| ἰδέα οὐδέποτε ἥξει . Οὐ δῆτα . Ἄμοιρα δὴ τοῦ ἀρτίου τὰ τρία . Ἄμοιρα . Ἀνάρτιος ἄρα ἡ τριάς | ||
| τοιούτοις . ἔοικε γὰρ ὁ γεωμέτρης πάντα ἀριθμὸν τὸν ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενον κατὰ ἄρτιον ἀριθμὸν ἀρτιάκις ἄρτιον ὀνομάζειν , |
| ἡ δεῖξις προβήσεται . Ἔστωσαν μείζονες αἱ ρ μο λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν | ||
| ἄπειρον αὐτὸν οὐ τῷ ἀδιεξιτήτῳ ἢ τοῦ μεγέθους ἢ τοῦ ἀριθμοῦ , ἀλλὰ τῷ ἀπεριλήπτῳ τῆς δυνάμεως . Ὅταν γὰρ |
| ἴσον καὶ μεμετρημένον ὀργυιᾷ . * περιβάλλεται : εἰκάζεται , μετρεῖται ἔχει εἰκάζεται * ὅσσον : πλάτος αἰγανέη δὲ τὸ | ||
| ἀπὸ τῆς πυγμῆς : ἐπεὶ μὴ ὥσπερ ὁ πῆχυς προτεταμένους μετρεῖται δακτύλους , οὕτω καὶ ὁ πυγὼν , ἀλλὰ συνεστρωμμένη |
| πάθεσι καὶ κακίαις , ἢ καὶ ἕνεκα τοῦ ἀμέτρου καὶ περιττοῦ ; καὶ πότερον διὰ τὰς τοῦ γηγενοῦς χρείας ἢ | ||
| ἐπὶ τοῖς ὑγιαίνουσιν ἡδονῆς , ἀλλ ' ὥς τινος ἐκκρινομένου περιττοῦ , ὁ κάμνων ἀναισθήτως ἔχει . εἰ δὲ χρονίσαν |
| , καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
| ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
| ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος , | ||
| δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , |
| πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος | ||
| . Καὶ μὴν εἰς δύο διαιρουμένων ἴσα , τοῦ μὲν περισσοῦ μονὰς ἐν μέσῳ περίεστι , τοῦ δὲ ἀρτίου κενὴ |
| τὰ τρία εἴδη ἄρτια καλοῦνται , καὶ γὰρ ὁ ἀρτιάκις ἄρτιος , ὁ ἀρτιοπέριττος καὶ ὁ περισσάρτιος . συμβέβηκε δὲ | ||
| εἶναι ἀριθμόν ; διότι πᾶς ἀριθμὸς ἢ περιττός ἐστιν ἢ ἄρτιος . καὶ πᾶς ἄρτιος δύναται εἶναι , ἡ δὲ |
| εἰσιν , ἀμφότεροι γραμματικοὶ ὀνομάζονται , καθὸ ὑπέκειτο μέν τις δυὰς ἡ διὰ τοῦ ἀμφότεροι , τὸ δ ' ἐπιγεγενημένον | ||
| δὲ τὰ ἀναρίθμητα . Μονὰς ἀπὸ τοῦ μένω μονὰς , δυὰς ἀπὸ τοῦ δύω τὸ ὑπεισέρχομαι , τριὰς ἀπὸ τοῦ |
| ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος | ||
| ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς |
| ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου | ||
| : ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον |
| ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
| τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
| ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
| σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
| τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ | ||
| μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις |
| ἀποδείκνυσι λόγον . ἐπεὶ οὖν κατὰ Πυθαγόραν τὸν Σάμιον ἡ τριὰς εἰς γάμον συνελθοῦσα τῇ τετράδι ἀπεγέννησε τὴν ἑβδομάδα καὶ | ||
| τῷ τέλει τῆς στροφῆς καὶ ἀντιστροφῆς παράγραφος . ἔστι δὲ τριὰς ἐπῳδική . ἥκω σεβίζων ] αἱ ἑξῆς αὗται συστημάτων |
| ἤπερ γὰρ ἄλλος καλοῖτο ὁ ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενος κατὰ ἄρτιον ὥσπερ τὸν κδ : ὑπὸ γὰρ ἀρτίου κατὰ ἄρτιον | ||
| , ἔχων ἄρρενα μὲν τὸν περιττόν , θῆλυν δὲ τὸν ἄρτιον , ἐξ ὧν εἰσιν αἱ γενέσεις κατὰ φύσεως θεσμοὺς |
| οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
| πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
| ΒΓ τοῦ ΔΖ ἡμιόλιος , ὁ δὲ ΔΖ τοῦ Θ ἐπίτριτος : φημὶ τὸν ΒΓ τοῦ Θ διπλάσιον εἶναι . | ||
| τὸ τρίτον αὐτοῦ , ἤγουν τὸ Γ . Ὁ Η ἐπίτριτος τοῦ Ϛʹ . Περιέχει γὰρ ὅλον τὸν Ϛʹ , |
| δ τῆς δυάδος διπλάσιος : μεῖζον δὲ τὸ τριπλάσιον τοῦ διπλασίου . ὡσαύτως καὶ ἐπὶ πλειόνων , οἷον ἀπὸ β | ||
| ἀδιαιρέτου γοῦν τῆς μονάδος ὑποκειμένης . ἐπὶ μὲν γὰρ τοῦ διπλασίου λόγου τῆς ΑΒ πρὸς τὴν Γ [ ἐν διπλασίῳ |
| τοιούτων οὐδέν . τὸ γὰρ αὐτὸ εἶδος τοῦ διπλασίου καὶ τριπλασίου ἔν τε τοῖς ἐλάττοσι καὶ ἐν τοῖς πλείοσιν ἀριθμοῖς | ||
| ►βασιλικός αʹ τιμοκρατικός βʹ ὀλιγαρχικός γʹ δημοκρατικός θʹ τυραννος Ϛʹ◄ τριπλασίου ἄρα κτλ . εἰλήφθω κατὰ τὴν μονάδα αὐτὴν ὁ |
| τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
| τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
| τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως . | ||
| ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ ' |
| ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ | ||
| ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν |
| δὲ ἡ μονὰς κατὰ τὸν ἕνα θεόν : πᾶς γὰρ ἀριθμὸς νεώτερος κόσμου , ὡς καὶ χρόνος , ὁ δὲ | ||
| γὰρ ἄλλα πάντα τὸν ἀριθμὸν φαίνεται μιμούμενα , ὁ δὲ ἀριθμὸς παρ ' ἑαυτοῦ ἀρχὰς μονάδα καὶ δυάδα . ὡς |
| οὓς κῆρες φορέουσι μελαινάων ἐπὶ νηῶν . ἀθετεῖται , ὅτι περισσός : ἐν γὰρ τῷ κηρεσσιφορήτους τὸ αὐτὸ συντόμως εἴρηκεν | ||
| λοιπὸς ὁ ΓΑ ἄρτιός ἐστιν . Ἐπεὶ γὰρ ὁ ΑΒ περισσός ἐστιν , ἀφῃρήσθω μονὰς ἡ ΒΔ : λοιπὸς ἄρα |
| καὶ ψυχρῶν καὶ ξηρῶν καὶ ὑγρῶν ἀντιλαμβάνεται , καὶ ἔστι πεντὰς αὕτη συζυγιῶν ἀνώνυμος ἑνὶ καθάπερ εἶπον ὀνόματι . οὐ | ||
| ἀριθμητικὴν ἀναλογίαν , ὡς δηλοῖ τὸ διάγραμμα . ὅτι ἡ πεντὰς πρώτη μεσότητος τῆς ἀρίστης καὶ φυσικωτάτης ἐμφαντικὴ κατὰ διάζευξιν |
| οὐ γεννᾶι οὔτε γεννᾶται ὑπ ' ἄλλου ἀριθμοῦ πλὴν ὑπὸ μονάδος : διὸ καὶ καλεῖται ὑπὸ τῶν Πυθαγορείων παρθένος ἀμήτωρ | ||
| ιη , καὶ α καὶ ιθ . ἐπὶ μέντοι τῆς μονάδος οὐκέτι τοῦτο , ἀλλὰ τοῦ μὲν μετ ' αὐτὴν |
| γιγνόμενος ποιεῖ τὸν ἡμιόλιον λόγον , ἐξ ὧν ἀμφοτέρων ὁ διπλάσιος σύγκειται λόγος , τοῦ δʹ φμηὶ πρὸς τὸν βʹ | ||
| τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β τετράγωνον ἤτοι διπλάσιος ἤτοι δὶς δίς , ὅπερ ἐδήλωσεν εἰπών : τὰ |
| φυσικώτατα ἔκ τε τῆς ἀπείρου καὶ περαινούσης καὶ ἐκ τῆς ἀρτιοπερίσσου φύσεως καὶ αὐτὴ καὶ τὰ μέρη αὐτῆς πάντα . | ||
| ' ἡμῶν λεχθεῖσαν ἰδιότητα . ἐπεὶ γὰρ αὕτη οὐ μόνον ἀρτιοπερίσσου τῆς μονάδος ἐναργές ἐστι πρὸ τῶν ἄλλων ὁμοίωμα , |
| ἁπλῆ τίς ἐστι κατηγορία , ἡ δὲ τῶν πρός τι σύνθετος , ῥᾷον δὲ τὰ ἁπλᾶ μανθάνομεν τῶν πολυσχεδῶν ; | ||
| καὶ ὁ τῇδε ἵππος ἐκ τῶν τῇδε φύσεων ἀνομοίων οὐσῶν σύνθετος ᾖ . πάντα γὰρ ταῦτα κωμῳδοῦντός ἐστι μᾶλλον ἢ |
| καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους , | ||
| δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα |
| τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
| πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
| ρξβ . δῆλον οὖν , ὅτι ὁ Α τοῦ Β ὑφημιόλιός ἐστι καὶ οὐ μετρεῖ αὐτόν . ὁμοίως καὶ οἱ | ||
| ὁ β τοῦ γ κοινῶς μὲν ὑποεπιμόριος , ἰδικῶς δὲ ὑφημιόλιός ἐστιν , ὡσαύτως δὲ ὁ γ τοῦ δ κοινῶς |
| ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε | ||
| δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ |
| . ἐπὶ δὲ τοῦ βʹ λήμματος ὁ ἑκατὸν τοῦ εἴκοσι πολλαπλάσιός ἐστι κατὰ τὸν ε , καὶ ὁ κ τοῦ | ||
| Γ πολλαπλάσιον εἶναι . ἐπεὶ γὰρ ὁ Β τοῦ Γ πολλαπλάσιός ἐστι , μετρεῖ ἄρα ὁ Γ τὸν Β . |
| καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
| τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
| μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου | ||
| μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος : |
| μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
| ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
| διπλασία τῆς ὑπάτης ἐπιτέταται καὶ ὅλως ὁ δ τοῦ ὀκτὼ ἥμισυς καὶ τοῦ τρία ἐπίτριτος , ὡς ἂν ἀδιαφόρων οὐσῶν | ||
| μὲν οὖν ἀρτιάκις περισσός ἐστιν , φανερόν : ὁ γὰρ ἥμισυς αὐτοῦ περισσὸς ὢν μετρεῖ αὐτὸν ἀρτιάκις . λέγω δή |
| ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
| τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
| γ . λέγω , ὅτι καὶ ὁ β τοῦ α ἐπιμόριός ἐστι κατὰ τὸ ὁμώνυμον μόριον τοῦ γ ἐναλλάξ , | ||
| μέτρου . ἄφελε ἴσον τῷ Θ τὸν ΗΖ καὶ ἐπεὶ ἐπιμόριός ἐστιν ὁ ΔΖ τοῦ Θ , ἡ ὑπεροχὴ ὁ |
| οἱ Γ Δ Ε , ὧν ἕκαστος ἐλάσσων μὲν ἑκατοντάδος μετρούμενος δὲ ὑπὸ δεκάδος , καὶ ἄλλοι πάλιν ὁσοιδηποτοῦν ἀριθμοὶ | ||
| μετρούμενοι κοινῷ μέτρῳ . Σύνθετος ἀριθμός ἐστιν ὁ ἀριθμῷ τινι μετρούμενος . Σύνθετοι δὲ πρὸς ἀλλήλους ἀριθμοί εἰσιν οἱ ἀριθμῷ |
| δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον | ||
| , ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ |
| ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
| καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
| καὶ τὸν τρίτον ἀριθμὸν συνάμφω ἐπιτρίτους χρὴ εἶναι δευτέρου καὶ τετάρτου , ἔστι δὲ πρόλογος ἐν ἐπιτρίτῳ πυθμέσιν ὁ δʹ | ||
| τέσσαρα : καὶ ταῦτα ἑψείσθω μέχρι τοῦ τρίτου μέρους ἢ τετάρτου , τὸν ἀφρὸν ἀφαιρούντων ἡμῶν . εἰ δ ' |
| : διὸ καὶ οὐ δύναται εἶναι ὁ θ τοῦ δ τετραπλάσιος , ὡς ὁ ιϚ τοῦ δ καὶ ὁ λϚ | ||
| δὲ ὦσι δύο ἀριθμοὶ ὁ μὲν ἕτερος αὐτῶν τοῦ αὐτοῦ τετραπλάσιος , ὁ δ ' ἕτερος διπλάσιος , ὁ τετραπλάσιος |
| περὶ τὰ ἀναγκαῖα . ὀρθογωνίου μὲν γὰρ τριγώνου ἢ διέσεως ἡμιτονίου οὐδεμίαν φύσει ἔννοιαν ἥκομεν ἔχοντες , ἀλλ ' ἔκ | ||
| ἀλλήλων τετάρτους τὸν διὰ τεσσάρων ἀλλήλοις διόλου συμφωνεῖν , τοῦ ἡμιτονίου κατὰ μετάβασιν τήν τε πρώτην καὶ τὴν μέσην καὶ |
| ἀριθμούς . Γεγονέτω , καὶ ὁ διπλάσιος τοῦ πλήθους αὐτῶν μετρείσθω πρότερον ὑπὸ τετράδος , καὶ ὑποκείσθω ὑπὸ ἕκαστον τῶν | ||
| , σύνθετός ἐστιν . μετρηθήσεται ἄρα ὑπὸ ἀριθμοῦ τινος . μετρείσθω ὑπὸ τοῦ Γ . ὁ Γ ἄρα τοῦ Β |
| τοῦ διπλασίονος τοῦ τρίτου ὑπερέχουσι μο κ . Ὁ ἄρα διπλασίων τοῦ τρίτου ἔσται Ϟ β ↑ μο κ : | ||
| διπλασίου καὶ τοῦ τριπλασίου τῶν κατὰ τὸ ἑξῆς συντιθεμένων , διπλασίων μὲν αʹ βʹ δʹ ηʹ : δ ' ἐστὶ |
| οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
| , ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
| ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
| ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
| καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
| δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
| , καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν , | ||
| ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ |
| τὸ ἕν , ἀπὸ δὲ τῆς μονάδος καὶ τῆς ἀορίστου δυάδος τὰ δύο . δὶς γὰρ τὸ ἓν δύο , | ||
| αὐτὴν καλοῦσι καὶ πανδοχέα γε , ὡς παρεκτικὴν οὖσαν καὶ δυάδος τῆς κυρίως ὕλης καὶ πάντων χωρητικὴν λόγων , εἴ |
| ἄλλων πλειόνων : τὰ γὰρ ηʹ πρὸς τὰ θʹ ἐποίει τονιαίου ἀκούειν διαστήματος . διὰ τοῦτο δὲ πρῶτον διάστημα ὁ | ||
| δ ' ὅτι , καὶ εἴ τις ἐν τῇ τοῦ τονιαίου δυνάμει τιθείη τὸ τοῦ συντονωτέρου σπονδειασμοῦ ἴδιον , συμβαίνοι |
| ὅρους καὶ λεκτέον ὅτι ὁ μόνον ὑπ ' ἀρτίου περισσάκις ἀρτιοπέρισσος , ὁ δ ' οὐδέποτε μόνον θάτερον ἀλλ ' | ||
| Εὐκλείδου ῥητὸν προεκθέμενοι περὶ αὐτῶν . λέγει γὰρ οὕτως : ἀρτιοπέρισσος ἀριθμός ἐστιν ὁ ὑπ ' ἀρ - τίου ἀριθμοῦ |
| , τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ | ||
| τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ |
| ] ⌈ κϘʹ . / [ εἰκοστὴ ἕκτη . ] τετρὰς ] ⌈ κζʹ . / [ εἰκοστὴ ζʹ . | ||
| , οὕτω καὶ ἡ τοῦ μεγίστου παρὰ τὸν μέσον διαφορὰ τετρὰς οὖσα πρὸς τὴν τοῦ μέσου παρὰ τὸν ἐλάχιστον δυάδα |
| πλασματικὰ πολλὰ συλλέξας καὶ διάφορα ἕτερα εἰς τὸ τέλος τοῦ ἕκτου λόγου καταντήσεις . . Δημοσθένου ] | κατὰ [ | ||
| οὐ πολλοῦ χρόνου ἐπὶ μέγα ἐχώρησαν δυνάμεως . Τέλος τοῦ ἕκτου λόγου Νικολάου Δαμασκηνοῦ . . . : Ὅτι Κύψελος |
| δοθέντας ἀριθμούς . Δεῖ δὴ τῶν εὑρισκομένων τὸν ἀπὸ τοῦ ἡμίσεος τοῦ συναμφοτέρου τετράγωνον τοῦ ὑπ ' αὐτῶν ὑπερέχειν τετραγώνῳ | ||
| προσοδιακὸν τρίμετρον βραχυκατάληκτον ἐξ Ἰωνικοῦ ἀπὸ μείζονος , χοριάμβου καὶ ἡμίσεος ποδὸς ἀδιαφόρου . Τὸ ηʹ ἰαμβικὸν δίμετρον ἀκατάληκτον : |
| οὔτε δίτονον πρὸς διτόνῳ τεθήσεται οὔτε τόνος ἐπὶ τὸ βαρὺ διτόνου , ὥστε λείπεται τὸ πυκνόν . φανερὸν δὴ ὅτι | ||
| πρὸς αὐτῷ κατ ' οὐδέτερον τῶν τόπων οὔτε τόνος . διτόνου γὰρ οὕτω τιθεμένου ἤτοι βαρύτατος πυκνοῦ ἢ ὀξύτατος πεσεῖται |
| οἰκεῖα πληρώματα ὁ νοῦς , ἐξ ὧν ὁ σύμπας ὁμοῦ συμπληροῦται , ἐπιδεὴς ἂν εἴη αὐτὸς ἑαυτοῦ , οὐ μόνον | ||
| περιττοῦ φύσιν ἔχουσι : μὴν δὲ καθ ' ἑβδομάδας τέσσαρας συμπληροῦται , τῇ μὲν πρώτῃ ἑβδομάδι διχοτόμου τῆς σελήνης ὁρωμένης |
| λόγον , ἡμιόλιον τυχὸν ἢ ἐπίτριτον ἢ ἄλλον τινὰ τῶν ἐπιμορίων ἢ τῶν ἐπιμερῶν , τὰ μὲν ἀπ ' αὐτῶν | ||
| . ἐκ τούτων πάλιν κατὰ ἀναστροφὴν γίνονται τὰ εἴδη τῶν ἐπιμορίων : οἷόν ἐστι πρῶτον εἶδος τῶν πολλαπλασίων τὸ διπλάσιον |
| ἦσαν τὰ ἐπίπεδα , ὡς ἐδείχθη . Πάλιν οὖν ἄνωθεν ἑτερομήκης ἀριθμὸς λέγεται , οὗ ἐπιπέδως σχηματογραφηθέντος τετράπλευρος μὲν καὶ | ||
| τῆς εἴλης τετράγωνον ᾖ , ὁ ἀριθμὸς τῶν ἱππέων γίνεται ἑτερομήκης . Δοκεῖ δὲ τὸ ῥομβοειδὲς σχῆμα ἀναγκαιότατον παρειλῆφθαι : |
| , καθ ' ἣν ἕκαστον τῶν ὄντων ἓν λέγεται . Ἀριθμὸς δὲ τὸ ἐκ μονάδων συγκείμενον πλῆθος . Μέρος ἐστὶν | ||
| μερῶν ἐπιπέδῳ σὺν τῷ ἀπὸ τοῦ προειρημένου μέρους τετραγώνῳ . Ἀριθμὸς γὰρ ὁ αβ διῃρήσθω εἰς δύο ἀριθμοὺς τοὺς αγ |
| , ὅπως ἀπὸ τῶν διεζευγμένων ποιήσωσιν ἐφεξῆς τρία τετράχορδα , συστήματος ὀνόματι περιέλαβον τὸ συνημμένον , ἵν ' ἔχωσι πρόχειρον | ||
| ἐπὶ τῷ τέλει τῆς μὲν στροφῆς κορωνίς . τοῦ δὲ συστήματος παράγραφος . 〛 τῶν μέχρι νῦν ὄντων ποιητῶν . |
| ἡ δὲ λοιπὴ μικτὴ σχέσις ἡ πολλαπλασιεπιμερὴς γεννᾶται ἐκ τῆς ἐπιμεροῦς , καὶ ἐκ μὲν τῆς ἐπιδιμεροῦς ἢ δὶς ἐπιτρίτου | ||
| τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , ὧν ἕκαστον |
| ἁπλοῦν ἐστι παρόσον οὔτε ἐκ τοῦ αὐτοῦ ἔστιν ἀξιώματος δὶς λαμβανομένου οὔτε ἐκ διαφερόντων συνέστηκεν , ἐξ ἄλλων δὲ τινῶν | ||
| : καὶ πλύνεται δὲ χωριζομένου τοῦ ψαμμώδους ὡς ἀχρήστου , λαμβανομένου δὲ τοῦ λιπαρωτέρου καὶ λείου . Ἀλσίνη ἔχει παρόμοια |
| ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
| ' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
| παρ ' οὐδέν . ὁ δ ' ὑπ ' αὐτὸν πεντάγωνος ὁ κβʹ σύστημα τοῦ ὑπὲρ αὐτὸν τετραγώνου τοῦ ιϚʹ | ||
| ἐστιν , ὁ δὲ δ τετράγωνος , ὁ δὲ ε πεντάγωνος , ὁ δὲ Ϛ ἑξάγωνος , ὁ δὲ ζ |
| ; εἰ γὰρ μετρήσει αὐτὸν περισσάκις , ἔσται ὁ Α περισσάκις περισσός , πᾶς δὲ περισσάκις περισσὸς ἥμισυ οὐκ ἔχει | ||
| τε γὰρ ἀρτίου ἀρτιάκις μετρεῖται καὶ ὁ αὐτὸς ὑπὸ ἀρτίου περισσάκις , οὐδετέρῳ δὲ τῶν προτέρων τοῦθ ' ἅμα συμβέβηκεν |
| ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
| τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
| τἆλλα κατὰ τὸ ἑξῆς εἴδη . ὑπόδειγμα δὲ πάντων εὐτάκτων πολυπλασίων σαφὲς ἕξομεν ἐὰν ἐκθέμενοι τὸν ἀπὸ μονάδος συνεχῆ ἀριθμὸν | ||
| ἀρτιοπερίττων δὲ πέντε , πάσας δὲ λόγων τῶν ἐν ἀριθμοῖς πολυπλασίων καὶ ἐπιμερῶν καὶ ὑποεπιμερῶν περιέχει , πάσας δ ' |
| εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
| λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
| , τοῦ δὲ Δ ἐπόγδοος ὁ Ε , τοῦ Ε ἐπόγδοος ὁ Ζ , τοῦ Ζ ἐπόγδοος ὁ Η : | ||
| δυνατοῦ δεῖξαι τὸ προκείμενον , ὅς ἐστι μονάδων ͵αφλϚʹ , ἐπόγδοος μὲν αὐτοῦ γίνεται ὁ τῶν ͵αψκηʹ , τούτου δὲ |
| τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
| ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
| Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ , | ||
| γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι |
| ' ἂν γένοιό γ ' ἀθλιωτάτη γυνή . ἴτω : περισσοὶ πάντες οὑν μέσωι λόγοι . ἀλλ ' εἶα χώρει | ||
| μὲν οὖν ἄρτιον δεῖ εἶναι , ὅπως ἴσοι ἐνῶσιν οἱ περισσοὶ καὶ ἄρτιοι καὶ μὴ ἑτερομερῶς : ἐπεὶ γὰρ πρότερος |
| καὶ περὶ τὰς τέτταρας περιεχομένας λόγοις τοῖς ἐφεξῆς ἀπὸ τοῦ ἐπογδόου μέχρι τοῦ ἐπὶ ιαʹ . ποιοῦσι μὲν οὖν τὸ | ||
| τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν , τῷ τοῦ ἐπογδόου διαστήματι τὰ ἐπίτριτα πάντα συνεπληροῦτο , λείπων αὐτῶν ἑκάστου |
| τὸ ὂν ἀγένητον ἀπολείπει : λέγει δὲ τὴν γῆν τοῦ πυκνοῦ καταρρυέντος [ ἀέρος ] γεγονέναι . . . καὶ | ||
| ἄστρα καὶ τὸν ἥλιον ἐκ πυρός φησι καὶ τοῦ πρώτου πυκνοῦ συγκεῖσθαι , τὴν δὲ σελήνην ἐκ τοῦ δευτέρου πυκνοῦ |
| , ταύτην προτάττει , ἐπείπερ ἀπὸ μονάδος συντιθέντες μέχρι τῆς τετράδος πρώτως τὸν δέκα ἀριθμὸν ποιοῦμεν , οἷον ἓν δύο | ||
| ἄλλων θεῶν ἁψόμεθα συνουσιῶν ἐν τούτῳ δὴ τῷ μηνὶ τῆς τετράδος τὰ πρῶτα δεχομένης . Ἦλθον αὖθις ἡμῖν ἐπιστολαὶ παρ |
| ἑκάστους ἕκαστον μηκύνῃ ἢ ὑπὸ ἑκάστου μηκύνοιτο , ὁμοίως γενήσονται εὔτακτοι κύβοι . ἔτι οἱ περισσοὶ ἐπειδὴ ἔτι ὁμοποιοί εἰσι | ||
| τῶν ἀπὸ μονάδος ἑαυτὸν πολλαπλασιάσαντος καὶ τὸν ἐξ αὐτοῦ γίνονται εὔτακτοι κύβοι . καὶ εἰ τάξει οἱ ἀπὸ τετράδος τετράγωνοι |
| ἀλλήλων διαφέροντες , διπλάσιοι ἄρτιοι περισσῶν , ἐπίπλαστος περισσάρτιοι εὔτακτοι εὐτάκτων . εἶτ ' ἀπ ' ἄλλης ἀρχῆς οἱ αὐτῶν | ||
| δὲ ἐπὶ τούτοις γενήσονται καθεξῆς προσσωρευομένων τῶν κατὰ τριάδος ὑπεροχὴν εὐτάκτων μετὰ τὴν ἑβδομάδα ὄντων , οἷον τοῦ ι , |
| , ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
| λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
| καὶ τρίτον γένος μελῳδίας ἐναρμόνιον , ἐπειδὰν ἀπὸ τοῦ βαρυτάτου φθόγγου κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον ἡ φωνὴ προελθοῦσα | ||
| οἷον σφραγῖδα σφραγῖδι ἐπιβάλλων ἐναργῆ μᾶλλον καὶ εὔδηλον , οὐδενὸς φθόγγου ἀπεχόμενος , ἀλλὰ ἔμβραχυ ποταμῶν τε μιμούμενος φωνὰς καὶ |
| στερεῶν σωμάτων λόγοι δῆλοι , ἐπεὶ καὶ ὁ τοῦ αʹ κύβος τοῦ αὐτοῦ ἐστιν αʹ , ὁ δ ' ἀπὸ | ||
| οἱ ἕνα διαλείποντες πάντες , ὁ δὲ τέταρτος ὁ Γ κύβος καὶ οἱ δύο διαλείποντες πάντες , ὁ δὲ ἕβδομος |
| σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ | ||
| καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος |
| δ ' ἡ Θρᾴκη σύμπασα ἐκ δυεῖν καὶ εἴκοσιν ἐθνῶν συνεστῶσα : δύναται δὲ στέλλειν καίπερ οὖσα περισσῶς ἐκπεπονημένη μυρίους | ||
| συναλείφουσα τὰ δύο συλλαβή , ἐξ ἀφώνου τε καὶ δυεῖν συνεστῶσα φωνηέντων : εἰ γοῦν τις αὐτῆς ἀφέλοι τὸ τ |
| πάλιν τοῦ περιττοῦ τὸν μὲν πρῶτον τὸν ὑπὸ μονάδος μόνον μετρούμενον ὡς τὸν τρία , τὸν ζ , τὸν δὲ | ||
| : ὥσπερ γὰρ λέγεται καὶ τὸ μέτρον ξέστης καὶ τὸ μετρούμενον , οὕτως ἔφασκον καὶ τὰ νοητὰ καὶ τὰ αἰσθητὰ |
| ὑπεπίτριτος , τοῦ δὲ δώδεκα ὑποδιπλάσιος , μείζων δὲ ὁ ὑπεπίτριτος λόγος τοῦ ἡμίσεως . τὸ ΑΒ ἄρα πρὸς τὸ | ||
| Τ τὰ η : ὅ τε γὰρ ιη τοῦ κδ ὑπεπίτριτος καὶ ὁ Ϛ τοῦ η . Τὸ τοιοῦτον πολύγωνον |
| . ἴση ἄρα ἡ ΔΞ τῇ ΔΖ . Κοινοῦ ἄρα προσληφθέντος λόγου τοῦ τῆς ΒΔ πρὸς τὴν ΔΖ , ἔσται | ||
| , σύστημα δύο τόνων καὶ τοῦ λεγομένου ἡμιτονίου . εἶτα προσληφθέντος ἄλλου τόνου , τουτέστι τοῦ μεσεμβοληθέντος , ἡ διὰ |
| ἐστὶν ἀποστηματώδης ἐκ παχέων χυμῶν , ἐν τοῖς σαρκώδεσι τόποις συνιστάμενος , ἐπιεικὴς μὲν ὑπάρχων , ὅτε ἐν αὐτῷ μόνῳ | ||
| τὸ πᾶν ἐστιν ὁ ἀήρ , καὶ οὗτος πυκνούμενος καὶ συνιστάμενος ὕδωρ καὶ γῆ γίνεται , ἀραιούμενος δὲ καὶ διαχεόμενος |
| ἔτυχεν , πολλαπλάσιον τὸ Ζ . Ἐπεὶ οὖν ἰσάκις ἐστὶ πολλαπλάσιον τὸ Δ τοῦ Α καὶ τὸ Ε τοῦ Β | ||
| οὔτε πολλαπλάσιον ἔσται οὔτε ἐπιμόριον . ἔστω γὰρ διάστημα μὴ πολλαπλάσιον τὸ ΒΓ , καὶ γεγενήσθω , ὡς ὁ Γ |
| ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον . | ||
| ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν |
| ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
| . . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
| καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ , | ||
| τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β |
| τῶν δέκα πληρώσει ἀριθμόν : ὥστε ὁ ἀριθμὸς κατὰ μὲν μονάδα ἐν τοῖς δέκα κατὰ δὲ δύναμιν ἐν τοῖς τέσσαρσι | ||
| εὑρίσκεται ἔχων ὁλοκλήρως τὰς δ μονάδας καὶ ἐπέκεινα τούτων μίαν μονάδα , ἥ ἐστιν τῶν δ δʹ , καὶ διὰ |
| : διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί | ||
| μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν |
| τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
| πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
| ٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη ٢ ٢١ ٥٥ ٤١ | ||
| μονάδων τʹ καὶ τοῦ Β μονάδων γʹ καὶ τοῦ Γ μονάδων δʹ καὶ τοῦ Δ μονάδων εʹ : ὁ μὲν |
| διαιρετὸς καὶ ἀδιαίρετος : ἐπὶ μὲν τῶν ἀύλων εἰδῶν παντάπασιν ἀδιαίρετος ὅ τε χρόνος καὶ αὐτὸς ὁ νοῦς , ὅταν | ||
| ἀλλὰ μία ἐν ἑκάστῃ φύσει , πότερον ἀμέριστος αὕτη καὶ ἀδιαίρετος ἢ μεριστή τις καὶ πολυδύναμος . καὶ εἰ μὲν |