δὲ ἡμιτονίου , ὡς ἐλάχιστον μελῳδητὸν διάστημα , τῶν Πυθαγορείων δίεσιν καλούντων τὸ νῦν λεγόμενον ἡμιτόνιον . καλεῖσθαι δέ φησιν | ||
τὸ δὲ ἡμιόλιον κατὰ δίεσιν ἡμιόλιον τῆς ἐναρμονίου διέσεως καὶ δίεσιν τὴν ἴσην καὶ ἑπτὰ τεταρτημορίων διέσεων ἀσύνθετον διάστημα . |
τὸν αὐτὸν ἔλθῃ δεύτερον φθόγγον , εἶτα πάλιν ἀπὸ τοῦδε ἡμιτόνιον διαστήσασα τρίτον ὁρίσῃ φθόγγον ἄλλον , ἀπὸ τούτου κατὰ | ||
νήτην διεζευγμένων τόνος , ἀπὸ νήτης διεζευγμένων ἐπὶ τρίτην ὑπερβολαίων ἡμιτόνιον , ἀπὸ τρίτης ὑπερβολαίων ἐπὶ ὑπερβολαίων διάτονον τόνος , |
συντονωτάτῳ διατόνῳ , δύο ἔσται μεγέθη μόνα ἐξ ὧν τὸ διάτονον συνεστηκὸς ἔσται . ἐὰν δὲ τὰ μὲν δύο ἴσα | ||
καὶ δίεσιν καὶ δίτονον κινοῖτο , ἐναρμόνιον ποιεῖ γένος . διάτονον μὲν οὖν λέγεται , ἐπειδὴ κατὰ τὸ πλεῖον διὰ |
ὑπερέχοντες , παράλληλοι δὲ δύο τόνον , οἱ δὲ τρίτοι τριημιτόνιον : ἀναλόγως δὲ ἕξει καὶ ἐπὶ τῆς τῶν λοιπῶν | ||
παρενθέσεως τῆς ἐν ὀκταχόρδῳ . ἀπεῖχε γὰρ αὕτη τῆς παρανεάτης τριημιτόνιον ἀσύνθετον , ἀφ ' οὗ διαστήματος ἡ μὲν παρεντεθεῖσα |
τῷ τριπλασιασμῷ τῆς ἡμιτονιαίας διαστάσεως ἐπιδεικνύον : τὸ δ ' ἐναρμόνιον κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον τοῖς μὲν διεσιαίοις | ||
τίθεται , ἣν ὡς κατὰ τοὺς Πυθαγορικοὺς κύβον οὖσαν καὶ ἐναρμόνιον ἐπίηρον κατωνόμασεν . ὁ κύβος δὲ ἐναρμόνιον διὰ τοὺς |
τὸ μὲν γὰρ ἡμιτόνιον εἰς ἓξ δωδεκατημόρια , ἡ δὲ δίεσις , ἡ μὲν τεταρτημόριος εἰς τρία , ἡ δὲ | ||
διάστημα τόνου ἢ διέσεως : ὁ γὰρ τόνος καὶ ἡ δίεσις ἀρχὴ μὲν συμφωνίας , οὔπω δὲ συμφωνία . ὁ |
τοίνυν οὗτος ὑφίσταται γένη , τό τε ἐναρμόνιον καὶ τὸ χρωματικὸν καὶ τὸ διατονικόν : ἑκάστου δὲ αὐτῶν ποιεῖται τὴν | ||
[ τῶν ] εἰς τὸ ἡρμοσμένον ἤτοι διάτονόν ἐστιν ἢ χρωματικὸν ἢ ἐναρμόνιον . πρῶτον μὲν οὖν καὶ πρεσβύτατον αὐτῶν |
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ | ||
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ |
, διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ | ||
, οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων |
μὲν ἡμιτόνιον καὶ τόνον καὶ τόνον , λέγεται δὲ συντόνου διατόνου . ἵνα δὲ δῆλον ᾖ τὸ λεγόμενον , ἐπ | ||
ἀπὸ παρυπάτης μέσων ἐπὶ μέσων διάτονον τόνος , ἀπὸ μέσων διατόνου ἐπὶ μέσην τόνος , ἀπὸ μέ - σης ἐπὶ |
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ | ||
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος |
περὶ τὰ ἀναγκαῖα . ὀρθογωνίου μὲν γὰρ τριγώνου ἢ διέσεως ἡμιτονίου οὐδεμίαν φύσει ἔννοιαν ἥκομεν ἔχοντες , ἀλλ ' ἔκ | ||
ἀλλήλων τετάρτους τὸν διὰ τεσσάρων ἀλλήλοις διόλου συμφωνεῖν , τοῦ ἡμιτονίου κατὰ μετάβασιν τήν τε πρώτην καὶ τὴν μέσην καὶ |
κατὰ μέγεθος , ἤτοι ὡς τά τε σύμφωνα καὶ ὁ τόνος ἢ ὡς τὰ τούτοις σύμμετρα , τὸ δὲ κατὰ | ||
. δεύτερον τὸ ὑπὸ μεσοπύκνων περιεχόμενον , οὗ δεύτερος ὁ τόνος ἐπὶ τὸ ὀξύ : ἔστι δὲ ἀπὸ παρυπάτης ὑπάτων |
ἡ δὲ σελήνη ἑβδόμη οὖσα τάξιν ἐπέχει φθόγγου τοῦ λεγομένου ὑπάτης μέσης . τὸ δὲ ἀπὸ γῆς διάστημα μέχρι τῆς | ||
ἔχει λόγον , τὸν δὲ βαρὺν τὸν Κρόνον , εἴπερ ὑπάτης . Οἱ δὲ δὴ πρῶτοι ἀπὸ τῶν πρὸς ἡμᾶς |
μέσην , ὅταν μὴ ὡς ἔθος εἶχεν ἐπὶ τὸ τῶν διεζευγμένων τετράχορδον ἔλθῃ κατὰ τὴν διὰ πέντε συμφωνίαν τῷ τῶν | ||
ὑπερβολαίων λϚ ἀπλανῶν , νήτη ὑπερβολαίων λβ κρόνου , νήτη διεζευγμένων κδ διός , νήτη συνημμένων κα γʹ ἄρεως , |
χρωματική , μέσων διάτονος , μέση , τρίτη συνημμένων , συνημμένων ἐναρμόνιος , συνημμένων χρωματική , παρανήτη συνημμένων , νήτη | ||
ὑπερβολαίων λβ κρόνου , νήτη διεζευγμένων κδ διός , νήτη συνημμένων κα γʹ ἄρεως , παράμεσος ιη ἡλίου , μέση |
: υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - Μʹσμένον , | ||
τυγχάνει κατὰ διαίρεσιν θεωρούμενα πέντε , ὑπάτων μέσων συνημμένων διεζευγμένων ὑπερβολαίων , πεντάχορδα δὲ σύμφωνα τρία , μέσων συνημμένων διεζευγμένων |
πρὸς παράμεσον : ὑπάτη δὲ ὑπάτων , ὅτι τοῦ πρώτου τετραχόρδου πρώτη τίθεται : τὸ γὰρ πρῶτον ὕπατον ἐκάλουν οἱ | ||
νήτη ὑπερβολαίων . Ὥσπερ οὖν ἐνταῦθα τὰ μὲν τοῦ ὑπατῶν τετραχόρδου κατὰ τρία γένη , τὰ δὲ μέσων , τὰ |
μὲν καλῶμεν ὑπάτην καὶ μέσην , τόδε δὲ παραμέσην καὶ νήτην , μένοντος γὰρ τοῦ μεγέθους συμβαίνει κινεῖσθαι τὰς τῶν | ||
φθόγγῳ τῇ ἀρχαίᾳ ὑπάτῃ . ὥστε ἀπὸ ὑπάτης ὑπατῶν ἐπὶ νήτην ὑπερβολαίων τέσσαρα εἶναι τετράχορδα συνημμένα . εὑρίσκετο δὲ τρισκαιδεκάχορδον |
διέσεως καὶ διέσεως καὶ διτόνου καὶ τόνου καὶ διέσεως καὶ διέσεως καὶ διτόνου , τὸ δὲ φρύγιον ἐκ τόνου καὶ | ||
ᾧ κινεῖται , τονιαῖος , ὁ δὲ τῆς παρυπάτης τόπος διέσεως ἐλαχίστης . Διαστημάτων εἰσὶ διαφοραὶ πέντε , πρώτη μέν |
ὅρων ἕκαστος ἴδιον ἔχει τὸ αἴτιον , ἐπὶ δὲ τῶν τόνων ἕπονταί πως τῷ πρώτῳ τῶν ὅρων οἱ λοιποὶ δύο | ||
ἀμεταβόλῳ συστήματι ἕξ : ἐλάχιστον μὲν τὸ διὰ τεσσάρων , τόνων δύο ἡμίσεος , οἷόν ἐστι τὸ ἀπὸ ὑπάτης ὑπάτων |
, οὗ αἱ διέσεις ἐφ ' ἑκάτερα τοῦ διατόνου ἀπὸ παρυπάτης μέσων ἐπὶ τρίτην συνημμένων , τρίτον δέ , οὗ | ||
μὲν ὑπάτης καὶ παρυπάτης διάστημα ἡμιτονιαῖόν ἐστι , τὸ δὲ παρυπάτης καὶ λιχανοῦ ἐννέα δωδεκατημορίων ἀσύνθετον λαμβανομένων . δεύτερον δὲ |
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
ἔχει . ὑπόκειται δὲ καὶ ἡ παρὰ τοῖς ἀρχαίοις κατὰ διέσεις ἁρμονία , ἕως κδ διέσεων τὸ πρότερον διάγουσα διὰ | ||
τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου |
ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτο - νον , τέταρτον δέ , οὗ | ||
ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην ὑπερβολαίων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτονον , ἕβδομον δέ , οὗ ἕβδομος ὁ |
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ | ||
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις |
τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
ᾖ καὶ ἡ τοῦ ἐπιφωνήματος φύσις φανερά . τὸ δὲ προσλαμβανόμενον ἔξωθεν τετολμῆσθαι δεῖ ἀσφαλῶς : διὰ τοῦτο γάρτοι καὶ | ||
τοῦ δὲ τετμημένου τὸ μὲν ἕτερον τῶν περάτων κατὰ τὸν προσλαμβανόμενον , τὸ δὲ ἕτερον κατὰ τὴν νήτην τῶν ὑπερβολαίων |
πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ | ||
οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν |
ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
μέσην δὲ τὸν τοῦ ὀκτὼ , ἐπίτριτον αὐτοῦ τυγχάνοντα , παραμέσην δὲ τὸν τοῦ ἐννέα , τόνῳ τοῦ μέσου ὀξύτερον | ||
δὲ μετὰ τὴν μέσην ὁμοίως μέχρι τῆς νήτης τῶν ὑπερβολαίων παραμέσην καὶ τρίτην διεζευγμένων καὶ παρανήτην διεζευγμένων καὶ νήτην διεζευγμένων |
εἶναι τὰς παρυπάτας ἀμφοτέρων τῶν γενῶν , γίγνεται γὰρ ἐμμελὲς τετράχορδον ἐκ παρυπάτης τε χρωματικῆς τῆς βαρυτάτης καὶ διατόνου λιχανοῦ | ||
διὰ πασῶν , σύστημα δὲ διαστημάτων ποιὰν περιοχήν , οἷον τετράχορδον , πεντάχορδον , ὀκτάχορδον . ἁρμονία δέ ἐστι συστημάτων |
, τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ παρυπάτην ὑπατῶν | ||
ὑπατῶν ἐπὶ ὑπατῶν διάτονον τόνος , ἀπὸ ὑπατῶν διατόνου ἐπὶ ὑπάτην μέσων τόνος , ἀπὸ ὑπάτης μέσων ἐπὶ παρυπάτην μέσων |
κατὰ τέτταρα ἥμισυ καὶ δϲʹʹ καὶ κα , τὸ δὲ τονιαῖον χρῶμα κατὰ Ϛ καὶ Ϛ καὶ ιη , τὸ | ||
, πλείω δ ' οὔ : ὁ γὰρ τὸ τέταρτον τονιαῖον ὁρίζων φθόγγος οὔτε τῷ τετάρτῳ διὰ τεσσάρων οὔτε τῷ |
ἐν τόνῳ δέ , καθὸ οὐδεμία λέξις εἰς ο λήγουσα τόνου ἔχεται τοῦ ὀξέος , καὶ ἕνεκά γε τούτου τὸ | ||
λοιπὸν ἐκ τοῦ τεθὲν ἐπὶ γῆς εὐθέως αὐτὸ κλαυθμυρίσαι μετὰ τόνου τοῦ προσήκοντος : τὸ γὰρ ἕως πλείονος ἀκλαυστὶ διάγον |
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
τὸ ὂν ἀγένητον ἀπολείπει : λέγει δὲ τὴν γῆν τοῦ πυκνοῦ καταρρυέντος [ ἀέρος ] γεγονέναι . . . καὶ | ||
ἄστρα καὶ τὸν ἥλιον ἐκ πυρός φησι καὶ τοῦ πρώτου πυκνοῦ συγκεῖσθαι , τὴν δὲ σελήνην ἐκ τοῦ δευτέρου πυκνοῦ |
καὶ παρυπάτην ὑπάτων καὶ λιχανὸν ὑπάτων καὶ ὑπάτην μέσων καὶ παρυπάτην μέσων καὶ λιχανὸν μέσων , τοὺς δὲ μετὰ τὴν | ||
διατόνου ἐπὶ ὑπάτην μέσων τόνος , ἀπὸ ὑπάτης μέσων ἐπὶ παρυπάτην μέσων ἡμιτόνιον , ἀπὸ παρυπάτης μέσων ἐπὶ μέσων διάτονον |
Ἀλκαῖος Γανυμήδῃ ἔοικεν αἰγίθαλλος διακωλύειν τὸ πρᾶγμα . τῷ δὲ τόνῳ ὡς ἀρύβαλλος . , . . , . ᾄδεις | ||
, πάθος κινοῦσα , σχεδὸν τῇ πικρίᾳ μόνον καὶ τῷ τόνῳ τοῦ Δημοσθενικοῦ χαρακτῆρος λειπομένη , τοῦ δὲ πιθανοῦ καὶ |
: τοῖς γοῦν αὐτοῖς λόγοις οἱ ἄκροι τῆς μέσης καὶ παραμέσης ὑπερέχουσι καὶ ὑπερέχονται , ἐπιτρίτῳ καὶ ἡμιολίῳ . τοιαύτη | ||
τῷ αὑτῆς ὑπερέχουσαν , τὴν δ ' ὑπάτην ὑπὸ τῆς παραμέσης ὑπερεχομένην ὁμοίως : ὡς γίγνεσθαι τὰς αὐτὰς ὑπεροχὰς τῶν |
ἄλλων πλειόνων : τὰ γὰρ ηʹ πρὸς τὰ θʹ ἐποίει τονιαίου ἀκούειν διαστήματος . διὰ τοῦτο δὲ πρῶτον διάστημα ὁ | ||
δ ' ὅτι , καὶ εἴ τις ἐν τῇ τοῦ τονιαίου δυνάμει τιθείη τὸ τοῦ συντονωτέρου σπονδειασμοῦ ἴδιον , συμβαίνοι |
ἐπὶ τὴν αὐτὴν τάσιν ἀφίκωνται ἥ τε παρυπάτη καὶ ἡ λιχανός , ἡ μὲν ἐπιτεινομένη ἡ δ ' ἀνιεμένη , | ||
. τὸ γὰρ δίτονον , ὅταν μὲν ὁρίζωσι μέση καὶ λιχανός , ἀσύνθετόν ἐστιν , ὅταν δὲ μέση καὶ παρυπάτη |
λεῖψιν τῶν ἐναντίων , τὴν συμπλοκὴν εἰ μὴ τὰς χρίσεις ἀναλόγως γίνεσθαι . Δεῖ πάντα τοίνυν φυλαττόμενον τὸν μὲν τῆς | ||
δέκα , δευτέραν ἐπὶ δέκα , τρίτην ἐπὶ δέκα καὶ ἀναλόγως μέχρι τῆς δεκάτης , ἣν ἐνίοτε μὲν ὁμοίως τοῖς |
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
: διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί | ||
μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν |
καὶ τρίτον γένος μελῳδίας ἐναρμόνιον , ἐπειδὰν ἀπὸ τοῦ βαρυτάτου φθόγγου κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον ἡ φωνὴ προελθοῦσα | ||
οἷον σφραγῖδα σφραγῖδι ἐπιβάλλων ἐναργῆ μᾶλλον καὶ εὔδηλον , οὐδενὸς φθόγγου ἀπεχόμενος , ἀλλὰ ἔμβραχυ ποταμῶν τε μιμούμενος φωνὰς καὶ |
Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
τῶν ἁρμονικῶν λέγουσι βαρύτατον μὲν τὸν ὑποδώριον τῶν τόνων , ἡμιτονίῳ δὲ ὀξύτερον τούτου τὸν μιξολύδιον , τούτου δ ' | ||
ἄλλο τι λεγόμενον συνημμένων , εὐθὺς τὴν ἑαυτοῦ τρίτην ἔχον ἡμιτονίῳ διεστῶσαν ἀπὸ τῆς μέσης , εἶτα μετὰ τόνον τὴν |
γίνεται . Τόνος δὲ λέγεται τετραχῶς : καὶ γὰρ ὡς φθόγγος καὶ ὡς διάστημα καὶ ὡς τόπος φωνῆς καὶ ὡς | ||
τἀναντία συνισταμένῃ : ὅτε γὰρ τῷ διὰ τεσσάρων τινὸς βαρύτερος φθόγγος τῷ διὰ πέντε τοῦ ὁμοφώνου αὐτῷ κατὰ τὸ βαρύτερον |
] μήτε [ σάρκινον ] εἶναι [ κατ ] ' ἀναλογίαν [ ἔχον ] τι [ σῶμ ' ὅπερ ] | ||
. Ἐξ εὐχεροῦς δὲ καὶ διὰ μνήμης ἔχων ποιήσεις τὴν ἀναλογίαν τοῦ ἐπιμερισμοῦ οὕτως . ἐπὶ μὲν Κρόνου τοὺς λ |
δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
' εἰ μὲν ὁ ἐλάττων διχῇ διαιροῖτο , ὁ μείζων τριχῇ , εἰ δὲ ὁ ἐλάττων τριχῇ , ὁ μείζων | ||
Τί μήν ; Ὦ Πρώταρχε , πειρῶ δὲ αὐτὸ τοῦτο τριχῇ τέμνειν . Πῇ φῄς ; οὐ γὰρ μὴ δυνατὸς |
τὰς ὑποκειμένας στιγμὰς τῆς γραμμῆς νοεῖν ὑπαναχωρούσας καὶ τόπον καὶ διάστασιν παρεχομένας , τοτὲ μὲν ἐπὶ τόδε τὸ μέρος συστελλομένων | ||
μοίρας τλγ ιβ , τὴν ἀπὸ τοῦ Ζ ἀκριβοῦς ἀπογείου διάστασιν αὐτῆς εὕρωμεν συναγομένην μοιρῶν δηλονότι τμε ιγ , πρὸς |
ἀσύνθετον οὔτε πλείω ἑνὸς ἡμιτόνια κατὰ τὸ ἑξῆς ἐν τούτῳ μελῳδεῖται τῷ γένει : οὔτε μὴν κατὰ χρῶμα : πάλιν | ||
δὲ παρυπάτης καὶ λιχανοῦ τῷ λιχανοῦ καὶ μέσης καὶ ἴσον μελῳδεῖται καὶ ἄνισον ἀμφοτέρως : ἴσον μὲν ἐν τῷ συντονωτέρῳ |
οὔτε δίτονον πρὸς διτόνῳ τεθήσεται οὔτε τόνος ἐπὶ τὸ βαρὺ διτόνου , ὥστε λείπεται τὸ πυκνόν . φανερὸν δὴ ὅτι | ||
πρὸς αὐτῷ κατ ' οὐδέτερον τῶν τόπων οὔτε τόνος . διτόνου γὰρ οὕτω τιθεμένου ἤτοι βαρύτατος πυκνοῦ ἢ ὀξύτατος πεσεῖται |
ὁ μὲν βαρύτερος ὀξύτατος ἐδείχθη πυκνοῦ ὁ δ ' ὀξύτερος βαρύτατος . ὥστ ' ἐπειδὴ τοσαῦτα μέν ἐστι μόνα τὰ | ||
ὁ μὲν βαρύτερος ὀξύτατός ἐστι πυκνοῦ ὁ δ ' ὀξύτερος βαρύτατος . ἀναγκαῖον γὰρ ἐν τῇ συναφῇ τῶν πυκνῶν διὰ |
μέχρι τετάρτου συμφώνου : πρῶτον γὰρ ἐν αὐτῷ τὸ διὰ τεσσάρων , δεύτερον τὸ διὰ πέντε , τρίτον τὸ διὰ | ||
πασῶν σύστημα ἠλέγχετο , ἤτοι τῆς διὰ πέντε καὶ διὰ τεσσάρων ἐν συναφῇ , ὡς ὁ διπλάσιος λόγος ἡμιολίου τε |
κατ ' αὐτὸ διατείνεται , χρῶμα δὲ τὸ δι ' ἡμιτονίων συντεινόμενον . ὡς γὰρ τὸ μεταξὺ λευκοῦ καὶ μέλανος | ||
πρότερον διάγουσα διὰ πασῶν , τὸ δὲ δεύτερον διὰ τῶν ἡμιτονίων αὐξήσασα . ►α ※ β γ δ ε Ϛ |
ὑποκειμένοις ἐπιβάλλουσα . Ἀλλὰ γὰρ καὶ τὴν τῶν πρώτων στοιχείων πεντάδα τούτοις ἀναλογοῦσαν εὑρήσομεν , τῷ μὲν ὑπάτων γῆν ὡς | ||
καὶ ὀκτασήμου . μερίζω τὴν ὀκτάδα πάλιν εἰς τριάδα καὶ πεντάδα : οὐδ ' οὕτως ἔσται ῥυθμικὸς λόγος . τὸν |
ὑπάτων λιχανὸς ὑπάτων ἐναρμόνιος λιχανὸς ὑπάτων χρωματική λιχανὸς ὑπάτων διάτονος ὑπάτη μέσων παρυπάτη μέσων λιχανὸς μέσων ἐναρμόνιος λιχανὸς μέσων χρωματική | ||
παραμέση τὸν τῶν ἐννέα . τούτου γενομένου , ἕξει ἡ ὑπάτη πρὸς μέσην ὡς παραμέση πρὸς νήτην διεζευγμένων : ἀπὸ |
οἳ ἐδόκουν λέγειν ἀριθμοὺς ἐκ τοῦ ἀνάλογον , οἷον δικαιοσύνην τετράδα καὶ ἄλλον ἄλλως : ἐκείνως δὲ μᾶλλον τῷ πλήθει | ||
δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς εὑρήσεις τοῦτο . μετέχει |
δοκεῖ προκόπτειν . Ἡ τοίνυν στιγμή , ἥν φασι σημεῖον ἀδιάστατον ὑπάρχειν , ἤτοι σῶμα νοεῖται ἢ ἀσώματον . καὶ | ||
οὐ δυνατὸν ἐν τοῖς φαινομένοις λαβεῖν τινος σημεῖον καὶ πέρας ἀδιάστατον , δῆλον ὡς οὐδ ' ἐν τοῖς νοητοῖς ληφθήσεταί |
δρᾶμα πεποίηται αὐτῷ οὐκ ἐξ ὑποκειμένης ὑποθέσεως , ἀλλ ' ὡσανεὶ γενομένης : πέπλασται ⌈ γὰρ [ δὲ ] τὸ | ||
ἐλάττονες δὲ ἐν τοῖς ἐλάττοσιν , ἐν δὲ τῇ γεωμετρικῇ ὡσανεὶ μέσῃ αὐτῶν οὔσῃ οὔτε ἐλάττονες οὔτε μείζονες , ἀλλ |
δὲ κἀνταῦθα τῶν μειζόνων λόγων γίνεται τετράχορδον παρὰ τὸ σύντονον διατονικὸν ὁμαλώτερον ἐκείνου καὶ καθ ' αὑτὸ καὶ ἔτι μᾶλλον | ||
ἐστι τρία τὰ προειρημένα . πᾶν οὖν ἔσται μέλος ἤτοι διατονικὸν ἢ χρωματικὸν ἢ ἐναρμόνιον ἢ κοινὸν ἢ μικτὸν ἐκ |
κατὰ μὲν ἑβδομάδα τασσομένου , τοῦ δὲ ψυχικοῦ καθ ' ἑξάδα , τὸ φυτικὸν ἀναγκαίως κατὰ τὴν πεντάδα πίπτει , | ||
τὴν ὁλότητα . ὅτι ἑπτὰ τῶν σφαιρῶν οὐσῶν κατὰ τὴν ἑξάδα τὰ διαστήματά ἐστι : μονάδι γὰρ ἀεὶ ἐλάττονα . |
ἀξιόλογον ταῖς αἰσθήσεσιν ἐμποιεῖν παραλλαγήν , ἐνδεῖν δὲ ἐπὶ τοῦ διατονικοῦ , πλειόνων φαινομένων σαφῶς τῶν μελῳδουμένων , ὡς ἐκ | ||
μικρὸν γὰρ παρέτρεψεν , ἓν μόνον ἡμιτόνιον , ἀπὸ τοῦ διατονικοῦ . ἔνθεν καὶ χρῶμα ἔχειν λέγομεν τοὺς εὐτρέπτους ἀνθρώπους |
ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος | ||
ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς |
λέγῃ ἡ ἡδονὴ σπουδαία ἐστιν , εἰ μὲν πρὸς τὴν γεωμετρικὴν ἡδονὴν ἀποβλέψας φησίν , οὐ τὸ προκείμενον συνάγεται : | ||
. διὰ τοῦτο τὸν Βρύσωνος τετραγωνισμὸν οὐκ ἄν τις εἴποι γεωμετρικὴν ἀπόδειξιν : χρῆται γὰρ ἀξιώματι ἀληθεῖ μὲν κοινῷ δέ |
τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
ἰαμβικὰς ἢ εἰς ὄνομα κύριον καταληγούσας , σπανικὸν δὲ εἰς τροχαῖον : οὗτος γὰρ ὁ ποὺς εἰς κατάληξιν κόμματος ἢ | ||
ψύχων . Τὸ τροχαϊκὸν κατὰ μὲν τὰς περιττὰς χώρας δέχεται τροχαῖον , τρίβραχυν καὶ δάκτυλον , κατὰ δὲ τὰς ἀρτίους |
τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
. Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
: προσλαμβανόμενος , ὑπάτη ὑπάτων , παρυπάτη ὑπάτων , ὑπάτων ἐναρμόνιος , ὑπάτων χρωματική , ὑπάτων διάτονος , ὑπάτη μέσων | ||
πάσχει ὑποκείμενος τῇ εἱμαρμένῃ . ὑπεράνω οὖν ὢν τῆς ἁρμονίας ἐναρμόνιος γέγονε δοῦλος ἀρρενόθηλυς δὲ ὤν , ἐξ ἀρρενοθήλεος ὢν |
τοῦ πυρὸϲ πρόϲβαλλε λεῖον τὸν χαμαιλέοντα ἐπιπάϲϲων καὶ ἐπίθεϲ ἐπὶ μαλακοῦ πυρόϲ , ὅπωϲ τὴν δύναμιν ὁ χαμαιλέων προϲδῷ τῷ | ||
. ἡ λεύκη ὁμοία πλατάνῳ . ψιθυρίζῃ : ἀνέμου πνέοντος μαλακοῦ καὶ ἠρέμα διὰ τῶν φύλλων εἰσιόντος ὥσπερ προσλαλεῖ τὰ |
ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος , | ||
δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , |
τοῦ μεσημβρινοῦ δὲ καύματος ἀκμάζει τῇ ψυχρότητι : πάλιν δὲ ἀνάλογον ἀπολήγει πρὸς τὴν ἑσπέραν καὶ τῆς νυκτὸς ἐπιλαβούσης ἀναθερμαίνεται | ||
αὐτὸν πρὸς αὐτήν . μαθηματικὰ δὲ εὗρεν τὴν μέσην καλουμένην ἀνάλογον , περὶ ἧς ἐν τῇ Ἀποδεικτικῇ λόγον ἐποιησάμεθα . |
μείζονες ἡγεμονίαι πρὸς αὑτάς . Νῦν δὲ καὶ περὶ τῶν διαστημάτων , ὧν ἀπ ' ἀλλήλων ἀφεστᾶσιν οἱ ὁπλῖται κατά | ||
' ἀμφοτέρας τὰς διαιρέσεις φαίνεται , τὰ δὲ μεγέθη τῶν διαστημάτων δῆλον ὅτι οὐ ταὐτὰ ἐν ἑκατέρᾳ τῶν διαιρέσεων . |
ἔστιν ἡ θερμασία τοσαύτη , οὐκ ἀνάγκη γενέσθαι τὴν ὅλην διαστολὴν ταχεῖαν , ὥστε , βραδυτέρας οὔσης καὶ ἐν χρόνῳ | ||
ἀναγκαῖον παντὶ συλλογισμῷ : τὸ δὲ τῷ ταῦτα εἶναι πρὸς διαστολὴν τῶν ἐλλειπόντων συλλογισμῶν ἢ πλεοναζόντων . αὐτὸς δὲ ἐξηγούμενος |
ἐπὶ τὴν βαρυτάτην χρωματικὴν ἑκτημόριον , ἀπὸ δὲ τῆς βαρυτάτης χρωματικῆς ἐπὶ τὴν ἡμιόλιον δωδεκατημόριον τόνου . τὸ δὲ τεταρτημόριον | ||
ἐναρμόνιος μὲν οὖν ἐστι παρυπάτη πᾶσα ἡ βαρυτέρα τῆς βαρυτάτης χρωματικῆς , χρωματικὴ δὲ καὶ διάτονος ἡ λοιπὴ πᾶσα μέχρι |
, καθ ' οὓς συνίστανταί οἱ ῥυθμοὶ οἱ δυνάμενοι συνεχῆ ῥυθμοποιίαν ἐπιδέξασθαι , τρεῖς : ἴσος , διπλασίων , ἡμιόλιος | ||
ῥητὸν χρόνου μέγεθος πρῶτον μὲν δεῖ τῶν πιπτόντων εἰς τὴν ῥυθμοποιίαν εἶναι , ἔπειτα τοῦ ποδὸς ἐν ᾧ τέτακται μέρος |
βούλεσθαι . αἱ γὰρ αἰσθήσεις ἄλλως ἀληθεῖς , οὐ κατὰ σύνθεσίν τινα : τοῦτο γὰρ ἴδιον τῆς λογικῆς ψυχῆς . | ||
αὐτὴν ἔχειν τὸ κατὰ πνεῦμα καὶ τόνον καὶ ὁμωνυμίαν , σύνθεσίν τε καὶ διαίρεσιν . ἡμεῖς δὲ συνεστάναι μὲν αὐτὴν |
” καὶ τὰ ἑξῆς . ὁ δὲ Σωκράτης νῦν , συμφωνῶν ἑαυτῷ ἐν τῇ Πολιτείᾳ , πραότερον ἐπιρραπίζει τὸν τοῦ | ||
ἐπικρατήσεως πολυμερῶς λαμβανόμενος . ἔστι δ ' ὁ μάλιστά τε συμφωνῶν ἡμῖν καὶ ἄλλως ἐχόμενος φύσεως τρόπος τοιοῦτος . ἤρτηται |
Στησιχόρειον τῷ Πινδαρικῷ ἰδιώματι : ὁ γὰρ τελευταῖος ἀντὶ τροχαίου ἴαμβον ἔχει . τὸ δʹ ἀναπαιστικὸν μονόμετρον ἀκατάληκτον . τὸ | ||
τῶν αὐτῶν σύνταξις . τὸ μὲν οὖν ἰαμβικὸν μέτρον εἰς ἴαμβον ἢ πυρρίχιον καταλήγει πάντως , εἰ μὴ χωλεύοι : |
Εἴωθεν ὁ γεωμέτρης ἐν τοῖς τῶν σχέσεων λόγοις δεικνύναι τὴν ταυτότητα διήκουσαν ἐν ἅπασι τοῖς πρὸς τὸ αὐτὸ τὴν αὐτὴν | ||
τρῆμα , μηδετέρου μετέχουσαν . ἀλλ ' ἰσότητα μόνον καὶ ταυτότητα . κατὰ βραχὺ δὲ τὰ γειτνιῶντα αὐτῇ καὶ ἐγγυτέρω |
Γίνεται δὲ καὶ σχήματα τοῦ αὐτοῦ μεγέθους ἐκ τῶν αὐτῶν ἀσυνθέτων συγκείμενα καὶ ἀριθμοῦ , εἰ ἡ τάξις αὐτῶν ἀλλοίωσιν | ||
καὶ διὰ τί οὐχ ἁπλῶς δείκνυται , ὅτι ἐκ τοσούτων ἀσυνθέτων ἕκαστον τῶν γενῶν συνέστηκεν ὅσα ἐστὶν ἐν τῷ διὰ |
τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
τῶν σνϚ πρὸς τὰ σμγ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους λόγους ἐν πρώτοις ἀριθμοῖς τούτοις : | ||
ἀπὸ προσλαμβανομένου ἐπὶ νήτην συνημμένων . ὑπάρχει δὲ ἐν αὐτῷ τετράχορδα τρία συνημμένα τάδε : ὑπάτων μέσων συνημμένων , καὶ |
αἰτιατικῇ συντακτέον αὐτὸ πτώσει εἴτε δοτικῇ , εὑρίσκω κατὰ δοτικὴν ἡρμοσμένον , Ἀριστοφάνου μὲν οὕτω λέγοντος ἐν τοῖς Ἱππεῦσιν : | ||
ὀνόματα δ ' ἀπ ' αὐτῆς ἁρμόζον , ἁρμόζειν , ἡρμοσμένον , εὐάρμοστον , ἐναρμόνιον , καὶ τὸ ἐναντίον ἀνάρμοστον |
τὸ πρὸ τῆς νήτης κεῖσθαι . ἐπὶ δὲ ταύταις ἡ νήτη , τουτέστιν ἐσχάτη . νέατον γὰρ ἐκάλουν τὸ ἔσχατον | ||
βαρεῖα τε μεσσόθι ναίει : ἀπλανέων δὲ σφαῖρα συνημμένη ἔπλετο νήτη : μέσσην δ ' ἠέλιος πλαγκτῶν θέσιν ἔσχεθεν ἄστρων |
δὲ καὶ τοῦτο παρένταξις , δι ' ὅτι ἀνομοίων ἐστὶ παρένθεσις , οἷον ψιλῶν παρ ' ὁπλίτας : τὴν γοῦν | ||
εἰσὶν ὀκτώ , ὄνομα ἀντωνυμία ῥῆμα μετοχὴ ἐπίρρημα πρόθεσις σύνδεσμος παρένθεσις : τισὶν δὲ δοκεῖ καὶ προσηγορία . , . |
ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
κατὰ τὸν πόρον τοῦ ποταμοῦ τεταλαιπωρήκεσαν . Τῇ δὲ ὑστεραίᾳ διχῇ διελὼν τὸν στρατὸν τοῦ μὲν ἑτέρου αὐτὸς ἡγούμενος προσέβαλλε | ||
χρυσοῦ δὲ ἢ ἀργύρου τὸ βάμμα τοῦ ἐληλασμένου καὶ ζέοντος διχῇ ] διχῶς ἤλασε ] ἐχώρισεν λιγνὺς δέ ἐστι κυρίως |
ἐκ τἀγαθοῦ τοῖς πᾶσιν ἐφήκουσαν ἕνωσιν καὶ διὰ τὴν τῆς ταυτότητος ἐν τοῖς ἀύλοις εἴδεσιν ἐπικράτειαν . ἀλλ ' οὗτος | ||
τῷ ἀνθρώπῳ τὸ μουσικόν . καὶ τὰ τοιαῦτα φύσει τῆς ταυτότητος μετέχουσιν , ἤγουν τῷ εἶναι : τὸ δὲ μουσικὸν |
μὲν ὅλον οὐ διαλείποντα , μίαν δὲ κουφοτέραν καὶ μίαν βαρυτέραν ἐπιφέροντα . οἱ δὲ ἀπὸ τῆς μεθόδου ἡμιτριταῖον μικρὸν | ||
' αὐτῆς ταχεῖα , ὀξεῖαν , ὅση δὲ βραδυτέρα , βαρυτέραν : τὴν δὲ ὁμοίαν ὁμαλήν τε καὶ λείαν , |
, ὅταν ὁ μὲν ἑνός , ὁ δὲ δυεῖν μετέχῃ συστημάτων , τετάρτη ἡ κατὰ τὸν τῆς φωνῆς τόπον , | ||
, ἔτι δὲ ἁρμονίαι καὶ συμφωνίαι καὶ τῶν γενῶν καὶ συστημάτων αἱ μεταβολαὶ καὶ πάνθ ' ὅσα κατὰ μουσικὴν ἐπικρίνεται |
. Ῥῆμά ἐϲτι λέξιϲ ἄπτωτοϲ , ἐπιδεκτικὴ χρόνων τε καὶ προϲώπων καὶ ἀριθμῶν , ἐνέργειαν ἢ πάθοϲ παριϲτᾶϲα . Παρέπεται | ||
ὃ καί τινεϲ τῶν γυναικῶν ὡϲ ῥύμμαϲιν αὐταῖϲ ἐπὶ τῶν προϲώπων χρῶνται : ἕλκη τε ϲαρκοῦϲι καὶ ἀφουλοῦϲι , καὶ |
ἀντίτυπον καὶ οὐκ εὐεπές , τοῦ μὲν συνδέσμου λήγοντος εἰς ἡμίφωνον στοιχεῖον τὸ ν , τοῦ δὲ προσηγορικοῦ τὴν ἀρχὴν | ||
νευρῶδες , διπρόσωπον , χερσαῖον , τετράπουν , ἀσθενόφθαλμον , ἡμίφωνον : διπρόσωπον δὲ ἐκλήθη διὰ τὸ ἔχειν ἐκ τῶν |
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
μέσον κοινός , διάζευξις δ ' ὅταν δύο τετραχόρδων ἑξῆς μελῳδουμένων ὁμοίων κατὰ σχῆμα τόνος ᾖ ἀνὰ μέσον . ὅτι | ||
τὸν δὲ τόνον ἐπόγδοον . τῶν δὴ παρὰ τοῖς κιθαρῳδοῖς μελῳδουμένων τετραχόρδων πεποιήσθω πρῶτον τὸ ἀπὸ νήτης μέχρι παραμέσης διὰ |
εἰς τὸν ἀριθμὸν τῶν ἀφώνων πάντων [ δὲ ] τῶν φωνηέντων προτάσσεται , οὐδενὶ ὑποτάσσεται εἰ μὴ συμφώνοις , ὡς | ||
: καὶ ὥσπερ ἀπὸ τοῦ ἁρμοστός ὁρμαστός κατὰ μετάθεσιν τῶν φωνηέντων , ἐκ δὲ τοῦ ὁρμαστός γίνεται ὁρμαθός κατὰ ἀποβολὴν |
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως . | ||
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ ' |