδος ὑποκειμένης . ἐπὶ μὲν γὰρ τοῦ διπλασίου λόγου τῆς ΑΒ πρὸς τὴν Γ [ ἐν διπλασίῳ |
| τοῦ διπλασίονος τοῦ τρίτου ὑπερέχουσι μο κ . Ὁ ἄρα διπλασίων τοῦ τρίτου ἔσται Ϟ β ↑ μο κ : | ||
| διπλασίου καὶ τοῦ τριπλασίου τῶν κατὰ τὸ ἑξῆς συντιθεμένων , διπλασίων μὲν αʹ βʹ δʹ ηʹ : δ ' ἐστὶ |
| πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ | ||
| η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς |