πάλιν τοῦ περιττοῦ τὸν μὲν πρῶτον τὸν ὑπὸ μονάδος μόνον μετρούμενον ὡς τὸν τρία , τὸν ζ , τὸν δὲ
: ὥσπερ γὰρ λέγεται καὶ τὸ μέτρον ξέστης καὶ τὸ μετρούμενον , οὕτως ἔφασκον καὶ τὰ νοητὰ καὶ τὰ αἰσθητὰ
8113947 μετρουν
† ) ἀντὶ τοῦ δαπάνης , τροφῆς , τό τε μετροῦν καὶ τὸ μετρούμενον . ἅπαξ ἐνταῦθα ἡ φωνή :
μαχόμενα : αὔταρκες δὲ νῦν ἐκεῖνο λέγειν , ὅτι τὸ μετροῦν τὴν κίνησιν ἢ τὴν μονὴν ἐν χρόνῳ γίνεται καὶ
7424593 μετρειται
ἴσον καὶ μεμετρημένον ὀργυιᾷ . * περιβάλλεται : εἰκάζεται , μετρεῖται ἔχει εἰκάζεται * ὅσσον : πλάτος αἰγανέη δὲ τὸ
ἀπὸ τῆς πυγμῆς : ἐπεὶ μὴ ὥσπερ ὁ πῆχυς προτεταμένους μετρεῖται δακτύλους , οὕτω καὶ ὁ πυγὼν , ἀλλὰ συνεστρωμμένη
7027903 ἀσυνθετοι
καὶ οἱ λοιποί . λέγονται οὕτως ἐκεῖνοι μὲν πρῶτοι καὶ ἀσύνθετοι , ἐπειδὴ ὑπὸ μόνης τῆν μονάδος μετροῦνται , ἐπεὶ
ὡσαύτως καὶ ὁ λθ καὶ ὅμως οὐκ εἰσὶ πρὸς ἀλλήλους ἀσύνθετοι , πρὸς δὲ ἑαυτοὺς σύνθετοι : ἀμφότεροι γὰρ ὑπὸ
7000099 ἀρτιακις
, καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει
ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς
6949482 ἀρτιον
ἤπερ γὰρ ἄλλος καλοῖτο ὁ ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενος κατὰ ἄρτιον ὥσπερ τὸν κδ : ὑπὸ γὰρ ἀρτίου κατὰ ἄρτιον
, ἔχων ἄρρενα μὲν τὸν περιττόν , θῆλυν δὲ τὸν ἄρτιον , ἐξ ὧν εἰσιν αἱ γενέσεις κατὰ φύσεως θεσμοὺς
6817769 μετρουμενος
οἱ Γ Δ Ε , ὧν ἕκαστος ἐλάσσων μὲν ἑκατοντάδος μετρούμενος δὲ ὑπὸ δεκάδος , καὶ ἄλλοι πάλιν ὁσοιδηποτοῦν ἀριθμοὶ
μετρούμενοι κοινῷ μέτρῳ . Σύνθετος ἀριθμός ἐστιν ὁ ἀριθμῷ τινι μετρούμενος . Σύνθετοι δὲ πρὸς ἀλλήλους ἀριθμοί εἰσιν οἱ ἀριθμῷ
6815639 ὡριαιον
καὶ τοῦ χειμερινοῦ τροπικοῦ ἓξ ὡριαίων διαστημάτων τὸ μὲν πρῶτον ὡριαῖον διάστημα ἐπὶ τοῦ περὶ μέσας τὰς Χηλὰς κύκλου ἀφορίζει
ἑπόμενος τῶν ἐπ ' εὐθείας τριῶν . Τὸ δὲ τρίτον ὡριαῖον διάστημα ἀφορίζει περὶ μέσον τὸν Ταῦρον τῶν ἐν τῇ
6812579 ἑπταγωνος
τὸ πρῶτον αʹ . ὁ δ ' ὑπ ' αὐτὸν ἑπτάγωνος ὁ ιηʹ ἐκ τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ ιεʹ
τρίγωνον τὸν γʹ . ὁ δ ' ὑπ ' αὐτὸν ἑπτάγωνος ὁ λδʹ σύστημά ἐστι τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ
6803880 ὑποπολλαπλασιον
τελείως : οὐ γὰρ δύνασαι εἰπεῖν τὸν γ τοῦ η ὑποπολλαπλάσιον : οὐδὲ γὰρ ἔχει λόγον πρὸς αὐτόν : τρὶς
ἐλάττονος κατὰ ἀντιπεπόνθησιν μετὰ τῆς ὑπό προθέσεως τὸ μέν ἐστιν ὑποπολλαπλάσιον τὸ δὲ ὑποεπιμόριον τὸ δὲ ὑποεπιμερές , δύο δὲ
6794104 περισσου
πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος
. Καὶ μὴν εἰς δύο διαιρουμένων ἴσα , τοῦ μὲν περισσοῦ μονὰς ἐν μέσῳ περίεστι , τοῦ δὲ ἀρτίου κενὴ
6777517 πενταπλασιος
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν
6768914 ἐναρμονιου
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ .
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων ,
6767903 ἐπιτεταρτος
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως .
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ '
6735060 συντεθεντων
μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν
ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν
6731866 ἀσυνθετον
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις
6729178 ἡμιτονιου
περὶ τὰ ἀναγκαῖα . ὀρθογωνίου μὲν γὰρ τριγώνου ἢ διέσεως ἡμιτονίου οὐδεμίαν φύσει ἔννοιαν ἥκομεν ἔχοντες , ἀλλ ' ἔκ
ἀλλήλων τετάρτους τὸν διὰ τεσσάρων ἀλλήλοις διόλου συμφωνεῖν , τοῦ ἡμιτονίου κατὰ μετάβασιν τήν τε πρώτην καὶ τὴν μέσην καὶ
6668196 πεντακις
ἴσα ἐστὶ τῷ ἀπὸ τῆς ΓΒ τετραγώνῳ : τὰ γὰρ πεντάκις πέντε εἰκοσιπέντε . Ἔστω ἡ ΑΒ εὐθεῖα μονάδων ι
ΓΔΕ : τὸ ἄρα ἐννάκις ὑπὸ ΓΔΕ μεῖζόν ἐστιν τοῦ πεντάκις ὑπὸ ΓΔΕ καὶ τοῦ πεντάκις ὑπὸ ΔΓΕ , τουτέστιν
6604694 διατονον
συντονωτάτῳ διατόνῳ , δύο ἔσται μεγέθη μόνα ἐξ ὧν τὸ διάτονον συνεστηκὸς ἔσται . ἐὰν δὲ τὰ μὲν δύο ἴσα
καὶ δίεσιν καὶ δίτονον κινοῖτο , ἐναρμόνιον ποιεῖ γένος . διάτονον μὲν οὖν λέγεται , ἐπειδὴ κατὰ τὸ πλεῖον διὰ
6574481 ἡμιολιον
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον
6571569 τετραπλασιον
' εὐθέως ἐξ ἀρχῆς οὕτως σκευάζειν : τῷ ὀξυμέλιτι μιγνύσθω τετραπλάσιον ὕδατος καλλίστου , κἄπειτα ἑψείσθω μετρίως , ἕως ἂν
ΚΓ , διπλῆ ἄρα καὶ ἡ ΘΚ τῆς ΚΓ . τετραπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΘΚ τοῦ ἀπὸ τῆς
6566403 μετρουμενοι
πρῶτοι ἀριθμοὶ καὶ οὐ καθ ' αὑτοὺς οἱ κοινῷ μέτρῳ μετρούμενοι τῇ μονάδι , κἂν ὑπ ' ἄλλων τινῶν ἀριθμῶν
μὴ μετρούμενοι ὅλως πρῶτοι καὶ ἀσύνθετοι , οἱ δὲ ἅπαξ μετρούμενοι πρὸς μὲν ἑαυτοὺς σύνθετοι , πρὸς δὲ ἀλλήλους ἀσύνθετοι
6547620 ἑκατονταδος
Ὅτι δὲ περιλέλειπται τῶν ἀναλόγων δύο , ἅπερ ἐστὶ τῆς ἑκατοντάδος , τοσαυτάκις αὐξήσομεν τὸν εἰρημένον ἀριθμόν , ὥστε εἶναι
ὁ μὲν Α ὑποκείσθω ἐλάσσων μὲν χιλιάδος μετρούμενος δὲ ὑπὸ ἑκατοντάδος , οἷον μονάδες φʹ , ὁ δὲ Β ἐλάσσων
6534951 διτονον
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ
6526859 τριπλασιον
αη ηβ : καὶ ἐπεὶ τὸ γδ τοῦ εζ ἐστι τριπλάσιον , ἴσον δὲ τὸ αη τῷ γδ , καὶ
, πρῶτον διπλάσιον ἐν ἑνὶ στίχῳ , εἶτα ἐν δευτέρῳ τριπλάσιον , εἶτα τετραπλάσιον ἐν τρίτῳ καὶ μέχρι δεκαπλασίων ,
6516473 ἑκατονταδων
' ὧν τὰ Β στερεὸς ἴσος ἐστὶν τῷ διὰ τῶν ἑκατοντάδων στερεῷ ἐπὶ τὸν ἐκ τῶν πυθμένων στερεόν , τουτέστιν
καὶ τεσσαράκοντα γίνονται ἑκατόν , ὁμοίως δὲ καὶ χιλιάδα ἐξ ἑκατοντάδων καὶ μυριάδα ἐκ χιλιάδων , μονὰς δὲ καὶ δεκὰς
6504835 μετρεισθω
ἀριθμούς . Γεγονέτω , καὶ ὁ διπλάσιος τοῦ πλήθους αὐτῶν μετρείσθω πρότερον ὑπὸ τετράδος , καὶ ὑποκείσθω ὑπὸ ἕκαστον τῶν
, σύνθετός ἐστιν . μετρηθήσεται ἄρα ὑπὸ ἀριθμοῦ τινος . μετρείσθω ὑπὸ τοῦ Γ . ὁ Γ ἄρα τοῦ Β
6502374 ἡμιτονιον
τὸν αὐτὸν ἔλθῃ δεύτερον φθόγγον , εἶτα πάλιν ἀπὸ τοῦδε ἡμιτόνιον διαστήσασα τρίτον ὁρίσῃ φθόγγον ἄλλον , ἀπὸ τούτου κατὰ
νήτην διεζευγμένων τόνος , ἀπὸ νήτης διεζευγμένων ἐπὶ τρίτην ὑπερβολαίων ἡμιτόνιον , ἀπὸ τρίτης ὑπερβολαίων ἐπὶ ὑπερβολαίων διάτονον τόνος ,
6492889 ἡμισεος
δοθέντας ἀριθμούς . Δεῖ δὴ τῶν εὑρισκομένων τὸν ἀπὸ τοῦ ἡμίσεος τοῦ συναμφοτέρου τετράγωνον τοῦ ὑπ ' αὐτῶν ὑπερέχειν τετραγώνῳ
προσοδιακὸν τρίμετρον βραχυκατάληκτον ἐξ Ἰωνικοῦ ἀπὸ μείζονος , χοριάμβου καὶ ἡμίσεος ποδὸς ἀδιαφόρου . Τὸ ηʹ ἰαμβικὸν δίμετρον ἀκατάληκτον :
6455743 ἀσυνθετος
ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ
ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν
6445362 ἐννακις
μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β
τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο
6443707 κοτυλης
τοῦ ἐκκρεμαμένου ἀπωθέοι ἂν τὴν κεφαλὴν τοῦ μηροῦ ἀπὸ τῆς κοτύλης . Τὴν μέντοι ξὺν τῷ ξύλῳ τῷ ὑποτεινομένῳ μόχλευσιν
ἁλὸς ⋖ Ϛ . τὰ ξηρὰ τρίψας καὶ ἐπιχέας ἐλαίου κοτύλης ἥμισυ πάντα ὁμοῦ ἕψει , καὶ γενομένων ἐμπλαστῶν χρῶ
6434762 ἐπιτεταρτου
δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον
, ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ
6429956 ἐπογδοον
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν
6422204 μετρεισθαι
, πάντα δὲ ἄρτιον ἀριθμὸν ἐνδέχεται ἢ ὑπὸ μόνου ἀρτίου μετρεῖσθαι ἢ ὑπὸ ἀρτίου καὶ περιττοῦ , τὸν δὲ περιττὸν
ποτὲ μὲν τοῖς παίωσι καθαροῖς , ποτὲ δὲ τοῖς κρητικοῖς μετρεῖσθαι : αὔξεται δὲ μέχρι τετραμέτρου : τινὲς δὲ καὶ
6416053 λυδιον
γὰρ ᾔδεισαν τόν τε δώριον καὶ τὸν φρύγιον καὶ τὸν λύδιον ἑνὶ τόνῳ διαφέροντας ἀλλήλων , ὡς μὴ φθάνειν ἐπὶ
τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν ἤρξαντο ἐθνῶν ὀνομασίας ,
6388683 μισχον
τῆς σκίλλης καὶ τοῦ βολβοῦ , τὰ δ ' ἔχοντα μίσχον . καὶ τὰ μὲν μακρόν , οἷον ἡ ἄμπελος
καὶ λεπτὸς φόρτος . ἕσμα : Ἀριστοτέλης , ὅπερ Θεόφραστος μίσχον . ἔστι δὲ ὁ αὐχὴν τοῦ καρποῦ τῶν ἀκροδρύων
6375739 χιλιαδος
ὁπλίτῃσι καὶ ψιλοῖσι τοῖσι μαχίμοισι ἕνδεκα μυριάδες ἦσαν , μιῆς χιλιάδος , πρὸς δὲ ὀκτακοσίων ἀνδρῶν καταδέουσαι . Σὺν δὲ
Ἴβηρος ” . ἀφ ' οὗ παρὰ Κουαδράτῳ ἐν Ῥωμαϊκῆς χιλιάδος εʹ ἐστὶν Ἰβήροισιν οὕτως ” καί τοι Λίγυσί θ
6373222 περισσακις
; εἰ γὰρ μετρήσει αὐτὸν περισσάκις , ἔσται ὁ Α περισσάκις περισσός , πᾶς δὲ περισσάκις περισσὸς ἥμισυ οὐκ ἔχει
τε γὰρ ἀρτίου ἀρτιάκις μετρεῖται καὶ ὁ αὐτὸς ὑπὸ ἀρτίου περισσάκις , οὐδετέρῳ δὲ τῶν προτέρων τοῦθ ' ἅμα συμβέβηκεν
6368160 χοευς
ᾧ μετροῦμεν , οἷον ἡ χοῖνιξ ἡ ξυλίνη καὶ ὁ χοεὺς ὁ κεράμειος , καὶ τὸ μετρούμενον ἀπ ' αὐτῶν
φίλον . τοῦ διξέστου . χοὺς γὰρ δύο ξέσται , χοεὺς δὲ ἕξ . καταρᾶσθε . ὅσαις δὲ προσήκει τὰ
6363105 ͵αρνβ
λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε
' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ
6358366 διπηχυ
ὡρισμένα , τὰ δὲ ἀόριστα : ὡρισμένα μὲν ὡς τὸ δίπηχυ καὶ τὸ τρίπηχυ , ἃ καὶ κυρίως ποσά ἐστιν
, λεῖος , πάχος δακτύλου , τὸ δ ' ὕψος δίπηχυ , γόνασι διειλημμένος , ἐκ διαστημάτων μειζόνων περικείμενος τὰ
6337457 ἐπιμερες
ἦν πρῶτον τὸ διπλάσιον , εἶτα τὸ ἐπιμόριον καὶ τὸ ἐπιμερὲς καὶ τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ
ε : τὸ γὰρ μεῖζον ἢ πολλαπλάσιον ἢ ἐπιμόριον ἢ ἐπιμερὲς ἢ πολλαπλασιεπιμόριον ἢ πολλαπλασιεπιμερές : ὡσαύτως καὶ τὸ ἔλαττον
6328429 λιχανου
, διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ
, οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων
6321784 ὑπολογων
πολλαπλάσιον καὶ ἐπιμόριον καὶ ἐπιμερὲς καὶ πολλαπλασιεπιμόριον καὶ πολλαπλασιεπιμερές , ὑπολόγων δὲ τῶν ἴσων μετὰ τῆς ὑπό προθέσεως ὀνομαζομένων .
τινα ἄλλον λόγον . διότι γὰρ ἰσάκις εἰσὶν ὑπερέχοντες τῶν ὑπολόγων οἱ πρόλογοι , διὰ τοῦτο καὶ ἐναλλὰξ ἀνάλογόν εἰσιν
6305349 σταθμου
τὰ γένη μακρὸν ἐπεφαίνετό μοι δηλοῦν : τὸ δὲ τοῦ σταθμοῦ πλῆθος εἰς μύρια τάλαντ ' ἀργυρίου τὴν σύμπασαν εἶχε
, εἰ καὶ κατὰ σχῆμα διαφέροι [ διαφέρει ] , σταθμοῦ ἂν ἐπὶ μεγέθει τὴν φύσιν ἔχειν . οὐ μὴν
6301203 σνϚ
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨
6300600 ͵αψκη
καὶ δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος
κδʹ καὶ ἁρμονικὸς τῶν τελευταίων διαστημάτων : ὑπερέχει δὲ αὐτοῦ ͵αψκη . ὁ δ ' αὐτὸς κατ ' ἀριθμητικὰν μέσος
6300163 ἀρτιου
ἰδέα οὐδέποτε ἥξει . Οὐ δῆτα . Ἄμοιρα δὴ τοῦ ἀρτίου τὰ τρία . Ἄμοιρα . Ἀνάρτιος ἄρα ἡ τριάς
τοιούτοις . ἔοικε γὰρ ὁ γεωμέτρης πάντα ἀριθμὸν τὸν ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενον κατὰ ἄρτιον ἀριθμὸν ἀρτιάκις ἄρτιον ὀνομάζειν ,
6288984 διακεκριμενου
, ἀφ ' οὗ μὴ προῆλθεν . Ἔτι τὸ διακεκριμένον διακεκριμένου διακέκριται , ὡς τὸ ἕτερον ἑτέρου ἕτερον . Εἰ
μὲν τοῦ συνεχοῦς τὸ μετρεῖν λέγεται , ἐπὶ δὲ τοῦ διακεκριμένου τὸ ἀριθμεῖν . . ἄρνες μὲν οἱ νέοι ,
6278585 διαστημα
τὰς τάξεις τάσσειν , ἵνα μὴ ὡς κονδότεραι καὶ ὀλίγον διάστημα κρατοῦσαι μὴ δύνανται εὐκόλως τὰ κυνήγια περιλαμβάνειν , μήτε
οἷόν τε ὑπὸ ὄντος κατέχεσθαι μὴ κατεχόμενον δέ , ἢ διάστημα ἔρημον σώματος , ἢ διάστημα ἀκαθεκτούμενον ὑπὸ σώματος ,
6274155 πολλαπλασιεπιμοριον
τὸ γὰρ μεῖζον ἢ πολλαπλάσιον ἢ ἐπιμόριον ἢ ἐπιμερὲς ἢ πολλαπλασιεπιμόριον ἢ πολλαπλασιεπιμερές : ὡσαύτως καὶ τὸ ἔλαττον μετὰ τῆς
πᾶς δὲ ἀριθμὸς πρὸς ἅπαντα λόγον ἔχει ἢ πολλαπλάσιον ἢ πολλαπλασιεπιμόριον ἢ ἐπιμερῆ ἢ καθ ' ἕνα τινὰ λόγον ,
6270090 μεδιμνος
ἀποκρίνασθαι ” μύριοί εἰσιν ἀριθμόν , ἀτὰρ μέτρον „ γε μέδιμνος : εἷς δὲ περισσεύει , τὸν ἐπενθέμεν οὔ κε
ἀπομάκτρα , σκυτάλη , περιστροφίς , μαγίς , χοῖνιξ , μέδιμνος ἡμιμέδιμνος , ἑκτεύς , καὶ παρ ' Ἀλκαίῳ τῷ
6251139 διεσεων
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος
6234341 τριακις
τε δίς καὶ τρίς , ἐκ δὲ τοῦ δυάκις καὶ τριάκις συγκεκόφθαι , ἐπειδὴ τὰ εἰς ς λήγοντα μετὰ βραχείας
ριδ . Ἐπεὶ μο εἰσὶν αἱ ιη , εἰκοσάκις καὶ τριάκις τὰ ιη γίνεται υιδ : ἡ δὲ λεῖψις τῶν
6228889 ἀρτιοπερισσου
φυσικώτατα ἔκ τε τῆς ἀπείρου καὶ περαινούσης καὶ ἐκ τῆς ἀρτιοπερίσσου φύσεως καὶ αὐτὴ καὶ τὰ μέρη αὐτῆς πάντα .
' ἡμῶν λεχθεῖσαν ἰδιότητα . ἐπεὶ γὰρ αὕτη οὐ μόνον ἀρτιοπερίσσου τῆς μονάδος ἐναργές ἐστι πρὸ τῶν ἄλλων ὁμοίωμα ,
6225066 ἐπιτριτον
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ
6219484 ͵ακδ
συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε
ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη
6213584 πηχυαιον
δεκάπηχυ διάστημα ἐν ἑνὶ ἀμερεῖ διέρχεται χρόνῳ , τὸ λειπόμενον πηχυαῖον διάστημα τῆς αὐτῆς οὔσης κινήσεως ἐν δεκάτῳ μέρει τοῦ
δίπηχυ κατὰ πύκνωσιν , ἔφην , ἐπωνόμασται , τὸ δὲ πηχυαῖον κατὰ συνασπισμόν . γίνεται δὲ ἡ μὲν πύκνωσις ,
6212838 ἀρκτικον
τοιαύτας παραχωρήσεις , ὥστε οὐκ ἂν εἰδείης ὅπου ἐστὶ τὸ ἀρκτικὸν κλίμα , οὐδ ' εἰ ἀρχὴν ἐστίν : εἰ
διδάσκει ὡς Ἴωνες , ὅταν ἀναδιπλῶσι ῥήματα , τὸ αὐτὸ ἀρκτικὸν ποιοῦνται πρώτης καὶ δευτέρας συλλαβῆς , λαβέσθαι λελαβέσθαι ,
6206338 δυαδων
μονάδες ὡς ὅλον ταῖς δυσὶ δυάσιν , ἢ ἑκατέρα τῶν δυάδων ταῖς τέσσαρσι μονάσι καθάπαξ οὐκ ἴσαι . καὶ πάλιν
δὲ προστάγμασι τούτοις πάλιν ἀπὸ ἰσότητος πρῶτον ἐκ μονάδων εἶτα δυάδων εἶτα τριάδων καὶ ἐφεξῆς : πρῶτον ἐκ πρώτου καὶ
6188319 φοϚ
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς
6162513 παλαιστων
ἐν τῷ κυλίειν τὴν κόπρον . ὁμοῦ μὲν ὡς τῶν παλαιστῶν ἀδηφαγούντων , ὁμοῦ δὲ τῷ ἐπιφερομένῳ οἰκείως τῶν παλαιστῶν
κονίσαι , τουτέστι νικῆσαι : κονιορτοῦνται γὰρ οἱ νικώμενοι τῶν παλαιστῶν . οὕτω Μεθόδιος . . . . ἀκοῦμαι καὶ
6160799 τετραδος
, ταύτην προτάττει , ἐπείπερ ἀπὸ μονάδος συντιθέντες μέχρι τῆς τετράδος πρώτως τὸν δέκα ἀριθμὸν ποιοῦμεν , οἷον ἓν δύο
ἄλλων θεῶν ἁψόμεθα συνουσιῶν ἐν τούτῳ δὴ τῷ μηνὶ τῆς τετράδος τὰ πρῶτα δεχομένης . Ἦλθον αὖθις ἡμῖν ἐπιστολαὶ παρ
6153183 τετρακις
† φεύξεσθαι ὀΐομαι αἰπὺν ὄλεθρον . τρὶς μάκαρες μέντοι καὶ τετράκις οἱ μὴ ἔχοντες μήτε κατατρώξαντες ἐνὶ σχολῇ ὅσς '
οὖν τούτων ἐχόντων , φαμὲν οὕτως , πεντάκις παρεγένετο , τετράκις παρεγένετο , οὐ μὴν ἔτι οὕτως , πέντε παρεγένετο
6148270 πολλαπλασιαζομενος
: τοῦτον γὰρ μετρεῖ μετὰ τὸν ιε ἐφ ' ἑαυτὸν πολλαπλασιαζόμενος : πεντάκις γὰρ ε κε . τὸν δὲ τρίτον
, ὅσαι εἰσὶν ἐν αὐτῷ μονάδες , τοσαυτάκις συντεθῇ ὁ πολλαπλασιαζόμενος , καὶ γένηταί τις . Ὅταν δὲ δύο ἀριθμοὶ
6147757 μοναδος
οὐ γεννᾶι οὔτε γεννᾶται ὑπ ' ἄλλου ἀριθμοῦ πλὴν ὑπὸ μονάδος : διὸ καὶ καλεῖται ὑπὸ τῶν Πυθαγορείων παρθένος ἀμήτωρ
ιη , καὶ α καὶ ιθ . ἐπὶ μέντοι τῆς μονάδος οὐκέτι τοῦτο , ἀλλὰ τοῦ μὲν μετ ' αὐτὴν
6146878 πολλαπλασιαζεσθαι
πλευρὰς ἔχουσιν , [ ὡς ἀριθμοὺς τρεῖς ἴσους ἐπὶ ἴσους πολλαπλασιάζεσθαι , ] οἱ δὲ ἀνίσους . τούτων δ '
πλεῖον , ἀλλὰ ἐκ τοῦ αὐτὸν καθ ' αὑτὸν μὴ πολλαπλασιάζεσθαι , ἀλλ ' ὑπὸ ἑνὸς καὶ ἑτέρου , οἷον
6140888 ὑπατης
ἡ δὲ σελήνη ἑβδόμη οὖσα τάξιν ἐπέχει φθόγγου τοῦ λεγομένου ὑπάτης μέσης . τὸ δὲ ἀπὸ γῆς διάστημα μέχρι τῆς
ἔχει λόγον , τὸν δὲ βαρὺν τὸν Κρόνον , εἴπερ ὑπάτης . Οἱ δὲ δὴ πρῶτοι ἀπὸ τῶν πρὸς ἡμᾶς
6126973 τπδ
, τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ
δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ
6126546 μεμετρημενον
ὄντιἢ ἐν μεμετρημένῳ : ἀλλ ' οὐχ οἷόν τε τὸ μεμετρημένον ἀμετρίαν ἔχειν καθ ' ὃ μεμέτρηται . Καὶ οὖν
ἀκρίτοις καὶ ἀφειδέσι μεγαλοδωρίαις ἐντρυφᾶν τὴν ἐς τὸ σωφρονέστερον καὶ μεμετρημένον διὰ σπάνιν χρημάτων μεταβολὴν οὐ φειδὼ σώφρονα οὐδὲ σύμμετρον
6126488 παρυπατης
, οὗ αἱ διέσεις ἐφ ' ἑκάτερα τοῦ διατόνου ἀπὸ παρυπάτης μέσων ἐπὶ τρίτην συνημμένων , τρίτον δέ , οὗ
μὲν ὑπάτης καὶ παρυπάτης διάστημα ἡμιτονιαῖόν ἐστι , τὸ δὲ παρυπάτης καὶ λιχανοῦ ἐννέα δωδεκατημορίων ἀσύνθετον λαμβανομένων . δεύτερον δὲ
6118871 ἀρτιοι
καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ ,
δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις
6118435 ἀπαρτιζοντως
ὑπάρχειν ὁ πᾶς χρόνος λέγεται οὐδενὸς αὐτοῦ τῶν μερῶν ὑπάρχοντος ἀπαρτιζόντως . Ποσειδώνιος : τὰ μέν ἐστι κατὰ πᾶν ἄπειρα
ὁ η ἀριθμός . ὁ μὲν οὖν τρία τὸν θ ἀπαρτιζόντως μετρεῖ : τρὶς γὰρ συντεθεὶς αὐτὸν μεμέτρηκεν . ὑπερβαίνει
6113941 διῃρημενον
εἴδη διαιρεθῆναι δυνάμενον , εἶδος δὲ τὸ ἀπὸ τοῦ γένους διῃρημένον , οἷον εἴ τις λέγοι ζῷον γένος , εἴδη
πλινθίου . ἦν γὰρ τὸ ἄνω περίτρητον εἰς δύο μέρη διῃρημένον , τὸ δὲ πλινθίον καθάπερ καὶ τὰ ἄλλα πλινθία
6102987 εὐεπες
ἁρμογήν : τὸ γὰρ ἐν χορὸν καὶ ἀντίτυπον καὶ οὐκ εὐεπές , τοῦ μὲν συνδέσμου λήγοντος εἰς ἡμίφωνον στοιχεῖον τὸ
τέχνην : τὸ γὰρ ἐν χορόν καὶ ἀντίτυπον καὶ οὐκ εὐεπές , τοῦ μὲν συνδέσμου λήγοντος εἰς τὸ ν ,
6102556 ὀκτακις
αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ
ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους .
6093226 γραμμηϲ
τινὲϲ δὲ τὸν ξέϲτην διὰ τοῦ ξ τεμνούϲηϲ αὐτὸ εὐθείαϲ γραμμῆϲ δηλοῦϲι , # τὸ δὲ η ἔχον ἐπικείμενον τὸ
τοῦ γ πληϲίον ἔχοντοϲ τὸ ρ τεμνόμενον ὑπό τινοϲ εὐθείαϲ γραμμῆϲ , γϼ . αἱ δὲ δύο γραμμαὶ ϲυνάπτουϲαι κατὰ
6088831 ὀξυβαφου
πληρωθέν πλῆρες * χάδοι : πίοι συνέχοι * ὀξυβάφοιο : ὀξυβάφου δὲ μέτρον ἐχέτω τὸ ἱπποσέλινον ἐχεπευκέος ἤγουν πικρᾶς ,
καὶ τὰ φύλλα ξηρά , λεῖα ἐπιπασθέντα μελικράτῳ ὅσον ἥμισυ ὀξυβάφου . ἡ δὲ χαμελαία καθαίρει μὲν φλέγμα καὶ χολήν
6083575 συνθετοι
κράσεων ἐννέα διαφοροὶ , τέσσαρες μὲν ἁπλαῖ , τέσσαρες δὲ σύνθετοι , καὶ πρὸς τούτοις ἡ εὔκρατος . καὶ τῶν
σῴζειν τὰς ἀναλογίας . Τῶν ῥυθμῶν τοίνυν οἱ μέν εἰσι σύνθετοι , οἱ δὲ ἀσύνθετοι , οἱ δὲ μικτοί ,
6076765 φθογγου
καὶ τρίτον γένος μελῳδίας ἐναρμόνιον , ἐπειδὰν ἀπὸ τοῦ βαρυτάτου φθόγγου κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον ἡ φωνὴ προελθοῦσα
οἷον σφραγῖδα σφραγῖδι ἐπιβάλλων ἐναργῆ μᾶλλον καὶ εὔδηλον , οὐδενὸς φθόγγου ἀπεχόμενος , ἀλλὰ ἔμβραχυ ποταμῶν τε μιμούμενος φωνὰς καὶ
6067066 σμγ
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ
6060163 ἡμιεκτεον
χοίνικες , δʹ χοινίκων ἐστίν , τὸ δυσχερέστατον μέτρον . ἡμιεκτέον ] τὸ ἥμισυ τῶν ὀκτώ , τὸ ἥμισυ τοῦ
ἐν Μυρμιδόσι . σκυλάκια σιαλώδεα : κύνεια κρέα λιπαρά . ἡμιεκτέον : τὸ ἥμισυ τοῦ ἑκτέως . ἑκτεὺς δὲ λέγεται
6054661 ἡμιτονιων
κατ ' αὐτὸ διατείνεται , χρῶμα δὲ τὸ δι ' ἡμιτονίων συντεινόμενον . ὡς γὰρ τὸ μεταξὺ λευκοῦ καὶ μέλανος
πρότερον διάγουσα διὰ πασῶν , τὸ δὲ δεύτερον διὰ τῶν ἡμιτονίων αὐξήσασα . ►α ※ β γ δ ε Ϛ
6052895 περιειλημμενον
πολυτελῶν . ἐπεβέβλητο δ ' αὐτῷ πορφυροῦν ἀμφίταπον ἀμοργίνῳ καλύμματι περιειλημμένον . προσκεφάλαια δὲ εἶχε τρία μὲν ὑπὸ τῇ κεφαλῇ
ὑπὸ πάντων , θαμνίσκιον φρυγανοειδές , φυλλαρίοις στενοῖς καὶ πολλοῖς περιειλημμένον , ἔχον ἐπ ' ἄκρου κεφάλια ἄνθους πορφυρίζοντα .
6051878 παρωνυμῳ
ἀναλογεῖ τῇ ἐπιστήμῃ , ἡ δὲ τῇ πίστει καὶ τῇ παρωνύμῳ δόξῃ . ἀβουλήτως οὖν οἱ ῥήτορες καὶ οἱ τύραννοι
τὴν γένεσιν αὐτὸς ἔσχε : διόπερ συμβαίνει αὐτῷ πρὸς τῷ παρωνύμῳ μέρει ἔτι καὶ ἑτερώνυμον ἢ ἑτερώνυμα κεκτῆσθαι , τὸ
6048691 κοτυλαϲ
ϲταθμῷ δὲ ⋖ ξʹ . Ὁ ξέϲτηϲ μέτρῳ μὲν ἔχει κοτύλαϲ βʹ , ϲταθμῷ δὲ ⋖ ρκʹ . καλεῖται δὲ
ηʹ . Ὁ χοῦϲ ἔχει ξέϲταϲ Ϛʹ . Ὁ ξέϲτηϲ κοτύλαϲ βʹ , αἳ καὶ [ τρίβανα ἢ ] τρυβλία
6048452 κυαθου
. ποτήματα δὲ τούτοιϲ ἁρμόζει ὄξουϲ κύαθοϲ α μετὰ κεδρίαϲ κυάθου α καὶ χυλοῦ κράμβηϲ ὠμῆϲ κύαθοι β : μιγέντα
δὲ ἐκ τοῦ αὐτοῦ ποτηρίου κατὰ μικρόν , οὐ πλεῖον κυάθου : πυκνότερον δὲ τοῦτο ποιοῦσι . περιφέρει δὲ ὁ
6041488 ἰθυφαλλικον
παίωνα δεύτερον ἔχει ἀντὶ ἰωνικοῦ . τὸ ηʹ τροχαϊκὸν καθαρὸν ἰθυφαλλικόν . ἐπὶ τῷ τέλει τῆς τε στροφῆς καὶ ἀντιστροφῆς
ἐκ παίωνος βʹ καὶ χοριάμβου : τὸ δὲ γʹ τροχαϊκὸν ἰθυφαλλικόν : τὸ εʹ ἰαμβικὸν πενθημιμερές : τὸ δὲ ζʹ
6041444 ψκθʹ
παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν ψκθʹ . Ἐὰν οὖν τις λέγῃ ὅτι Οἱ ρʹ πήχεις
προσαυξηθέντες ἑπτὰ ἀριθμοὶ ποιοῦσι τὸν δεύτερον τετράγωνον καὶ κύβον τὸν ψκθʹ , αʹ γʹ θʹ κζʹ παʹ σμγʹ ψκθʹ .
6037925 συναμφω
ποταμοῦ κελάδοντος Ἀράξεω Φάσιδι συμφέρεται ἱερὸν ῥόον , οἱ δὲ συνάμφω Καυκασίην ἅλαδ ' εἰς ἓν ἐλαυνόμενοι προρέουσιν : δείματι
γὰρ ἂν ἐφαρμόττοι τῷ δὶς γενέσθαι τὴν παλίρροιαν κατὰ τὸν συνάμφω χρόνον , τὸν ἐξ ἡμέρας καὶ νυκτός , ἢ
6026820 τριτημοριον
ὡς τρία τεταρτημόρια ἔχοντας . ὅτι δὲ τοὺς ἓξ χαλκοῦς τριτημόριον ὠνόμαζον , ἔστιν εὑρεῖν ἐν τῷ Φιλήμονος Σαρδίῳ :
τριτημόριον , πρὸς δὲ τῷ λιβυκῷ ὁρίζοντι κατὰ τὸ τελευταῖον τριτημόριον . Αἱ δὲ κατὰ μέρος ἀνέσεις καὶ ἐπιτάσεις ληφθήσονται
6023213 ἀριθμητικως
μαθηματικῶς ἐπιχειρεῖν , οἷον περὶ τῶν τεττάρων στοιχείων γεωμετρικῶς ἢ ἀριθμητικῶς ἢ ἁρμονικῶς , καὶ περὶ τῶν ἄλλων ὡσαύτως .
γʹ τῷ δʹ : καὶ οὕτω διῃρημένα μὲν ἀνάλογον ἔχει ἀριθμητικῶς : ἡ αὐτὴ γὰρ ὑπεροχὴ τοῦ δʹ πρὸς τὸ
6023134 ἐπιτετραμερης
πρῶτος λόγος τρίτων , ἐπιτριμερὴς δὲ ὁ δεύτερος τετάρτων καὶ ἐπιτετραμερὴς ὁ τρίτος πέμπτων καὶ ἑξῆς ὁμοίως . Αἱ δὲ
: ἐπιδιμερὴς γὰρ ἡ πρώτη , εἶτ ' ἐπιτριμερὴς καὶ ἐπιτετραμερὴς καὶ ἑξῆς ἀκολούθως : αἱ δὲ πολλαπλασιεπιμόριοι ἀντιπεπονθότως δὶς
6021506 τριαδος
τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ
τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ
6021280 διαιρεθῃ
ἀπὸ τῶν αγ , γδ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , ἔτι δὲ διαιρεθῇ καὶ εἰς ἀνίσους ἀριθμούς
γβ τετραγώνῳ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , διαιρεθῇ δὲ καὶ εἰς ἀνίσους ἀριθμούς , ὁ ἐκ τῶν
6020683 προσλαμβανομενου
διὰ πασῶν , τόνων ἕξ , οἷόν ἐστι τὸ ἀπὸ προσλαμβανομένου ἐπὶ μέσην : τέταρτον δὲ τὸ διὰ πασῶν καὶ
τρίτη συνημμένων , τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ
6014008 δδ
, ὃ δηλοῖ τὸ δαψιλῶς , τινὲς μὲν διὰ δύο δδ ἐκφέρουσιν , ἄλλοι δὲ δι ' ἑνός . ἀδηφάγος
” . οἱ Μεγαρεῖς δὲ τρέπουσι τὸ ζ εἰς δύο δδ . Γ ἀκούετον δή , ποτέχετ ' ἐμὶν τὴν
6013629 ἐγκωμιολογικον
ἐννέα , καὶ ἡ ἐπῳδὸς κώλων ἐννέα . τὸ αʹ ἐγκωμιολογικὸν δίμετρον καταληκτικόν . τὸ βʹ προσοδιακὸν δίμετρον ἀκατάληκτον ἐκ
ἡ στροφὴ καὶ ἀντίστροφος κώλων ὀκτώ . τὸ αʹ Πινδαρικὸν ἐγκωμιολογικὸν , τὴν τελευταίαν συλλαβὴν μεταθὲν εἰς τὴν πρώτην .
6013067 ἰσομεγεθες
τὸ ἴσον λέγεται διχῶς , κατὰ ἕνα μὲν τρόπον τὸ ἰσομέγεθες καὶ μήτε ὑπερέχον ἐκείνου τοῦ ᾧ λέγεται ἴσον μήτε
Ἴσον , ἰσάριθμον , ἰσοπληθές , ἰσοτελές , ἰσόμηκες , ἰσομέγεθες , ἰσομέτρητον , ἰσοστάσιον , ἰσόσταθμον , ἰσόνομον ,
6009837 εἰδικως
σῴαν ἔχων τὴν φρόνησιν καὶ ταῖς ἀρεταῖς ἁπάσαις κοσμούμενος , εἰδικῶς δ ' ἂν λέγοιτο σώφρων ὁ τοῖς κατὰ γεῦσιν
ἐπὸς γάρ ἐστιν ἀπὸ τοῦ ἐπεῖναι κατὰ τὴν ἀποτομήν . εἰδικῶς μέντοι Ὅμηρος οἶδεν ὀπόν τινα λεγόμενον , ὡς ὅταν

Back