συντονωτάτῳ διατόνῳ , δύο ἔσται μεγέθη μόνα ἐξ ὧν τὸ διάτονον συνεστηκὸς ἔσται . ἐὰν δὲ τὰ μὲν δύο ἴσα
καὶ δίεσιν καὶ δίτονον κινοῖτο , ἐναρμόνιον ποιεῖ γένος . διάτονον μὲν οὖν λέγεται , ἐπειδὴ κατὰ τὸ πλεῖον διὰ
8945791 ἡμιτονιον
τὸν αὐτὸν ἔλθῃ δεύτερον φθόγγον , εἶτα πάλιν ἀπὸ τοῦδε ἡμιτόνιον διαστήσασα τρίτον ὁρίσῃ φθόγγον ἄλλον , ἀπὸ τούτου κατὰ
νήτην διεζευγμένων τόνος , ἀπὸ νήτης διεζευγμένων ἐπὶ τρίτην ὑπερβολαίων ἡμιτόνιον , ἀπὸ τρίτης ὑπερβολαίων ἐπὶ ὑπερβολαίων διάτονον τόνος ,
8779099 τριημιτονιον
ὑπερέχοντες , παράλληλοι δὲ δύο τόνον , οἱ δὲ τρίτοι τριημιτόνιον : ἀναλόγως δὲ ἕξει καὶ ἐπὶ τῆς τῶν λοιπῶν
παρενθέσεως τῆς ἐν ὀκταχόρδῳ . ἀπεῖχε γὰρ αὕτη τῆς παρανεάτης τριημιτόνιον ἀσύνθετον , ἀφ ' οὗ διαστήματος ἡ μὲν παρεντεθεῖσα
8639424 χρωματικον
τοίνυν οὗτος ὑφίσταται γένη , τό τε ἐναρμόνιον καὶ τὸ χρωματικὸν καὶ τὸ διατονικόν : ἑκάστου δὲ αὐτῶν ποιεῖται τὴν
[ τῶν ] εἰς τὸ ἡρμοσμένον ἤτοι διάτονόν ἐστιν ἢ χρωματικὸν ἢ ἐναρμόνιον . πρῶτον μὲν οὖν καὶ πρεσβύτατον αὐτῶν
8550661 διεσιν
δὲ ἡμιτονίου , ὡς ἐλάχιστον μελῳδητὸν διάστημα , τῶν Πυθαγορείων δίεσιν καλούντων τὸ νῦν λεγόμενον ἡμιτόνιον . καλεῖσθαι δέ φησιν
τὸ δὲ ἡμιόλιον κατὰ δίεσιν ἡμιόλιον τῆς ἐναρμονίου διέσεως καὶ δίεσιν τὴν ἴσην καὶ ἑπτὰ τεταρτημορίων διέσεων ἀσύνθετον διάστημα .
8466067 ἐναρμονιου
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ .
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων ,
8451489 λιχανου
, διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ
, οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων
8324358 ὑπατης
ἡ δὲ σελήνη ἑβδόμη οὖσα τάξιν ἐπέχει φθόγγου τοῦ λεγομένου ὑπάτης μέσης . τὸ δὲ ἀπὸ γῆς διάστημα μέχρι τῆς
ἔχει λόγον , τὸν δὲ βαρὺν τὸν Κρόνον , εἴπερ ὑπάτης . Οἱ δὲ δὴ πρῶτοι ἀπὸ τῶν πρὸς ἡμᾶς
8313993 παρυπατης
, οὗ αἱ διέσεις ἐφ ' ἑκάτερα τοῦ διατόνου ἀπὸ παρυπάτης μέσων ἐπὶ τρίτην συνημμένων , τρίτον δέ , οὗ
μὲν ὑπάτης καὶ παρυπάτης διάστημα ἡμιτονιαῖόν ἐστι , τὸ δὲ παρυπάτης καὶ λιχανοῦ ἐννέα δωδεκατημορίων ἀσύνθετον λαμβανομένων . δεύτερον δὲ
8293883 διτονον
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ
8222154 διεζευγμενων
μέσην , ὅταν μὴ ὡς ἔθος εἶχεν ἐπὶ τὸ τῶν διεζευγμένων τετράχορδον ἔλθῃ κατὰ τὴν διὰ πέντε συμφωνίαν τῷ τῶν
ὑπερβολαίων λϚ ἀπλανῶν , νήτη ὑπερβολαίων λβ κρόνου , νήτη διεζευγμένων κδ διός , νήτη συνημμένων κα γʹ ἄρεως ,
8174814 διατονου
μὲν ἡμιτόνιον καὶ τόνον καὶ τόνον , λέγεται δὲ συντόνου διατόνου . ἵνα δὲ δῆλον ᾖ τὸ λεγόμενον , ἐπ
ἀπὸ παρυπάτης μέσων ἐπὶ μέσων διάτονον τόνος , ἀπὸ μέσων διατόνου ἐπὶ μέσην τόνος , ἀπὸ μέ - σης ἐπὶ
8045482 ἡμιτονιου
περὶ τὰ ἀναγκαῖα . ὀρθογωνίου μὲν γὰρ τριγώνου ἢ διέσεως ἡμιτονίου οὐδεμίαν φύσει ἔννοιαν ἥκομεν ἔχοντες , ἀλλ ' ἔκ
ἀλλήλων τετάρτους τὸν διὰ τεσσάρων ἀλλήλοις διόλου συμφωνεῖν , τοῦ ἡμιτονίου κατὰ μετάβασιν τήν τε πρώτην καὶ τὴν μέσην καὶ
8044690 διεσις
τὸ μὲν γὰρ ἡμιτόνιον εἰς ἓξ δωδεκατημόρια , ἡ δὲ δίεσις , ἡ μὲν τεταρτημόριος εἰς τρία , ἡ δὲ
διάστημα τόνου ἢ διέσεως : ὁ γὰρ τόνος καὶ ἡ δίεσις ἀρχὴ μὲν συμφωνίας , οὔπω δὲ συμφωνία . ὁ
8024805 νητην
μὲν καλῶμεν ὑπάτην καὶ μέσην , τόδε δὲ παραμέσην καὶ νήτην , μένοντος γὰρ τοῦ μεγέθους συμβαίνει κινεῖσθαι τὰς τῶν
φθόγγῳ τῇ ἀρχαίᾳ ὑπάτῃ . ὥστε ἀπὸ ὑπάτης ὑπατῶν ἐπὶ νήτην ὑπερβολαίων τέσσαρα εἶναι τετράχορδα συνημμένα . εὑρίσκετο δὲ τρισκαιδεκάχορδον
7999412 διατονικον
δὲ κἀνταῦθα τῶν μειζόνων λόγων γίνεται τετράχορδον παρὰ τὸ σύντονον διατονικὸν ὁμαλώτερον ἐκείνου καὶ καθ ' αὑτὸ καὶ ἔτι μᾶλλον
ἐστι τρία τὰ προειρημένα . πᾶν οὖν ἔσται μέλος ἤτοι διατονικὸν ἢ χρωματικὸν ἢ ἐναρμόνιον ἢ κοινὸν ἢ μικτὸν ἐκ
7979650 διεσεων
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος
7868341 ὑπερβολαιων
: υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - Μʹσμένον ,
τυγχάνει κατὰ διαίρεσιν θεωρούμενα πέντε , ὑπάτων μέσων συνημμένων διεζευγμένων ὑπερβολαίων , πεντάχορδα δὲ σύμφωνα τρία , μέσων συνημμένων διεζευγμένων
7867721 διεσεως
διέσεως καὶ διέσεως καὶ διτόνου καὶ τόνου καὶ διέσεως καὶ διέσεως καὶ διτόνου , τὸ δὲ φρύγιον ἐκ τόνου καὶ
ᾧ κινεῖται , τονιαῖος , ὁ δὲ τῆς παρυπάτης τόπος διέσεως ἐλαχίστης . Διαστημάτων εἰσὶ διαφοραὶ πέντε , πρώτη μέν
7755529 συνημμενων
χρωματική , μέσων διάτονος , μέση , τρίτη συνημμένων , συνημμένων ἐναρμόνιος , συνημμένων χρωματική , παρανήτη συνημμένων , νήτη
ὑπερβολαίων λβ κρόνου , νήτη διεζευγμένων κδ διός , νήτη συνημμένων κα γʹ ἄρεως , παράμεσος ιη ἡλίου , μέση
7716402 τετραχορδου
πρὸς παράμεσον : ὑπάτη δὲ ὑπάτων , ὅτι τοῦ πρώτου τετραχόρδου πρώτη τίθεται : τὸ γὰρ πρῶτον ὕπατον ἐκάλουν οἱ
νήτη ὑπερβολαίων . Ὥσπερ οὖν ἐνταῦθα τὰ μὲν τοῦ ὑπατῶν τετραχόρδου κατὰ τρία γένη , τὰ δὲ μέσων , τὰ
7700179 λιχανος
ἐπὶ τὴν αὐτὴν τάσιν ἀφίκωνται ἥ τε παρυπάτη καὶ ἡ λιχανός , ἡ μὲν ἐπιτεινομένη ἡ δ ' ἀνιεμένη ,
. τὸ γὰρ δίτονον , ὅταν μὲν ὁρίζωσι μέση καὶ λιχανός , ἀσύνθετόν ἐστιν , ὅταν δὲ μέση καὶ παρυπάτη
7678066 ὑπατην
, τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ παρυπάτην ὑπατῶν
ὑπατῶν ἐπὶ ὑπατῶν διάτονον τόνος , ἀπὸ ὑπατῶν διατόνου ἐπὶ ὑπάτην μέσων τόνος , ἀπὸ ὑπάτης μέσων ἐπὶ παρυπάτην μέσων
7611910 παρυπατη
ὑπερβολαίων . Ἐν δὲ ἁρμονίᾳ οἵδε : προσλαμβανόμενος ὑπάτη ὑπάτων παρυπάτη ὑπάτων λιχανὸς ὑπάτων ἐναρμόνιος ὑπάτη μέσων παρυπάτη μέσων λιχανὸς
ὑπερβολαίων . Ἐν δὲ χρώματι οἵδε : προσλαμβανόμενος ὑπάτη ὑπάτων παρυπάτη ὑπάτων λιχανὸς ὑπάτων χρωματική ὑπάτη μέσων παρυπάτη μέσων λιχανὸς
7608151 ἀσυνθετον
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις
7605799 ἐναρμονιον
τῷ τριπλασιασμῷ τῆς ἡμιτονιαίας διαστάσεως ἐπιδεικνύον : τὸ δ ' ἐναρμόνιον κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον τοῖς μὲν διεσιαίοις
τίθεται , ἣν ὡς κατὰ τοὺς Πυθαγορικοὺς κύβον οὖσαν καὶ ἐναρμόνιον ἐπίηρον κατωνόμασεν . ὁ κύβος δὲ ἐναρμόνιον διὰ τοὺς
7602238 τονων
ὅρων ἕκαστος ἴδιον ἔχει τὸ αἴτιον , ἐπὶ δὲ τῶν τόνων ἕπονταί πως τῷ πρώτῳ τῶν ὅρων οἱ λοιποὶ δύο
ἀμεταβόλῳ συστήματι ἕξ : ἐλάχιστον μὲν τὸ διὰ τεσσάρων , τόνων δύο ἡμίσεος , οἷόν ἐστι τὸ ἀπὸ ὑπάτης ὑπάτων
7523914 προσλαμβανομενον
ᾖ καὶ ἡ τοῦ ἐπιφωνήματος φύσις φανερά . τὸ δὲ προσλαμβανόμενον ἔξωθεν τετολμῆσθαι δεῖ ἀσφαλῶς : διὰ τοῦτο γάρτοι καὶ
τοῦ δὲ τετμημένου τὸ μὲν ἕτερον τῶν περάτων κατὰ τὸν προσλαμβανόμενον , τὸ δὲ ἕτερον κατὰ τὴν νήτην τῶν ὑπερβολαίων
7507757 χρωματικης
ἐπὶ τὴν βαρυτάτην χρωματικὴν ἑκτημόριον , ἀπὸ δὲ τῆς βαρυτάτης χρωματικῆς ἐπὶ τὴν ἡμιόλιον δωδεκατημόριον τόνου . τὸ δὲ τεταρτημόριον
ἐναρμόνιος μὲν οὖν ἐστι παρυπάτη πᾶσα ἡ βαρυτέρα τῆς βαρυτάτης χρωματικῆς , χρωματικὴ δὲ καὶ διάτονος ἡ λοιπὴ πᾶσα μέχρι
7485625 παρυπατην
καὶ παρυπάτην ὑπάτων καὶ λιχανὸν ὑπάτων καὶ ὑπάτην μέσων καὶ παρυπάτην μέσων καὶ λιχανὸν μέσων , τοὺς δὲ μετὰ τὴν
διατόνου ἐπὶ ὑπάτην μέσων τόνος , ἀπὸ ὑπάτης μέσων ἐπὶ παρυπάτην μέσων ἡμιτόνιον , ἀπὸ παρυπάτης μέσων ἐπὶ μέσων διάτονον
7459621 παραμεσης
: τοῖς γοῦν αὐτοῖς λόγοις οἱ ἄκροι τῆς μέσης καὶ παραμέσης ὑπερέχουσι καὶ ὑπερέχονται , ἐπιτρίτῳ καὶ ἡμιολίῳ . τοιαύτη
τῷ αὑτῆς ὑπερέχουσαν , τὴν δ ' ὑπάτην ὑπὸ τῆς παραμέσης ὑπερεχομένην ὁμοίως : ὡς γίγνεσθαι τὰς αὐτὰς ὑπεροχὰς τῶν
7452025 τονιαιον
κατὰ τέτταρα ἥμισυ καὶ δϲʹʹ καὶ κα , τὸ δὲ τονιαῖον χρῶμα κατὰ Ϛ καὶ Ϛ καὶ ιη , τὸ
, πλείω δ ' οὔ : ὁ γὰρ τὸ τέταρτον τονιαῖον ὁρίζων φθόγγος οὔτε τῷ τετάρτῳ διὰ τεσσάρων οὔτε τῷ
7427055 τονος
κατὰ μέγεθος , ἤτοι ὡς τά τε σύμφωνα καὶ ὁ τόνος ἢ ὡς τὰ τούτοις σύμμετρα , τὸ δὲ κατὰ
. δεύτερον τὸ ὑπὸ μεσοπύκνων περιεχόμενον , οὗ δεύτερος ὁ τόνος ἐπὶ τὸ ὀξύ : ἔστι δὲ ἀπὸ παρυπάτης ὑπάτων
7390526 μελῳδειται
ἀσύνθετον οὔτε πλείω ἑνὸς ἡμιτόνια κατὰ τὸ ἑξῆς ἐν τούτῳ μελῳδεῖται τῷ γένει : οὔτε μὴν κατὰ χρῶμα : πάλιν
δὲ παρυπάτης καὶ λιχανοῦ τῷ λιχανοῦ καὶ μέσης καὶ ἴσον μελῳδεῖται καὶ ἄνισον ἀμφοτέρως : ἴσον μὲν ἐν τῷ συντονωτέρῳ
7370949 διτονου
οὔτε δίτονον πρὸς διτόνῳ τεθήσεται οὔτε τόνος ἐπὶ τὸ βαρὺ διτόνου , ὥστε λείπεται τὸ πυκνόν . φανερὸν δὴ ὅτι
πρὸς αὐτῷ κατ ' οὐδέτερον τῶν τόπων οὔτε τόνος . διτόνου γὰρ οὕτω τιθεμένου ἤτοι βαρύτατος πυκνοῦ ἢ ὀξύτατος πεσεῖται
7366723 τετραχορδων
πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ
οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν
7338508 ἡμιολιον
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον
7337970 παραμεσην
μέσην δὲ τὸν τοῦ ὀκτὼ , ἐπίτριτον αὐτοῦ τυγχάνοντα , παραμέσην δὲ τὸν τοῦ ἐννέα , τόνῳ τοῦ μέσου ὀξύτερον
δὲ μετὰ τὴν μέσην ὁμοίως μέχρι τῆς νήτης τῶν ὑπερβολαίων παραμέσην καὶ τρίτην διεζευγμένων καὶ παρανήτην διεζευγμένων καὶ νήτην διεζευγμένων
7231873 ἡμιτονιων
κατ ' αὐτὸ διατείνεται , χρῶμα δὲ τὸ δι ' ἡμιτονίων συντεινόμενον . ὡς γὰρ τὸ μεταξὺ λευκοῦ καὶ μέλανος
πρότερον διάγουσα διὰ πασῶν , τὸ δὲ δεύτερον διὰ τῶν ἡμιτονίων αὐξήσασα . ►α ※ β γ δ ε Ϛ
7192010 λυδιον
γὰρ ᾔδεισαν τόν τε δώριον καὶ τὸν φρύγιον καὶ τὸν λύδιον ἑνὶ τόνῳ διαφέροντας ἀλλήλων , ὡς μὴ φθάνειν ἐπὶ
τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν ἤρξαντο ἐθνῶν ὀνομασίας ,
7188552 βαρυτερου
ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις πλειόνων φθόγγων ἐν τῷ
Ἀγωγὴ προσεχὴς ἀπὸ τῶν βαρυτέρων ὁδὸς ἢ κίνησις φθόγγων ἐκ βαρυτέρου τόπου ἐπὶ ὀξύτερον , ἀνάλυσις δὲ τοὐναντίον . τὰς
7187819 προσλαμβανομενου
διὰ πασῶν , τόνων ἕξ , οἷόν ἐστι τὸ ἀπὸ προσλαμβανομένου ἐπὶ μέσην : τέταρτον δὲ τὸ διὰ πασῶν καὶ
τρίτη συνημμένων , τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ
7136431 φθογγου
καὶ τρίτον γένος μελῳδίας ἐναρμόνιον , ἐπειδὰν ἀπὸ τοῦ βαρυτάτου φθόγγου κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον ἡ φωνὴ προελθοῦσα
οἷον σφραγῖδα σφραγῖδι ἐπιβάλλων ἐναργῆ μᾶλλον καὶ εὔδηλον , οὐδενὸς φθόγγου ἀπεχόμενος , ἀλλὰ ἔμβραχυ ποταμῶν τε μιμούμενος φωνὰς καὶ
7122249 ἐναρμονιος
: προσλαμβανόμενος , ὑπάτη ὑπάτων , παρυπάτη ὑπάτων , ὑπάτων ἐναρμόνιος , ὑπάτων χρωματική , ὑπάτων διάτονος , ὑπάτη μέσων
πάσχει ὑποκείμενος τῇ εἱμαρμένῃ . ὑπεράνω οὖν ὢν τῆς ἁρμονίας ἐναρμόνιος γέγονε δοῦλος ἀρρενόθηλυς δὲ ὤν , ἐξ ἀρρενοθήλεος ὢν
7120634 ὑπερθετικον
ἔκριναν θανάτου . Ῥᾴδιον ἁπλοῦν : ῥᾷον συγκριτικόν : ῥᾷστον ὑπερθετικόν . Τὰ δὲ συγκριτικὰ πολλαχῶς προφέρονται , οἷον κρείττων
: οὐδὲ γὰρ τὰ εἰς ωρ λήγοντα σχηματίζουσιν συγκριτικὸν καὶ ὑπερθετικόν . ἔτι ἁμαρτάνουσιν οἱ λέγοντες μακάρτατος . τὸ μέντοι
7103443 τετραχορδον
εἶναι τὰς παρυπάτας ἀμφοτέρων τῶν γενῶν , γίγνεται γὰρ ἐμμελὲς τετράχορδον ἐκ παρυπάτης τε χρωματικῆς τῆς βαρυτάτης καὶ διατόνου λιχανοῦ
διὰ πασῶν , σύστημα δὲ διαστημάτων ποιὰν περιοχήν , οἷον τετράχορδον , πεντάχορδον , ὀκτάχορδον . ἁρμονία δέ ἐστι συστημάτων
7090228 παρανητη
ἐστὶν τοῦ κορυφαίου , οἷον τοῦ βασιλέως , ἡ δὲ παρανήτη πλησίον μᾶλλον τῆς μέσης : ἔστι δὲ ἡ μέση
παραμέση τρίτη διεζευγμένων παρανήτη διεζευγμένων διάτονος νήτη διεζευγμένων τρίτη ὑπερβολαίων παρανήτη ὑπερβολαίων διάτονος νήτη ὑπερβολαίων . Ἐν δὲ χρώματι οἵδε
7039873 χρωματικην
ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτο - νον , τέταρτον δέ , οὗ
ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην ὑπερβολαίων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτονον , ἕβδομον δέ , οὗ ἕβδομος ὁ
7022554 ἐπιτριτον
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ
7004726 ἀσυνθετων
Γίνεται δὲ καὶ σχήματα τοῦ αὐτοῦ μεγέθους ἐκ τῶν αὐτῶν ἀσυνθέτων συγκείμενα καὶ ἀριθμοῦ , εἰ ἡ τάξις αὐτῶν ἀλλοίωσιν
καὶ διὰ τί οὐχ ἁπλῶς δείκνυται , ὅτι ἐκ τοσούτων ἀσυνθέτων ἕκαστον τῶν γενῶν συνέστηκεν ὅσα ἐστὶν ἐν τῷ διὰ
7000379 διατονος
παρυπάτη μέσων , μέσων ἐναρμόνιος , μέσων χρωματική , μέσων διάτονος , μέση , τρίτη συνημμένων , συνημμένων ἐναρμόνιος ,
τὸ ὑπατῶν , οἷον ὑπάτη ὑπατῶν , παρυπάτη ὑπατῶν , διάτονος ὑπατῶν ἢ λιχανὸς ὑπατῶν , οὐδὲν γὰρ διαφέρει ὁποτερωσοῦν
6994779 ἐπιτεταρτος
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως .
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ '
6987185 διατονικου
ἀξιόλογον ταῖς αἰσθήσεσιν ἐμποιεῖν παραλλαγήν , ἐνδεῖν δὲ ἐπὶ τοῦ διατονικοῦ , πλειόνων φαινομένων σαφῶς τῶν μελῳδουμένων , ὡς ἐκ
μικρὸν γὰρ παρέτρεψεν , ἓν μόνον ἡμιτόνιον , ἀπὸ τοῦ διατονικοῦ . ἔνθεν καὶ χρῶμα ἔχειν λέγομεν τοὺς εὐτρέπτους ἀνθρώπους
6981891 ἡμιφωνον
ἀντίτυπον καὶ οὐκ εὐεπές , τοῦ μὲν συνδέσμου λήγοντος εἰς ἡμίφωνον στοιχεῖον τὸ ν , τοῦ δὲ προσηγορικοῦ τὴν ἀρχὴν
νευρῶδες , διπρόσωπον , χερσαῖον , τετράπουν , ἀσθενόφθαλμον , ἡμίφωνον : διπρόσωπον δὲ ἐκλήθη διὰ τὸ ἔχειν ἐκ τῶν
6962126 μελῳδουμενων
μέσον κοινός , διάζευξις δ ' ὅταν δύο τετραχόρδων ἑξῆς μελῳδουμένων ὁμοίων κατὰ σχῆμα τόνος ᾖ ἀνὰ μέσον . ὅτι
τὸν δὲ τόνον ἐπόγδοον . τῶν δὴ παρὰ τοῖς κιθαρῳδοῖς μελῳδουμένων τετραχόρδων πεποιήσθω πρῶτον τὸ ἀπὸ νήτης μέχρι παραμέσης διὰ
6960406 περιφρασις
μανιάσιν λυσσήμασιν : ταῖς μανιώδεσι λύσσαις . σχῆμα δέ ἐστι περίφρασις : μανιάσιν λυσσήμασιν : ὡς τὸ φοίνικι λίνῳ ,
δὲ διὰ πλειόνων λέξεων τὸ σημαινόμενον ἀποδίδωσιν , ὃ καλεῖται περίφρασις , ὡς ὅταν λέγῃ υἷας Ἀχαιῶν τοὺς Ἀχαιοὺς καὶ
6948512 παρενθεσις
δὲ καὶ τοῦτο παρένταξις , δι ' ὅτι ἀνομοίων ἐστὶ παρένθεσις , οἷον ψιλῶν παρ ' ὁπλίτας : τὴν γοῦν
εἰσὶν ὀκτώ , ὄνομα ἀντωνυμία ῥῆμα μετοχὴ ἐπίρρημα πρόθεσις σύνδεσμος παρένθεσις : τισὶν δὲ δοκεῖ καὶ προσηγορία . , .
6908387 χρωματικη
τρίτη διεζευγμένων ἐναρμόνιος τρίτη διεζευγμένων χρωματικὴ καὶ διάτονος ἐναρμόνιος διεζευγμένων χρωματικὴ διεζευγμένων διάτονος διεζευγμένων νήτη διεζευγμένων τρίτη ὑπερβολαίων ἐναρμόνιος τρίτη
μέσων χρωματική μέσων διάτονος μέση τρίτη συνημμένων ἐναρμόνιος τρίτη συνημμένων χρωματικὴ καὶ διάτονος συνημμένων ἐναρμόνιος συνημμένων χρωματική συνημμένων διάτονος νήτη
6902809 βαρυτατου
διεζευγμένων τὸν τρίτον , τρίτην δὲ ὑπερβολαίων τὸν ἀπὸ τοῦ βαρυτάτου δεύτερον τοῦ πρὸ τῆς βαρυτέρας διαζεύξεως τετραχόρδου , καὶ
τῶν ΒΔ καὶ ΑΕ τμημάτων διέλωμεν εἰς τὰς μέχρι τοῦ βαρυτάτου φθόγγου φθανούσας μοίρας , ἀπὸ τῶν Α καὶ Β
6896920 διμετρου
τὴν βάσιν : οἷον εἰ ἐκκειμένου μὲν ἑνὸς δακτύλου , διμέτρου δὲ ἀναπαιστικοῦ κατὰ μέσον πέσοι σπονδεῖος , ἄδηλον πότερα
δέ ἐστι παρὰ Ἀρχιλόχῳ ἀσυνάρτητον ἐκ δακτυλικοῦ πενθημιμεροῦς καὶ ἰαμβικοῦ διμέτρου ἀκαταλήκτου ἀλλά μ ' ὁ λυσιμελής , ὠταῖρε ,
6892378 παιωνικον
ἰαμβικὸν δίμετρον ἀκατάληκτον τοῦ δευτέρου ποδὸς χορείου . τὸ εʹ παιωνικὸν δίμετρον ἀκατάληκτον ἐκ παίωνος δʹ καὶ κρητικοῦ : τὸ
: ζʹ ηʹ θʹ ἐν μὲν τῇ βʹ περικοπῇ ἐστι παιωνικὸν τρίρρυθμόν τε καὶ δίρρυθμα δύο , . . .
6884704 ὀξυτερου
περιεχόμενον ὑπὸ δύο φθόγγων ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις
οἱ τοῦ διὰ τεσσάρων ὅροι σύμφωνοι : ἀπὸ δὲ τοῦ ὀξυτέρου αὐτῶν λαμβάνεται φθόγγος σύμφωνος ἐπὶ τὸ ὀξὺ διὰ τεσσάρων
6873233 τετραχορδα
τῶν σνϚ πρὸς τὰ σμγ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους λόγους ἐν πρώτοις ἀριθμοῖς τούτοις :
ἀπὸ προσλαμβανομένου ἐπὶ νήτην συνημμένων . ὑπάρχει δὲ ἐν αὐτῷ τετράχορδα τρία συνημμένα τάδε : ὑπάτων μέσων συνημμένων , καὶ
6854370 ἐμμελες
, τὴν φυγήν . ἦν γάρ , οἶμαι , μᾶλλον ἐμμελὲς πείσαντα ἀπαγαγεῖν ἢ πέμψαντα πρὸς τὰς θύρας εἰς στρατιωτῶν
εἴ τι τῆς διανοίας κατεαγὸς καὶ κεκλασμένον ἐγείροντες καὶ ὅσον ἐμμελὲς αὐτῆς ἁρμοζόμενοι φύσεως καὶ ἀρετῆς ὀργάνοις : ἐφ '
6851591 παρανητην
μέχρι τῆς νήτης τῶν ὑπερβολαίων παραμέσην καὶ τρίτην διεζευγμένων καὶ παρανήτην διεζευγμένων καὶ νήτην διεζευγμένων καὶ τρίτην ὑπερβολαίων καὶ παρανήτην
, ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτο - νον ,
6842330 ἡμιολιου
ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος
ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς
6835243 ἐπογδοον
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν
6835189 ἑκτον
, ἕκτος φιλοσοφία ἐστὶ φιλία σοφίας καὶ ταῦτα μὲν τὸ ἕκτον κεφάλαιον . Ἕβδομον δέ ἐστι κεφάλαιον , διὰ τί
εὖρον σταδίων ἑξακισχιλίων τριακοσίων ἔγγιστα : καὶ τούτων δὲ τὸ ἕκτον ἀφελόντες ὑπὲρ τοῦ τὴν παράλληλον τῷ ἰσημερινῷ ποιήσασθαι διάστασιν
6807953 διεσεις
ἔχει . ὑπόκειται δὲ καὶ ἡ παρὰ τοῖς ἀρχαίοις κατὰ διέσεις ἁρμονία , ἕως κδ διέσεων τὸ πρότερον διάγουσα διὰ
τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου
6797709 ἡμιτονιαιον
διάτονον . ἁρμονία μέν ἐστιν , ἐν ᾗ τὸ πυκνὸν ἡμιτονιαῖον . αὕτη δέ ἐστι μονοειδής . χρώματος δὲ εἴδη
τινος βαρυτέρου φθόγγου ἐπὶ τὸν ἑξῆς ὀξύτερον μεταβῇ τὸ λεγόμενον ἡμιτονιαῖον διάστημα ποιησαμένη κἄπειτ ' ἀπ ' αὐτοῦ τόνον διαστήσασα
6784124 ἐπιτεταρτον
τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου
λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις
6749920 σωρειαν
: διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί
μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν
6735195 ὀξυτατου
. τὸν δὲ ἐν τῶι χρωματικῶι γένει δεύτερον ἀπὸ τοῦ ὀξυτάτου φθόγγου λαμβάνει διὰ τοῦ τὴν αὐτὴν θέσιν ἔχοντος ἐν
γὰρ λόγον ἔχειν τὸν ἐν τῶι χρωματικῶι δεύτερον ἀπὸ τοῦ ὀξυτάτου πρὸς τὸν ὅμοιον τὸν ἐν τῶι διατονικῶι τὸν τῶν
6732722 προμηκες
τὸ δ ' ὑπ ' αὐτὰ αἰδοῖον . οὗ τὸ πρόμηκες , δι ' οὗ τὸ ἐκ κύστεως ὑγρὸν ἐπιρρεῖ
Σίνων σπερμάτιόν ἐστιν ἐν Συρίᾳ γεννώμενον , παρεοικὸς σελίνῳ , πρόμηκες , μέλαν , πυρωτικόν . Σίον φύεται ἐν τοῖς
6729353 νητοειδης
διθυραμβικὸς νομικὸς τραγικός . ὁ μὲν οὖν νομικὸς τρόπος ἐστὶ νητοειδής , ὁ δὲ διθυραμβικὸς μεσοειδής , ὁ δὲ τραγικὸς
ὑπερβολαίων . Τόποι φωνῆς τέσσαρες : ὑπατοειδής , μεσοειδής , νητοειδής , ὑπερβολοειδής . ἐν μὲν οὖν τῷ πρώτῳ τίθεται
6721063 φρυγιον
γὰρ τοὺς τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν ἤρξαντο ἐθνῶν
ὁ δὲ ὡς τόπος φωνῆς , ὅταν λέγωμεν δώριον ἢ φρύγιον ἢ λύδιον ἢ τῶν ἄλλων τινά . εἰσὶ δὲ
6701582 ἀναλογιων
Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν ,
ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ
6699666 Φερεκρατειον
καταληκτικοῦ , ὃς γίνεται δάκτυλος . Τὸ γʹ ἀντισπαστικὸν διπλοῦν Φερεκράτειον : σύγκειται γὰρ ἐκ βʹ κώλων Φερεκρατείων , ὧν
τὸ ζʹ τροχαικὸν δίμετρον ὅμοιον τῷ εʹ . τὸ ηʹ Φερεκράτειον λεῖπον μιᾷ συλλαβῇ . τὸ θʹ ἰαμβικὸν δίμετρον ὑπερκατάληκτον
6682204 ἐπιμερεσι
τρόπον ἀπὸ μὲν τοῦ μείζονος ἀρχομένων ὅρου συνίσταται ἀναλογία ἐν ἐπιμερέσι λόγοις δισεπιτρίτοις : οἷον θʹ Ϛʹ δʹ : ἐκ
γίνονται γεωμετρικαί , ἀλλὰ καὶ ἐν ἐπιμορίοις εἴδεσιν ἅπασι καὶ ἐπιμερέσι καὶ μικτοῖς , καὶ τὸ ἐξαίρετον ἰδίωμα τῆς μεσότητος
6655297 παραλαμβανομενον
καὶ οὐ μόνον ἐπὶ σωφροσύνης τὸ κοινὸν καὶ εἰδικὸν εὑρίσκομεν παραλαμβανόμενον , ἀλλ ' ἔστι τοῦτο καὶ ἐπὶ τῶν ἄλλων
παραλαμβάνονται : εἰ δὲ τὸ Ρ εὑρίσκεται μετὰ δύο φωνηέντων παραλαμβανόμενον , ὡς ἐπὶ τοῦ ῥοῦς , ἄρα σύμφωνόν ἐστιν
6655270 παραμεσος
πρῶτος τῶν τεσσάρων , ὁ δὲ μέσος , ὁ δὲ παράμεσος , ὁ δὲ μικρός . τούτων τὰ ὀστᾶ σκυταλίδες
τῆς μέσης ἐπιτείναντι τόνον ἡ παρ ' αὐτὴν κειμένη χορδὴ παράμεσος καλεῖται . αἱ δὲ μετὰ ταύτην διὰ τὰς ὁμοίας
6654577 πλατυτερον
στενότερον εἴη τὸ διέχον , κατὰ λόχους , εἰ δὲ πλατύτερον , κατὰ πεντηκοστῦς , εἰ δὲ πάνυ πλατύ ,
ἐπ ' ἄκρου σκιάδειον πλατύ , ἐν δὲ τούτῳ καρπὸν πλατύτερον καὶ σαρκωδέστερον , εὐώδη . δυνάμεις δὲ τὰς αὐτὰς
6636004 ἐπιμερες
ἦν πρῶτον τὸ διπλάσιον , εἶτα τὸ ἐπιμόριον καὶ τὸ ἐπιμερὲς καὶ τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ
ε : τὸ γὰρ μεῖζον ἢ πολλαπλάσιον ἢ ἐπιμόριον ἢ ἐπιμερὲς ἢ πολλαπλασιεπιμόριον ἢ πολλαπλασιεπιμερές : ὡσαύτως καὶ τὸ ἔλαττον
6628582 λαμβανομενον
μεσότης καὶ πῶς τοῦτο † ἐν αὐτοῖς μεσότητος εὑρίσκει μέσον λαμβανόμενον αὐτῶν , δείκνυσι διὰ τούτων . λαμβάνει γὰρ οἰκίαν
: τὸ δὲ ϲκίλλινον ὄξοϲ καὶ καθ ' ἑκάϲτην ἡμέραν λαμβανόμενον νῆϲτιϲ , ὅϲον κοχλιάρια γ , ὀφελιμώτατον αὐτοῖϲ γίγνεται
6627670 Φατνιτικον
βασιλική ] : τρίτον [ Μενδήσιον καὶ πόλις : δʹ Φατνιτικόν ] : πέμπτον Σεβεννυτικὸν [ καὶ πόλις Σεβέννυτος :
στόμα ἔστι τὸ Βολβιτικόν , εἶτα τὸ Σεβεννυτικὸν καὶ τὸ Φατνιτικόν , τρίτον ὑπάρχον τῷ μεγέθει παρὰ τὰ πρῶτα δύο
6623936 διαζευξιν
ὑβρίσαντες | καὶ ὡς ἑταίραις ταῖς ἀσταῖς προσενεχθέντες , ἐὰν διάζευξιν τεχνάζωσι μηδεμίαν ἀπαλλαγῆς πρόφασιν ἀνευρίσκοντες , εἶτ ' ἐπὶ
συναφὴν συστήματι ὑπαρχούσῃ τετραχόρδου τε καὶ πενταχόρδου , ἢ κατὰ διάζευξιν δυεῖν τετραχόρδων τόνῳ χωριζομένων ἀπ ' ἀλλήλων , ἀπὸ
6619929 λιχανον
κεχωρισμένοις τοῦ ἐντέρου διαίρεσιν ἐμβαλόντες ἱκανὴν παραδέξασθαι δάκτυλον καθήσομεν τὸν λιχανὸν καὶ κατ ' ἐπικόπου τοῦ δακτύλου διελοῦμεν τὸ περιτόναιον
οὔτε τὴν ἁρμονίαν ἁρμοττόνται , ὥστε τί μᾶλλον τὴν δίτονον λιχανὸν λεκτέον ἢ τὴν μικρῷ συντονωτέραν ; ἁρμονία μὲν γὰρ
6610375 ἑπτασημον
ὃ τὴν μὲν πρώτην ἔχει ἰαμβικήν , ἤτοι ἑξάσημον ἢ ἑπτάσημον , τὴν δὲ δευτέραν ἰωνικὴν ἢ δευτέραν παιωνικήν ,
καὶ τὴν τροχαϊκήν , ὁπόταν προτάττοιτο τῆς ἰωνικῆς , γίνεσθαι ἑπτάσημον [ τροχαϊκήν ] , τὸν καλούμενον δεύτερον ἐπίτριτον :
6609784 τροχαιων
γὰρ αἱ μακραὶ συλλαβαί , ὥσπερ ἐπὶ τῶν ἰάμβων καὶ τροχαίων , ὡς εἴρηται , εἰς δύο βραχείας , οὕτω
ἐπιωνικὸν τρίμετρον ἀκατάληκτον . τὸ δʹ περίοδος ἐξ ἰάμβων καὶ τροχαίων . τὸ εʹ τὸ αὐτό . τὸ Ϛʹ ἰαμβικὸν
6607167 τονου
ἐν τόνῳ δέ , καθὸ οὐδεμία λέξις εἰς ο λήγουσα τόνου ἔχεται τοῦ ὀξέος , καὶ ἕνεκά γε τούτου τὸ
λοιπὸν ἐκ τοῦ τεθὲν ἐπὶ γῆς εὐθέως αὐτὸ κλαυθμυρίσαι μετὰ τόνου τοῦ προσήκοντος : τὸ γὰρ ἕως πλείονος ἀκλαυστὶ διάγον
6604695 μετρουμενον
πάλιν τοῦ περιττοῦ τὸν μὲν πρῶτον τὸν ὑπὸ μονάδος μόνον μετρούμενον ὡς τὸν τρία , τὸν ζ , τὸν δὲ
: ὥσπερ γὰρ λέγεται καὶ τὸ μέτρον ξέστης καὶ τὸ μετρούμενον , οὕτως ἔφασκον καὶ τὰ νοητὰ καὶ τὰ αἰσθητὰ
6604561 ἀρσεως
ἀφαίρεσιν ὑπολείπηταί τι : τούτῳ γὰρ διαφέρειν δοκεῖ τῆς παντελοῦς ἄρσεως ἡ ἀφαίρεσις : οὔτε τὸ μεῖζον ἐν τῷ μικροτέρῳ
σύστημά τι συγκείμενον ἐκ τῶν ποδικῶν χρόνων ὧν ὁ μὲν ἄρσεως , ὁ δὲ βάσεως , ὁ δὲ ὅλου ποδός
6601446 ὑπατη
ὑπάτων λιχανὸς ὑπάτων ἐναρμόνιος λιχανὸς ὑπάτων χρωματική λιχανὸς ὑπάτων διάτονος ὑπάτη μέσων παρυπάτη μέσων λιχανὸς μέσων ἐναρμόνιος λιχανὸς μέσων χρωματική
παραμέση τὸν τῶν ἐννέα . τούτου γενομένου , ἕξει ἡ ὑπάτη πρὸς μέσην ὡς παραμέση πρὸς νήτην διεζευγμένων : ἀπὸ
6598963 διπλασιασμος
, τρὶς τρεῖς ἐννέα : ὑπὸ δυάδος γὰρ γίνεται ὁ διπλασιασμός . ἐπεὶ οὖν πάντα ἐκ τῆς ὕλης γίνονται διὰ
. προφάσεσι . ἴσως ἄν , ἴσως ] τεχνικὸς ὁ διπλασιασμός . οὔτε γὰρ φανερῶς ἀπεφήνατο οὔτε μόνῳ τῷ ἴσως
6594786 υλβ
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ
6593575 πενθημιμερους
τε διμέτρου ἀκαταλήκτου καὶ τοῦ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ πενθημιμεροῦς . καὶ ἐν ἐκθέσει τὸ σύνηθες διστίχιον . φροντίζειν
τῷ γʹ τῆς ἐπῳδοῦ . τὸ ηʹ μικτὸν ἐκ τροχαίου πενθημιμεροῦς καὶ δακτυλικοῦ πενθημιμεροῦς . τὸ θʹ ἰαμβέλεγος , ὑπερτιθεμένου
6590069 νητη
τὸ πρὸ τῆς νήτης κεῖσθαι . ἐπὶ δὲ ταύταις ἡ νήτη , τουτέστιν ἐσχάτη . νέατον γὰρ ἐκάλουν τὸ ἔσχατον
βαρεῖα τε μεσσόθι ναίει : ἀπλανέων δὲ σφαῖρα συνημμένη ἔπλετο νήτη : μέσσην δ ' ἠέλιος πλαγκτῶν θέσιν ἔσχεθεν ἄστρων
6581846 ὀξυτερων
διάζευξιν , νήτην δὲ διεζευγμένων τὸν κοινὸν τῶν συνημμένων δύο ὀξυτέρων τετραχόρδων μετὰ τὴν ὀξυτέραν διάζευξιν , καὶ πάλιν παρυπάτην
ἔσται ἡ ΑΓ διάστασις τῆς ΒΔ διὰ τὸ κατ ' ὀξυτέρων πίπτειν τάσεων , μείζων δὲ ἡ ΒΓ ὑπεροχὴ τῆς
6579630 ἀναπαιστος
ἐν ἐκθέσει ἐστὶ τὸ ἔθιμον , 〚 διπλῆ 〛 δίστιχος ἀνάπαιστος τετράμετρος καταληκτικός : ὑφ ' ὃ διπλῆ καὶ ἑξῆς
μόνον βακχεῖος ἐν τῷ διμέτρῳ χοριαμβικῷ κώλῳ , ἀλλὰ καὶ ἀνάπαιστος , πλὴν ἴστωσαν ὡς ἐπειδὴ οὐ μόνον θεμιτὸς εὕρηται
6575811 ἐπιμοριων
λόγον , ἡμιόλιον τυχὸν ἢ ἐπίτριτον ἢ ἄλλον τινὰ τῶν ἐπιμορίων ἢ τῶν ἐπιμερῶν , τὰ μὲν ἀπ ' αὐτῶν
. ἐκ τούτων πάλιν κατὰ ἀναστροφὴν γίνονται τὰ εἴδη τῶν ἐπιμορίων : οἷόν ἐστι πρῶτον εἶδος τῶν πολλαπλασίων τὸ διπλάσιον
6571761 ὁμοιωματικον
, ἐθνικόν , ἐρωτηματικόν , ἀόριϲτον , ἀναφορικόν ὃ καὶ ὁμοιωματικὸν καὶ δεικτικὸν καὶ ἀνταποδοτικὸν καλεῖται , περιληπτικόν , ἐπιμεριζόμενον
ὁποῖοϲ ὁπόϲοϲ ὁπηλίκοϲ . Ἀναφορικὸν δέ ἐϲτιν , ὃ καὶ ὁμοιωματικὸν καὶ δεικτικὸν καὶ ἀνταποδοτικὸν καλεῖται , τὸ ὁμοίωϲιν ϲημαῖνον

Back