| πάλιν τοῦ περιττοῦ τὸν μὲν πρῶτον τὸν ὑπὸ μονάδος μόνον μετρούμενον ὡς τὸν τρία , τὸν ζ , τὸν δὲ | ||
| : ὥσπερ γὰρ λέγεται καὶ τὸ μέτρον ξέστης καὶ τὸ μετρούμενον , οὕτως ἔφασκον καὶ τὰ νοητὰ καὶ τὰ αἰσθητὰ |
| † ) ἀντὶ τοῦ δαπάνης , τροφῆς , τό τε μετροῦν καὶ τὸ μετρούμενον . ἅπαξ ἐνταῦθα ἡ φωνή : | ||
| μαχόμενα : αὔταρκες δὲ νῦν ἐκεῖνο λέγειν , ὅτι τὸ μετροῦν τὴν κίνησιν ἢ τὴν μονὴν ἐν χρόνῳ γίνεται καὶ |
| ἴσον καὶ μεμετρημένον ὀργυιᾷ . * περιβάλλεται : εἰκάζεται , μετρεῖται ἔχει εἰκάζεται * ὅσσον : πλάτος αἰγανέη δὲ τὸ | ||
| ἀπὸ τῆς πυγμῆς : ἐπεὶ μὴ ὥσπερ ὁ πῆχυς προτεταμένους μετρεῖται δακτύλους , οὕτω καὶ ὁ πυγὼν , ἀλλὰ συνεστρωμμένη |
| καὶ οἱ λοιποί . λέγονται οὕτως ἐκεῖνοι μὲν πρῶτοι καὶ ἀσύνθετοι , ἐπειδὴ ὑπὸ μόνης τῆν μονάδος μετροῦνται , ἐπεὶ | ||
| ὡσαύτως καὶ ὁ λθ καὶ ὅμως οὐκ εἰσὶ πρὸς ἀλλήλους ἀσύνθετοι , πρὸς δὲ ἑαυτοὺς σύνθετοι : ἀμφότεροι γὰρ ὑπὸ |
| , καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
| ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
| ἤπερ γὰρ ἄλλος καλοῖτο ὁ ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενος κατὰ ἄρτιον ὥσπερ τὸν κδ : ὑπὸ γὰρ ἀρτίου κατὰ ἄρτιον | ||
| , ἔχων ἄρρενα μὲν τὸν περιττόν , θῆλυν δὲ τὸν ἄρτιον , ἐξ ὧν εἰσιν αἱ γενέσεις κατὰ φύσεως θεσμοὺς |
| οἱ Γ Δ Ε , ὧν ἕκαστος ἐλάσσων μὲν ἑκατοντάδος μετρούμενος δὲ ὑπὸ δεκάδος , καὶ ἄλλοι πάλιν ὁσοιδηποτοῦν ἀριθμοὶ | ||
| μετρούμενοι κοινῷ μέτρῳ . Σύνθετος ἀριθμός ἐστιν ὁ ἀριθμῷ τινι μετρούμενος . Σύνθετοι δὲ πρὸς ἀλλήλους ἀριθμοί εἰσιν οἱ ἀριθμῷ |
| καὶ τοῦ χειμερινοῦ τροπικοῦ ἓξ ὡριαίων διαστημάτων τὸ μὲν πρῶτον ὡριαῖον διάστημα ἐπὶ τοῦ περὶ μέσας τὰς Χηλὰς κύκλου ἀφορίζει | ||
| ἑπόμενος τῶν ἐπ ' εὐθείας τριῶν . Τὸ δὲ τρίτον ὡριαῖον διάστημα ἀφορίζει περὶ μέσον τὸν Ταῦρον τῶν ἐν τῇ |
| τὸ πρῶτον αʹ . ὁ δ ' ὑπ ' αὐτὸν ἑπτάγωνος ὁ ιηʹ ἐκ τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ ιεʹ | ||
| τρίγωνον τὸν γʹ . ὁ δ ' ὑπ ' αὐτὸν ἑπτάγωνος ὁ λδʹ σύστημά ἐστι τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ |
| τελείως : οὐ γὰρ δύνασαι εἰπεῖν τὸν γ τοῦ η ὑποπολλαπλάσιον : οὐδὲ γὰρ ἔχει λόγον πρὸς αὐτόν : τρὶς | ||
| ἐλάττονος κατὰ ἀντιπεπόνθησιν μετὰ τῆς ὑπό προθέσεως τὸ μέν ἐστιν ὑποπολλαπλάσιον τὸ δὲ ὑποεπιμόριον τὸ δὲ ὑποεπιμερές , δύο δὲ |
| πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος | ||
| . Καὶ μὴν εἰς δύο διαιρουμένων ἴσα , τοῦ μὲν περισσοῦ μονὰς ἐν μέσῳ περίεστι , τοῦ δὲ ἀρτίου κενὴ |
| τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν | ||
| τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν |
| ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
| βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
| τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως . | ||
| ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ ' |
| μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
| ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
| τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ | ||
| μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις |
| περὶ τὰ ἀναγκαῖα . ὀρθογωνίου μὲν γὰρ τριγώνου ἢ διέσεως ἡμιτονίου οὐδεμίαν φύσει ἔννοιαν ἥκομεν ἔχοντες , ἀλλ ' ἔκ | ||
| ἀλλήλων τετάρτους τὸν διὰ τεσσάρων ἀλλήλοις διόλου συμφωνεῖν , τοῦ ἡμιτονίου κατὰ μετάβασιν τήν τε πρώτην καὶ τὴν μέσην καὶ |
| ἴσα ἐστὶ τῷ ἀπὸ τῆς ΓΒ τετραγώνῳ : τὰ γὰρ πεντάκις πέντε εἰκοσιπέντε . Ἔστω ἡ ΑΒ εὐθεῖα μονάδων ι | ||
| ΓΔΕ : τὸ ἄρα ἐννάκις ὑπὸ ΓΔΕ μεῖζόν ἐστιν τοῦ πεντάκις ὑπὸ ΓΔΕ καὶ τοῦ πεντάκις ὑπὸ ΔΓΕ , τουτέστιν |
| συντονωτάτῳ διατόνῳ , δύο ἔσται μεγέθη μόνα ἐξ ὧν τὸ διάτονον συνεστηκὸς ἔσται . ἐὰν δὲ τὰ μὲν δύο ἴσα | ||
| καὶ δίεσιν καὶ δίτονον κινοῖτο , ἐναρμόνιον ποιεῖ γένος . διάτονον μὲν οὖν λέγεται , ἐπειδὴ κατὰ τὸ πλεῖον διὰ |
| εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
| λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
| ' εὐθέως ἐξ ἀρχῆς οὕτως σκευάζειν : τῷ ὀξυμέλιτι μιγνύσθω τετραπλάσιον ὕδατος καλλίστου , κἄπειτα ἑψείσθω μετρίως , ἕως ἂν | ||
| ΚΓ , διπλῆ ἄρα καὶ ἡ ΘΚ τῆς ΚΓ . τετραπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΘΚ τοῦ ἀπὸ τῆς |
| πρῶτοι ἀριθμοὶ καὶ οὐ καθ ' αὑτοὺς οἱ κοινῷ μέτρῳ μετρούμενοι τῇ μονάδι , κἂν ὑπ ' ἄλλων τινῶν ἀριθμῶν | ||
| μὴ μετρούμενοι ὅλως πρῶτοι καὶ ἀσύνθετοι , οἱ δὲ ἅπαξ μετρούμενοι πρὸς μὲν ἑαυτοὺς σύνθετοι , πρὸς δὲ ἀλλήλους ἀσύνθετοι |
| Ὅτι δὲ περιλέλειπται τῶν ἀναλόγων δύο , ἅπερ ἐστὶ τῆς ἑκατοντάδος , τοσαυτάκις αὐξήσομεν τὸν εἰρημένον ἀριθμόν , ὥστε εἶναι | ||
| ὁ μὲν Α ὑποκείσθω ἐλάσσων μὲν χιλιάδος μετρούμενος δὲ ὑπὸ ἑκατοντάδος , οἷον μονάδες φʹ , ὁ δὲ Β ἐλάσσων |
| ' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ | ||
| , ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ |
| αη ηβ : καὶ ἐπεὶ τὸ γδ τοῦ εζ ἐστι τριπλάσιον , ἴσον δὲ τὸ αη τῷ γδ , καὶ | ||
| , πρῶτον διπλάσιον ἐν ἑνὶ στίχῳ , εἶτα ἐν δευτέρῳ τριπλάσιον , εἶτα τετραπλάσιον ἐν τρίτῳ καὶ μέχρι δεκαπλασίων , |
| ' ὧν τὰ Β στερεὸς ἴσος ἐστὶν τῷ διὰ τῶν ἑκατοντάδων στερεῷ ἐπὶ τὸν ἐκ τῶν πυθμένων στερεόν , τουτέστιν | ||
| καὶ τεσσαράκοντα γίνονται ἑκατόν , ὁμοίως δὲ καὶ χιλιάδα ἐξ ἑκατοντάδων καὶ μυριάδα ἐκ χιλιάδων , μονὰς δὲ καὶ δεκὰς |
| ἀριθμούς . Γεγονέτω , καὶ ὁ διπλάσιος τοῦ πλήθους αὐτῶν μετρείσθω πρότερον ὑπὸ τετράδος , καὶ ὑποκείσθω ὑπὸ ἕκαστον τῶν | ||
| , σύνθετός ἐστιν . μετρηθήσεται ἄρα ὑπὸ ἀριθμοῦ τινος . μετρείσθω ὑπὸ τοῦ Γ . ὁ Γ ἄρα τοῦ Β |
| τὸν αὐτὸν ἔλθῃ δεύτερον φθόγγον , εἶτα πάλιν ἀπὸ τοῦδε ἡμιτόνιον διαστήσασα τρίτον ὁρίσῃ φθόγγον ἄλλον , ἀπὸ τούτου κατὰ | ||
| νήτην διεζευγμένων τόνος , ἀπὸ νήτης διεζευγμένων ἐπὶ τρίτην ὑπερβολαίων ἡμιτόνιον , ἀπὸ τρίτης ὑπερβολαίων ἐπὶ ὑπερβολαίων διάτονον τόνος , |
| δοθέντας ἀριθμούς . Δεῖ δὴ τῶν εὑρισκομένων τὸν ἀπὸ τοῦ ἡμίσεος τοῦ συναμφοτέρου τετράγωνον τοῦ ὑπ ' αὐτῶν ὑπερέχειν τετραγώνῳ | ||
| προσοδιακὸν τρίμετρον βραχυκατάληκτον ἐξ Ἰωνικοῦ ἀπὸ μείζονος , χοριάμβου καὶ ἡμίσεος ποδὸς ἀδιαφόρου . Τὸ ηʹ ἰαμβικὸν δίμετρον ἀκατάληκτον : |
| ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ | ||
| ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν |
| μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β | ||
| τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο |
| τοῦ ἐκκρεμαμένου ἀπωθέοι ἂν τὴν κεφαλὴν τοῦ μηροῦ ἀπὸ τῆς κοτύλης . Τὴν μέντοι ξὺν τῷ ξύλῳ τῷ ὑποτεινομένῳ μόχλευσιν | ||
| ἁλὸς ⋖ Ϛ . τὰ ξηρὰ τρίψας καὶ ἐπιχέας ἐλαίου κοτύλης ἥμισυ πάντα ὁμοῦ ἕψει , καὶ γενομένων ἐμπλαστῶν χρῶ |
| δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον | ||
| , ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ |
| ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
| ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
| , πάντα δὲ ἄρτιον ἀριθμὸν ἐνδέχεται ἢ ὑπὸ μόνου ἀρτίου μετρεῖσθαι ἢ ὑπὸ ἀρτίου καὶ περιττοῦ , τὸν δὲ περιττὸν | ||
| ποτὲ μὲν τοῖς παίωσι καθαροῖς , ποτὲ δὲ τοῖς κρητικοῖς μετρεῖσθαι : αὔξεται δὲ μέχρι τετραμέτρου : τινὲς δὲ καὶ |
| γὰρ ᾔδεισαν τόν τε δώριον καὶ τὸν φρύγιον καὶ τὸν λύδιον ἑνὶ τόνῳ διαφέροντας ἀλλήλων , ὡς μὴ φθάνειν ἐπὶ | ||
| τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν ἤρξαντο ἐθνῶν ὀνομασίας , |
| τῆς σκίλλης καὶ τοῦ βολβοῦ , τὰ δ ' ἔχοντα μίσχον . καὶ τὰ μὲν μακρόν , οἷον ἡ ἄμπελος | ||
| καὶ λεπτὸς φόρτος . ἕσμα : Ἀριστοτέλης , ὅπερ Θεόφραστος μίσχον . ἔστι δὲ ὁ αὐχὴν τοῦ καρποῦ τῶν ἀκροδρύων |
| ὁπλίτῃσι καὶ ψιλοῖσι τοῖσι μαχίμοισι ἕνδεκα μυριάδες ἦσαν , μιῆς χιλιάδος , πρὸς δὲ ὀκτακοσίων ἀνδρῶν καταδέουσαι . Σὺν δὲ | ||
| Ἴβηρος ” . ἀφ ' οὗ παρὰ Κουαδράτῳ ἐν Ῥωμαϊκῆς χιλιάδος εʹ ἐστὶν Ἰβήροισιν οὕτως ” καί τοι Λίγυσί θ |
| ; εἰ γὰρ μετρήσει αὐτὸν περισσάκις , ἔσται ὁ Α περισσάκις περισσός , πᾶς δὲ περισσάκις περισσὸς ἥμισυ οὐκ ἔχει | ||
| τε γὰρ ἀρτίου ἀρτιάκις μετρεῖται καὶ ὁ αὐτὸς ὑπὸ ἀρτίου περισσάκις , οὐδετέρῳ δὲ τῶν προτέρων τοῦθ ' ἅμα συμβέβηκεν |
| ᾧ μετροῦμεν , οἷον ἡ χοῖνιξ ἡ ξυλίνη καὶ ὁ χοεὺς ὁ κεράμειος , καὶ τὸ μετρούμενον ἀπ ' αὐτῶν | ||
| φίλον . τοῦ διξέστου . χοὺς γὰρ δύο ξέσται , χοεὺς δὲ ἕξ . καταρᾶσθε . ὅσαις δὲ προσήκει τὰ |
| λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
| ' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
| ὡρισμένα , τὰ δὲ ἀόριστα : ὡρισμένα μὲν ὡς τὸ δίπηχυ καὶ τὸ τρίπηχυ , ἃ καὶ κυρίως ποσά ἐστιν | ||
| , λεῖος , πάχος δακτύλου , τὸ δ ' ὕψος δίπηχυ , γόνασι διειλημμένος , ἐκ διαστημάτων μειζόνων περικείμενος τὰ |
| ἦν πρῶτον τὸ διπλάσιον , εἶτα τὸ ἐπιμόριον καὶ τὸ ἐπιμερὲς καὶ τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ | ||
| ε : τὸ γὰρ μεῖζον ἢ πολλαπλάσιον ἢ ἐπιμόριον ἢ ἐπιμερὲς ἢ πολλαπλασιεπιμόριον ἢ πολλαπλασιεπιμερές : ὡσαύτως καὶ τὸ ἔλαττον |
| , διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ | ||
| , οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων |
| πολλαπλάσιον καὶ ἐπιμόριον καὶ ἐπιμερὲς καὶ πολλαπλασιεπιμόριον καὶ πολλαπλασιεπιμερές , ὑπολόγων δὲ τῶν ἴσων μετὰ τῆς ὑπό προθέσεως ὀνομαζομένων . | ||
| τινα ἄλλον λόγον . διότι γὰρ ἰσάκις εἰσὶν ὑπερέχοντες τῶν ὑπολόγων οἱ πρόλογοι , διὰ τοῦτο καὶ ἐναλλὰξ ἀνάλογόν εἰσιν |
| τὰ γένη μακρὸν ἐπεφαίνετό μοι δηλοῦν : τὸ δὲ τοῦ σταθμοῦ πλῆθος εἰς μύρια τάλαντ ' ἀργυρίου τὴν σύμπασαν εἶχε | ||
| , εἰ καὶ κατὰ σχῆμα διαφέροι [ διαφέρει ] , σταθμοῦ ἂν ἐπὶ μεγέθει τὴν φύσιν ἔχειν . οὐ μὴν |
| τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
| ٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
| καὶ δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος | ||
| κδʹ καὶ ἁρμονικὸς τῶν τελευταίων διαστημάτων : ὑπερέχει δὲ αὐτοῦ ͵αψκη . ὁ δ ' αὐτὸς κατ ' ἀριθμητικὰν μέσος |
| ἰδέα οὐδέποτε ἥξει . Οὐ δῆτα . Ἄμοιρα δὴ τοῦ ἀρτίου τὰ τρία . Ἄμοιρα . Ἀνάρτιος ἄρα ἡ τριάς | ||
| τοιούτοις . ἔοικε γὰρ ὁ γεωμέτρης πάντα ἀριθμὸν τὸν ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενον κατὰ ἄρτιον ἀριθμὸν ἀρτιάκις ἄρτιον ὀνομάζειν , |
| , ἀφ ' οὗ μὴ προῆλθεν . Ἔτι τὸ διακεκριμένον διακεκριμένου διακέκριται , ὡς τὸ ἕτερον ἑτέρου ἕτερον . Εἰ | ||
| μὲν τοῦ συνεχοῦς τὸ μετρεῖν λέγεται , ἐπὶ δὲ τοῦ διακεκριμένου τὸ ἀριθμεῖν . . ἄρνες μὲν οἱ νέοι , |
| τὰς τάξεις τάσσειν , ἵνα μὴ ὡς κονδότεραι καὶ ὀλίγον διάστημα κρατοῦσαι μὴ δύνανται εὐκόλως τὰ κυνήγια περιλαμβάνειν , μήτε | ||
| οἷόν τε ὑπὸ ὄντος κατέχεσθαι μὴ κατεχόμενον δέ , ἢ διάστημα ἔρημον σώματος , ἢ διάστημα ἀκαθεκτούμενον ὑπὸ σώματος , |
| τὸ γὰρ μεῖζον ἢ πολλαπλάσιον ἢ ἐπιμόριον ἢ ἐπιμερὲς ἢ πολλαπλασιεπιμόριον ἢ πολλαπλασιεπιμερές : ὡσαύτως καὶ τὸ ἔλαττον μετὰ τῆς | ||
| πᾶς δὲ ἀριθμὸς πρὸς ἅπαντα λόγον ἔχει ἢ πολλαπλάσιον ἢ πολλαπλασιεπιμόριον ἢ ἐπιμερῆ ἢ καθ ' ἕνα τινὰ λόγον , |
| ἀποκρίνασθαι ” μύριοί εἰσιν ἀριθμόν , ἀτὰρ μέτρον „ γε μέδιμνος : εἷς δὲ περισσεύει , τὸν ἐπενθέμεν οὔ κε | ||
| ἀπομάκτρα , σκυτάλη , περιστροφίς , μαγίς , χοῖνιξ , μέδιμνος ἡμιμέδιμνος , ἑκτεύς , καὶ παρ ' Ἀλκαίῳ τῷ |
| σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ | ||
| καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος |
| τε δίς καὶ τρίς , ἐκ δὲ τοῦ δυάκις καὶ τριάκις συγκεκόφθαι , ἐπειδὴ τὰ εἰς ς λήγοντα μετὰ βραχείας | ||
| ριδ . Ἐπεὶ μο εἰσὶν αἱ ιη , εἰκοσάκις καὶ τριάκις τὰ ιη γίνεται υιδ : ἡ δὲ λεῖψις τῶν |
| φυσικώτατα ἔκ τε τῆς ἀπείρου καὶ περαινούσης καὶ ἐκ τῆς ἀρτιοπερίσσου φύσεως καὶ αὐτὴ καὶ τὰ μέρη αὐτῆς πάντα . | ||
| ' ἡμῶν λεχθεῖσαν ἰδιότητα . ἐπεὶ γὰρ αὕτη οὐ μόνον ἀρτιοπερίσσου τῆς μονάδος ἐναργές ἐστι πρὸ τῶν ἄλλων ὁμοίωμα , |
| ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
| δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
| συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε | ||
| ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη |
| δεκάπηχυ διάστημα ἐν ἑνὶ ἀμερεῖ διέρχεται χρόνῳ , τὸ λειπόμενον πηχυαῖον διάστημα τῆς αὐτῆς οὔσης κινήσεως ἐν δεκάτῳ μέρει τοῦ | ||
| δίπηχυ κατὰ πύκνωσιν , ἔφην , ἐπωνόμασται , τὸ δὲ πηχυαῖον κατὰ συνασπισμόν . γίνεται δὲ ἡ μὲν πύκνωσις , |
| τοιαύτας παραχωρήσεις , ὥστε οὐκ ἂν εἰδείης ὅπου ἐστὶ τὸ ἀρκτικὸν κλίμα , οὐδ ' εἰ ἀρχὴν ἐστίν : εἰ | ||
| διδάσκει ὡς Ἴωνες , ὅταν ἀναδιπλῶσι ῥήματα , τὸ αὐτὸ ἀρκτικὸν ποιοῦνται πρώτης καὶ δευτέρας συλλαβῆς , λαβέσθαι λελαβέσθαι , |
| μονάδες ὡς ὅλον ταῖς δυσὶ δυάσιν , ἢ ἑκατέρα τῶν δυάδων ταῖς τέσσαρσι μονάσι καθάπαξ οὐκ ἴσαι . καὶ πάλιν | ||
| δὲ προστάγμασι τούτοις πάλιν ἀπὸ ἰσότητος πρῶτον ἐκ μονάδων εἶτα δυάδων εἶτα τριάδων καὶ ἐφεξῆς : πρῶτον ἐκ πρώτου καὶ |
| ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
| ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
| ἐν τῷ κυλίειν τὴν κόπρον . ὁμοῦ μὲν ὡς τῶν παλαιστῶν ἀδηφαγούντων , ὁμοῦ δὲ τῷ ἐπιφερομένῳ οἰκείως τῶν παλαιστῶν | ||
| κονίσαι , τουτέστι νικῆσαι : κονιορτοῦνται γὰρ οἱ νικώμενοι τῶν παλαιστῶν . οὕτω Μεθόδιος . . . . ἀκοῦμαι καὶ |
| , ταύτην προτάττει , ἐπείπερ ἀπὸ μονάδος συντιθέντες μέχρι τῆς τετράδος πρώτως τὸν δέκα ἀριθμὸν ποιοῦμεν , οἷον ἓν δύο | ||
| ἄλλων θεῶν ἁψόμεθα συνουσιῶν ἐν τούτῳ δὴ τῷ μηνὶ τῆς τετράδος τὰ πρῶτα δεχομένης . Ἦλθον αὖθις ἡμῖν ἐπιστολαὶ παρ |
| † φεύξεσθαι ὀΐομαι αἰπὺν ὄλεθρον . τρὶς μάκαρες μέντοι καὶ τετράκις οἱ μὴ ἔχοντες μήτε κατατρώξαντες ἐνὶ σχολῇ ὅσς ' | ||
| οὖν τούτων ἐχόντων , φαμὲν οὕτως , πεντάκις παρεγένετο , τετράκις παρεγένετο , οὐ μὴν ἔτι οὕτως , πέντε παρεγένετο |
| : τοῦτον γὰρ μετρεῖ μετὰ τὸν ιε ἐφ ' ἑαυτὸν πολλαπλασιαζόμενος : πεντάκις γὰρ ε κε . τὸν δὲ τρίτον | ||
| , ὅσαι εἰσὶν ἐν αὐτῷ μονάδες , τοσαυτάκις συντεθῇ ὁ πολλαπλασιαζόμενος , καὶ γένηταί τις . Ὅταν δὲ δύο ἀριθμοὶ |
| οὐ γεννᾶι οὔτε γεννᾶται ὑπ ' ἄλλου ἀριθμοῦ πλὴν ὑπὸ μονάδος : διὸ καὶ καλεῖται ὑπὸ τῶν Πυθαγορείων παρθένος ἀμήτωρ | ||
| ιη , καὶ α καὶ ιθ . ἐπὶ μέντοι τῆς μονάδος οὐκέτι τοῦτο , ἀλλὰ τοῦ μὲν μετ ' αὐτὴν |
| πλευρὰς ἔχουσιν , [ ὡς ἀριθμοὺς τρεῖς ἴσους ἐπὶ ἴσους πολλαπλασιάζεσθαι , ] οἱ δὲ ἀνίσους . τούτων δ ' | ||
| πλεῖον , ἀλλὰ ἐκ τοῦ αὐτὸν καθ ' αὑτὸν μὴ πολλαπλασιάζεσθαι , ἀλλ ' ὑπὸ ἑνὸς καὶ ἑτέρου , οἷον |
| ἡ δὲ σελήνη ἑβδόμη οὖσα τάξιν ἐπέχει φθόγγου τοῦ λεγομένου ὑπάτης μέσης . τὸ δὲ ἀπὸ γῆς διάστημα μέχρι τῆς | ||
| ἔχει λόγον , τὸν δὲ βαρὺν τὸν Κρόνον , εἴπερ ὑπάτης . Οἱ δὲ δὴ πρῶτοι ἀπὸ τῶν πρὸς ἡμᾶς |
| , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ | ||
| δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ |
| ὄντιἢ ἐν μεμετρημένῳ : ἀλλ ' οὐχ οἷόν τε τὸ μεμετρημένον ἀμετρίαν ἔχειν καθ ' ὃ μεμέτρηται . Καὶ οὖν | ||
| ἀκρίτοις καὶ ἀφειδέσι μεγαλοδωρίαις ἐντρυφᾶν τὴν ἐς τὸ σωφρονέστερον καὶ μεμετρημένον διὰ σπάνιν χρημάτων μεταβολὴν οὐ φειδὼ σώφρονα οὐδὲ σύμμετρον |
| , οὗ αἱ διέσεις ἐφ ' ἑκάτερα τοῦ διατόνου ἀπὸ παρυπάτης μέσων ἐπὶ τρίτην συνημμένων , τρίτον δέ , οὗ | ||
| μὲν ὑπάτης καὶ παρυπάτης διάστημα ἡμιτονιαῖόν ἐστι , τὸ δὲ παρυπάτης καὶ λιχανοῦ ἐννέα δωδεκατημορίων ἀσύνθετον λαμβανομένων . δεύτερον δὲ |
| καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
| δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
| ὑπάρχειν ὁ πᾶς χρόνος λέγεται οὐδενὸς αὐτοῦ τῶν μερῶν ὑπάρχοντος ἀπαρτιζόντως . Ποσειδώνιος : τὰ μέν ἐστι κατὰ πᾶν ἄπειρα | ||
| ὁ η ἀριθμός . ὁ μὲν οὖν τρία τὸν θ ἀπαρτιζόντως μετρεῖ : τρὶς γὰρ συντεθεὶς αὐτὸν μεμέτρηκεν . ὑπερβαίνει |
| εἴδη διαιρεθῆναι δυνάμενον , εἶδος δὲ τὸ ἀπὸ τοῦ γένους διῃρημένον , οἷον εἴ τις λέγοι ζῷον γένος , εἴδη | ||
| πλινθίου . ἦν γὰρ τὸ ἄνω περίτρητον εἰς δύο μέρη διῃρημένον , τὸ δὲ πλινθίον καθάπερ καὶ τὰ ἄλλα πλινθία |
| ἁρμογήν : τὸ γὰρ ἐν χορὸν καὶ ἀντίτυπον καὶ οὐκ εὐεπές , τοῦ μὲν συνδέσμου λήγοντος εἰς ἡμίφωνον στοιχεῖον τὸ | ||
| τέχνην : τὸ γὰρ ἐν χορόν καὶ ἀντίτυπον καὶ οὐκ εὐεπές , τοῦ μὲν συνδέσμου λήγοντος εἰς τὸ ν , |
| αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ | ||
| ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους . |
| τινὲϲ δὲ τὸν ξέϲτην διὰ τοῦ ξ τεμνούϲηϲ αὐτὸ εὐθείαϲ γραμμῆϲ δηλοῦϲι , # τὸ δὲ η ἔχον ἐπικείμενον τὸ | ||
| τοῦ γ πληϲίον ἔχοντοϲ τὸ ρ τεμνόμενον ὑπό τινοϲ εὐθείαϲ γραμμῆϲ , γϼ . αἱ δὲ δύο γραμμαὶ ϲυνάπτουϲαι κατὰ |
| πληρωθέν πλῆρες * χάδοι : πίοι συνέχοι * ὀξυβάφοιο : ὀξυβάφου δὲ μέτρον ἐχέτω τὸ ἱπποσέλινον ἐχεπευκέος ἤγουν πικρᾶς , | ||
| καὶ τὰ φύλλα ξηρά , λεῖα ἐπιπασθέντα μελικράτῳ ὅσον ἥμισυ ὀξυβάφου . ἡ δὲ χαμελαία καθαίρει μὲν φλέγμα καὶ χολήν |
| κράσεων ἐννέα διαφοροὶ , τέσσαρες μὲν ἁπλαῖ , τέσσαρες δὲ σύνθετοι , καὶ πρὸς τούτοις ἡ εὔκρατος . καὶ τῶν | ||
| σῴζειν τὰς ἀναλογίας . Τῶν ῥυθμῶν τοίνυν οἱ μέν εἰσι σύνθετοι , οἱ δὲ ἀσύνθετοι , οἱ δὲ μικτοί , |
| καὶ τρίτον γένος μελῳδίας ἐναρμόνιον , ἐπειδὰν ἀπὸ τοῦ βαρυτάτου φθόγγου κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον ἡ φωνὴ προελθοῦσα | ||
| οἷον σφραγῖδα σφραγῖδι ἐπιβάλλων ἐναργῆ μᾶλλον καὶ εὔδηλον , οὐδενὸς φθόγγου ἀπεχόμενος , ἀλλὰ ἔμβραχυ ποταμῶν τε μιμούμενος φωνὰς καὶ |
| δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
| καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
| χοίνικες , δʹ χοινίκων ἐστίν , τὸ δυσχερέστατον μέτρον . ἡμιεκτέον ] τὸ ἥμισυ τῶν ὀκτώ , τὸ ἥμισυ τοῦ | ||
| ἐν Μυρμιδόσι . σκυλάκια σιαλώδεα : κύνεια κρέα λιπαρά . ἡμιεκτέον : τὸ ἥμισυ τοῦ ἑκτέως . ἑκτεὺς δὲ λέγεται |
| κατ ' αὐτὸ διατείνεται , χρῶμα δὲ τὸ δι ' ἡμιτονίων συντεινόμενον . ὡς γὰρ τὸ μεταξὺ λευκοῦ καὶ μέλανος | ||
| πρότερον διάγουσα διὰ πασῶν , τὸ δὲ δεύτερον διὰ τῶν ἡμιτονίων αὐξήσασα . ►α ※ β γ δ ε Ϛ |
| πολυτελῶν . ἐπεβέβλητο δ ' αὐτῷ πορφυροῦν ἀμφίταπον ἀμοργίνῳ καλύμματι περιειλημμένον . προσκεφάλαια δὲ εἶχε τρία μὲν ὑπὸ τῇ κεφαλῇ | ||
| ὑπὸ πάντων , θαμνίσκιον φρυγανοειδές , φυλλαρίοις στενοῖς καὶ πολλοῖς περιειλημμένον , ἔχον ἐπ ' ἄκρου κεφάλια ἄνθους πορφυρίζοντα . |
| ἀναλογεῖ τῇ ἐπιστήμῃ , ἡ δὲ τῇ πίστει καὶ τῇ παρωνύμῳ δόξῃ . ἀβουλήτως οὖν οἱ ῥήτορες καὶ οἱ τύραννοι | ||
| τὴν γένεσιν αὐτὸς ἔσχε : διόπερ συμβαίνει αὐτῷ πρὸς τῷ παρωνύμῳ μέρει ἔτι καὶ ἑτερώνυμον ἢ ἑτερώνυμα κεκτῆσθαι , τὸ |
| ϲταθμῷ δὲ ⋖ ξʹ . Ὁ ξέϲτηϲ μέτρῳ μὲν ἔχει κοτύλαϲ βʹ , ϲταθμῷ δὲ ⋖ ρκʹ . καλεῖται δὲ | ||
| ηʹ . Ὁ χοῦϲ ἔχει ξέϲταϲ Ϛʹ . Ὁ ξέϲτηϲ κοτύλαϲ βʹ , αἳ καὶ [ τρίβανα ἢ ] τρυβλία |
| . ποτήματα δὲ τούτοιϲ ἁρμόζει ὄξουϲ κύαθοϲ α μετὰ κεδρίαϲ κυάθου α καὶ χυλοῦ κράμβηϲ ὠμῆϲ κύαθοι β : μιγέντα | ||
| δὲ ἐκ τοῦ αὐτοῦ ποτηρίου κατὰ μικρόν , οὐ πλεῖον κυάθου : πυκνότερον δὲ τοῦτο ποιοῦσι . περιφέρει δὲ ὁ |
| παίωνα δεύτερον ἔχει ἀντὶ ἰωνικοῦ . τὸ ηʹ τροχαϊκὸν καθαρὸν ἰθυφαλλικόν . ἐπὶ τῷ τέλει τῆς τε στροφῆς καὶ ἀντιστροφῆς | ||
| ἐκ παίωνος βʹ καὶ χοριάμβου : τὸ δὲ γʹ τροχαϊκὸν ἰθυφαλλικόν : τὸ εʹ ἰαμβικὸν πενθημιμερές : τὸ δὲ ζʹ |
| παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν ψκθʹ . Ἐὰν οὖν τις λέγῃ ὅτι Οἱ ρʹ πήχεις | ||
| προσαυξηθέντες ἑπτὰ ἀριθμοὶ ποιοῦσι τὸν δεύτερον τετράγωνον καὶ κύβον τὸν ψκθʹ , αʹ γʹ θʹ κζʹ παʹ σμγʹ ψκθʹ . |
| ποταμοῦ κελάδοντος Ἀράξεω Φάσιδι συμφέρεται ἱερὸν ῥόον , οἱ δὲ συνάμφω Καυκασίην ἅλαδ ' εἰς ἓν ἐλαυνόμενοι προρέουσιν : δείματι | ||
| γὰρ ἂν ἐφαρμόττοι τῷ δὶς γενέσθαι τὴν παλίρροιαν κατὰ τὸν συνάμφω χρόνον , τὸν ἐξ ἡμέρας καὶ νυκτός , ἢ |
| ὡς τρία τεταρτημόρια ἔχοντας . ὅτι δὲ τοὺς ἓξ χαλκοῦς τριτημόριον ὠνόμαζον , ἔστιν εὑρεῖν ἐν τῷ Φιλήμονος Σαρδίῳ : | ||
| τριτημόριον , πρὸς δὲ τῷ λιβυκῷ ὁρίζοντι κατὰ τὸ τελευταῖον τριτημόριον . Αἱ δὲ κατὰ μέρος ἀνέσεις καὶ ἐπιτάσεις ληφθήσονται |
| μαθηματικῶς ἐπιχειρεῖν , οἷον περὶ τῶν τεττάρων στοιχείων γεωμετρικῶς ἢ ἀριθμητικῶς ἢ ἁρμονικῶς , καὶ περὶ τῶν ἄλλων ὡσαύτως . | ||
| γʹ τῷ δʹ : καὶ οὕτω διῃρημένα μὲν ἀνάλογον ἔχει ἀριθμητικῶς : ἡ αὐτὴ γὰρ ὑπεροχὴ τοῦ δʹ πρὸς τὸ |
| πρῶτος λόγος τρίτων , ἐπιτριμερὴς δὲ ὁ δεύτερος τετάρτων καὶ ἐπιτετραμερὴς ὁ τρίτος πέμπτων καὶ ἑξῆς ὁμοίως . Αἱ δὲ | ||
| : ἐπιδιμερὴς γὰρ ἡ πρώτη , εἶτ ' ἐπιτριμερὴς καὶ ἐπιτετραμερὴς καὶ ἑξῆς ἀκολούθως : αἱ δὲ πολλαπλασιεπιμόριοι ἀντιπεπονθότως δὶς |
| τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
| τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
| ἀπὸ τῶν αγ , γδ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , ἔτι δὲ διαιρεθῇ καὶ εἰς ἀνίσους ἀριθμούς | ||
| γβ τετραγώνῳ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , διαιρεθῇ δὲ καὶ εἰς ἀνίσους ἀριθμούς , ὁ ἐκ τῶν |
| διὰ πασῶν , τόνων ἕξ , οἷόν ἐστι τὸ ἀπὸ προσλαμβανομένου ἐπὶ μέσην : τέταρτον δὲ τὸ διὰ πασῶν καὶ | ||
| τρίτη συνημμένων , τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ |
| , ὃ δηλοῖ τὸ δαψιλῶς , τινὲς μὲν διὰ δύο δδ ἐκφέρουσιν , ἄλλοι δὲ δι ' ἑνός . ἀδηφάγος | ||
| ” . οἱ Μεγαρεῖς δὲ τρέπουσι τὸ ζ εἰς δύο δδ . Γ ἀκούετον δή , ποτέχετ ' ἐμὶν τὴν |
| ἐννέα , καὶ ἡ ἐπῳδὸς κώλων ἐννέα . τὸ αʹ ἐγκωμιολογικὸν δίμετρον καταληκτικόν . τὸ βʹ προσοδιακὸν δίμετρον ἀκατάληκτον ἐκ | ||
| ἡ στροφὴ καὶ ἀντίστροφος κώλων ὀκτώ . τὸ αʹ Πινδαρικὸν ἐγκωμιολογικὸν , τὴν τελευταίαν συλλαβὴν μεταθὲν εἰς τὴν πρώτην . |
| τὸ ἴσον λέγεται διχῶς , κατὰ ἕνα μὲν τρόπον τὸ ἰσομέγεθες καὶ μήτε ὑπερέχον ἐκείνου τοῦ ᾧ λέγεται ἴσον μήτε | ||
| Ἴσον , ἰσάριθμον , ἰσοπληθές , ἰσοτελές , ἰσόμηκες , ἰσομέγεθες , ἰσομέτρητον , ἰσοστάσιον , ἰσόσταθμον , ἰσόνομον , |
| σῴαν ἔχων τὴν φρόνησιν καὶ ταῖς ἀρεταῖς ἁπάσαις κοσμούμενος , εἰδικῶς δ ' ἂν λέγοιτο σώφρων ὁ τοῖς κατὰ γεῦσιν | ||
| ἐπὸς γάρ ἐστιν ἀπὸ τοῦ ἐπεῖναι κατὰ τὴν ἀποτομήν . εἰδικῶς μέντοι Ὅμηρος οἶδεν ὀπόν τινα λεγόμενον , ὡς ὅταν |