μὲν καλῶμεν ὑπάτην καὶ μέσην , τόδε δὲ παραμέσην καὶ νήτην , μένοντος γὰρ τοῦ μεγέθους συμβαίνει κινεῖσθαι τὰς τῶν | ||
φθόγγῳ τῇ ἀρχαίᾳ ὑπάτῃ . ὥστε ἀπὸ ὑπάτης ὑπατῶν ἐπὶ νήτην ὑπερβολαίων τέσσαρα εἶναι τετράχορδα συνημμένα . εὑρίσκετο δὲ τρισκαιδεκάχορδον |
, τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ παρυπάτην ὑπατῶν | ||
ὑπατῶν ἐπὶ ὑπατῶν διάτονον τόνος , ἀπὸ ὑπατῶν διατόνου ἐπὶ ὑπάτην μέσων τόνος , ἀπὸ ὑπάτης μέσων ἐπὶ παρυπάτην μέσων |
μέσην , ὅταν μὴ ὡς ἔθος εἶχεν ἐπὶ τὸ τῶν διεζευγμένων τετράχορδον ἔλθῃ κατὰ τὴν διὰ πέντε συμφωνίαν τῷ τῶν | ||
ὑπερβολαίων λϚ ἀπλανῶν , νήτη ὑπερβολαίων λβ κρόνου , νήτη διεζευγμένων κδ διός , νήτη συνημμένων κα γʹ ἄρεως , |
μέσην δὲ τὸν τοῦ ὀκτὼ , ἐπίτριτον αὐτοῦ τυγχάνοντα , παραμέσην δὲ τὸν τοῦ ἐννέα , τόνῳ τοῦ μέσου ὀξύτερον | ||
δὲ μετὰ τὴν μέσην ὁμοίως μέχρι τῆς νήτης τῶν ὑπερβολαίων παραμέσην καὶ τρίτην διεζευγμένων καὶ παρανήτην διεζευγμένων καὶ νήτην διεζευγμένων |
: υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - Μʹσμένον , | ||
τυγχάνει κατὰ διαίρεσιν θεωρούμενα πέντε , ὑπάτων μέσων συνημμένων διεζευγμένων ὑπερβολαίων , πεντάχορδα δὲ σύμφωνα τρία , μέσων συνημμένων διεζευγμένων |
χρωματική , μέσων διάτονος , μέση , τρίτη συνημμένων , συνημμένων ἐναρμόνιος , συνημμένων χρωματική , παρανήτη συνημμένων , νήτη | ||
ὑπερβολαίων λβ κρόνου , νήτη διεζευγμένων κδ διός , νήτη συνημμένων κα γʹ ἄρεως , παράμεσος ιη ἡλίου , μέση |
μέχρι τῆς νήτης τῶν ὑπερβολαίων παραμέσην καὶ τρίτην διεζευγμένων καὶ παρανήτην διεζευγμένων καὶ νήτην διεζευγμένων καὶ τρίτην ὑπερβολαίων καὶ παρανήτην | ||
, ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτο - νον , |
συντονωτάτῳ διατόνῳ , δύο ἔσται μεγέθη μόνα ἐξ ὧν τὸ διάτονον συνεστηκὸς ἔσται . ἐὰν δὲ τὰ μὲν δύο ἴσα | ||
καὶ δίεσιν καὶ δίτονον κινοῖτο , ἐναρμόνιον ποιεῖ γένος . διάτονον μὲν οὖν λέγεται , ἐπειδὴ κατὰ τὸ πλεῖον διὰ |
καὶ παρυπάτην ὑπάτων καὶ λιχανὸν ὑπάτων καὶ ὑπάτην μέσων καὶ παρυπάτην μέσων καὶ λιχανὸν μέσων , τοὺς δὲ μετὰ τὴν | ||
διατόνου ἐπὶ ὑπάτην μέσων τόνος , ἀπὸ ὑπάτης μέσων ἐπὶ παρυπάτην μέσων ἡμιτόνιον , ἀπὸ παρυπάτης μέσων ἐπὶ μέσων διάτονον |
τὸν αὐτὸν ἔλθῃ δεύτερον φθόγγον , εἶτα πάλιν ἀπὸ τοῦδε ἡμιτόνιον διαστήσασα τρίτον ὁρίσῃ φθόγγον ἄλλον , ἀπὸ τούτου κατὰ | ||
νήτην διεζευγμένων τόνος , ἀπὸ νήτης διεζευγμένων ἐπὶ τρίτην ὑπερβολαίων ἡμιτόνιον , ἀπὸ τρίτης ὑπερβολαίων ἐπὶ ὑπερβολαίων διάτονον τόνος , |
ᾖ καὶ ἡ τοῦ ἐπιφωνήματος φύσις φανερά . τὸ δὲ προσλαμβανόμενον ἔξωθεν τετολμῆσθαι δεῖ ἀσφαλῶς : διὰ τοῦτο γάρτοι καὶ | ||
τοῦ δὲ τετμημένου τὸ μὲν ἕτερον τῶν περάτων κατὰ τὸν προσλαμβανόμενον , τὸ δὲ ἕτερον κατὰ τὴν νήτην τῶν ὑπερβολαίων |
ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτο - νον , τέταρτον δέ , οὗ | ||
ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην ὑπερβολαίων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτονον , ἕβδομον δέ , οὗ ἕβδομος ὁ |
ἡ δὲ σελήνη ἑβδόμη οὖσα τάξιν ἐπέχει φθόγγου τοῦ λεγομένου ὑπάτης μέσης . τὸ δὲ ἀπὸ γῆς διάστημα μέχρι τῆς | ||
ἔχει λόγον , τὸν δὲ βαρὺν τὸν Κρόνον , εἴπερ ὑπάτης . Οἱ δὲ δὴ πρῶτοι ἀπὸ τῶν πρὸς ἡμᾶς |
ὑπερέχοντες , παράλληλοι δὲ δύο τόνον , οἱ δὲ τρίτοι τριημιτόνιον : ἀναλόγως δὲ ἕξει καὶ ἐπὶ τῆς τῶν λοιπῶν | ||
παρενθέσεως τῆς ἐν ὀκταχόρδῳ . ἀπεῖχε γὰρ αὕτη τῆς παρανεάτης τριημιτόνιον ἀσύνθετον , ἀφ ' οὗ διαστήματος ἡ μὲν παρεντεθεῖσα |
, οὗ αἱ διέσεις ἐφ ' ἑκάτερα τοῦ διατόνου ἀπὸ παρυπάτης μέσων ἐπὶ τρίτην συνημμένων , τρίτον δέ , οὗ | ||
μὲν ὑπάτης καὶ παρυπάτης διάστημα ἡμιτονιαῖόν ἐστι , τὸ δὲ παρυπάτης καὶ λιχανοῦ ἐννέα δωδεκατημορίων ἀσύνθετον λαμβανομένων . δεύτερον δὲ |
πρὸς παράμεσον : ὑπάτη δὲ ὑπάτων , ὅτι τοῦ πρώτου τετραχόρδου πρώτη τίθεται : τὸ γὰρ πρῶτον ὕπατον ἐκάλουν οἱ | ||
νήτη ὑπερβολαίων . Ὥσπερ οὖν ἐνταῦθα τὰ μὲν τοῦ ὑπατῶν τετραχόρδου κατὰ τρία γένη , τὰ δὲ μέσων , τὰ |
, διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ | ||
, οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων |
ἐστὶν τοῦ κορυφαίου , οἷον τοῦ βασιλέως , ἡ δὲ παρανήτη πλησίον μᾶλλον τῆς μέσης : ἔστι δὲ ἡ μέση | ||
παραμέση τρίτη διεζευγμένων παρανήτη διεζευγμένων διάτονος νήτη διεζευγμένων τρίτη ὑπερβολαίων παρανήτη ὑπερβολαίων διάτονος νήτη ὑπερβολαίων . Ἐν δὲ χρώματι οἵδε |
δὲ ἡμιτονίου , ὡς ἐλάχιστον μελῳδητὸν διάστημα , τῶν Πυθαγορείων δίεσιν καλούντων τὸ νῦν λεγόμενον ἡμιτόνιον . καλεῖσθαι δέ φησιν | ||
τὸ δὲ ἡμιόλιον κατὰ δίεσιν ἡμιόλιον τῆς ἐναρμονίου διέσεως καὶ δίεσιν τὴν ἴσην καὶ ἑπτὰ τεταρτημορίων διέσεων ἀσύνθετον διάστημα . |
τοίνυν οὗτος ὑφίσταται γένη , τό τε ἐναρμόνιον καὶ τὸ χρωματικὸν καὶ τὸ διατονικόν : ἑκάστου δὲ αὐτῶν ποιεῖται τὴν | ||
[ τῶν ] εἰς τὸ ἡρμοσμένον ἤτοι διάτονόν ἐστιν ἢ χρωματικὸν ἢ ἐναρμόνιον . πρῶτον μὲν οὖν καὶ πρεσβύτατον αὐτῶν |
: τοῖς γοῦν αὐτοῖς λόγοις οἱ ἄκροι τῆς μέσης καὶ παραμέσης ὑπερέχουσι καὶ ὑπερέχονται , ἐπιτρίτῳ καὶ ἡμιολίῳ . τοιαύτη | ||
τῷ αὑτῆς ὑπερέχουσαν , τὴν δ ' ὑπάτην ὑπὸ τῆς παραμέσης ὑπερεχομένην ὁμοίως : ὡς γίγνεσθαι τὰς αὐτὰς ὑπεροχὰς τῶν |
ὑβρίσαντες | καὶ ὡς ἑταίραις ταῖς ἀσταῖς προσενεχθέντες , ἐὰν διάζευξιν τεχνάζωσι μηδεμίαν ἀπαλλαγῆς πρόφασιν ἀνευρίσκοντες , εἶτ ' ἐπὶ | ||
συναφὴν συστήματι ὑπαρχούσῃ τετραχόρδου τε καὶ πενταχόρδου , ἢ κατὰ διάζευξιν δυεῖν τετραχόρδων τόνῳ χωριζομένων ἀπ ' ἀλλήλων , ἀπὸ |
γὰρ ᾔδεισαν τόν τε δώριον καὶ τὸν φρύγιον καὶ τὸν λύδιον ἑνὶ τόνῳ διαφέροντας ἀλλήλων , ὡς μὴ φθάνειν ἐπὶ | ||
τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν ἤρξαντο ἐθνῶν ὀνομασίας , |
εἶναι τὰς παρυπάτας ἀμφοτέρων τῶν γενῶν , γίγνεται γὰρ ἐμμελὲς τετράχορδον ἐκ παρυπάτης τε χρωματικῆς τῆς βαρυτάτης καὶ διατόνου λιχανοῦ | ||
διὰ πασῶν , σύστημα δὲ διαστημάτων ποιὰν περιοχήν , οἷον τετράχορδον , πεντάχορδον , ὀκτάχορδον . ἁρμονία δέ ἐστι συστημάτων |
τὸ πρὸ τῆς νήτης κεῖσθαι . ἐπὶ δὲ ταύταις ἡ νήτη , τουτέστιν ἐσχάτη . νέατον γὰρ ἐκάλουν τὸ ἔσχατον | ||
βαρεῖα τε μεσσόθι ναίει : ἀπλανέων δὲ σφαῖρα συνημμένη ἔπλετο νήτη : μέσσην δ ' ἠέλιος πλαγκτῶν θέσιν ἔσχεθεν ἄστρων |
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
ὑπερβολαίων . Ἐν δὲ ἁρμονίᾳ οἵδε : προσλαμβανόμενος ὑπάτη ὑπάτων παρυπάτη ὑπάτων λιχανὸς ὑπάτων ἐναρμόνιος ὑπάτη μέσων παρυπάτη μέσων λιχανὸς | ||
ὑπερβολαίων . Ἐν δὲ χρώματι οἵδε : προσλαμβανόμενος ὑπάτη ὑπάτων παρυπάτη ὑπάτων λιχανὸς ὑπάτων χρωματική ὑπάτη μέσων παρυπάτη μέσων λιχανὸς |
δὲ κἀνταῦθα τῶν μειζόνων λόγων γίνεται τετράχορδον παρὰ τὸ σύντονον διατονικὸν ὁμαλώτερον ἐκείνου καὶ καθ ' αὑτὸ καὶ ἔτι μᾶλλον | ||
ἐστι τρία τὰ προειρημένα . πᾶν οὖν ἔσται μέλος ἤτοι διατονικὸν ἢ χρωματικὸν ἢ ἐναρμόνιον ἢ κοινὸν ἢ μικτὸν ἐκ |
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ | ||
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ |
παρυπάτη μέσων , μέσων ἐναρμόνιος , μέσων χρωματική , μέσων διάτονος , μέση , τρίτη συνημμένων , συνημμένων ἐναρμόνιος , | ||
τὸ ὑπατῶν , οἷον ὑπάτη ὑπατῶν , παρυπάτη ὑπατῶν , διάτονος ὑπατῶν ἢ λιχανὸς ὑπατῶν , οὐδὲν γὰρ διαφέρει ὁποτερωσοῦν |
μὲν ὅλον οὐ διαλείποντα , μίαν δὲ κουφοτέραν καὶ μίαν βαρυτέραν ἐπιφέροντα . οἱ δὲ ἀπὸ τῆς μεθόδου ἡμιτριταῖον μικρὸν | ||
' αὐτῆς ταχεῖα , ὀξεῖαν , ὅση δὲ βραδυτέρα , βαρυτέραν : τὴν δὲ ὁμοίαν ὁμαλήν τε καὶ λείαν , |
πρῶτος τῶν τεσσάρων , ὁ δὲ μέσος , ὁ δὲ παράμεσος , ὁ δὲ μικρός . τούτων τὰ ὀστᾶ σκυταλίδες | ||
τῆς μέσης ἐπιτείναντι τόνον ἡ παρ ' αὐτὴν κειμένη χορδὴ παράμεσος καλεῖται . αἱ δὲ μετὰ ταύτην διὰ τὰς ὁμοίας |
πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ | ||
οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν |
διὰ πασῶν , τόνων ἕξ , οἷόν ἐστι τὸ ἀπὸ προσλαμβανομένου ἐπὶ μέσην : τέταρτον δὲ τὸ διὰ πασῶν καὶ | ||
τρίτη συνημμένων , τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ |
κεχωρισμένοις τοῦ ἐντέρου διαίρεσιν ἐμβαλόντες ἱκανὴν παραδέξασθαι δάκτυλον καθήσομεν τὸν λιχανὸν καὶ κατ ' ἐπικόπου τοῦ δακτύλου διελοῦμεν τὸ περιτόναιον | ||
οὔτε τὴν ἁρμονίαν ἁρμοττόνται , ὥστε τί μᾶλλον τὴν δίτονον λιχανὸν λεκτέον ἢ τὴν μικρῷ συντονωτέραν ; ἁρμονία μὲν γὰρ |
μὲν ἡμιτόνιον καὶ τόνον καὶ τόνον , λέγεται δὲ συντόνου διατόνου . ἵνα δὲ δῆλον ᾖ τὸ λεγόμενον , ἐπ | ||
ἀπὸ παρυπάτης μέσων ἐπὶ μέσων διάτονον τόνος , ἀπὸ μέσων διατόνου ἐπὶ μέσην τόνος , ἀπὸ μέ - σης ἐπὶ |
ἐπὶ τὴν αὐτὴν τάσιν ἀφίκωνται ἥ τε παρυπάτη καὶ ἡ λιχανός , ἡ μὲν ἐπιτεινομένη ἡ δ ' ἀνιεμένη , | ||
. τὸ γὰρ δίτονον , ὅταν μὲν ὁρίζωσι μέση καὶ λιχανός , ἀσύνθετόν ἐστιν , ὅταν δὲ μέση καὶ παρυπάτη |
ἕξ : ὑπερλύδιον , ὑπεριάστιον , λύδιον , φρύγιον , ὑπολύδιον , ὑποφρύγιον . οἱ δὲ κιθαρῳδοὶ τέτρασι τούτοις ἁρμόζονται | ||
διὰ πασῶν ἐν τῷ λυδίῳ , εἶτα τετράχορδον ὑποβαίνοντες τὸ ὑπολύδιον καὶ ἑξῆς ὁμοίως τετράχορδον ἀναβαίνοντες τὸν ὑπερλύδιον . Κεχυμέναι |
ὑπάτων λιχανὸς ὑπάτων ἐναρμόνιος λιχανὸς ὑπάτων χρωματική λιχανὸς ὑπάτων διάτονος ὑπάτη μέσων παρυπάτη μέσων λιχανὸς μέσων ἐναρμόνιος λιχανὸς μέσων χρωματική | ||
παραμέση τὸν τῶν ἐννέα . τούτου γενομένου , ἕξει ἡ ὑπάτη πρὸς μέσην ὡς παραμέση πρὸς νήτην διεζευγμένων : ἀπὸ |
τὸ μὲν γὰρ ἡμιτόνιον εἰς ἓξ δωδεκατημόρια , ἡ δὲ δίεσις , ἡ μὲν τεταρτημόριος εἰς τρία , ἡ δὲ | ||
διάστημα τόνου ἢ διέσεως : ὁ γὰρ τόνος καὶ ἡ δίεσις ἀρχὴ μὲν συμφωνίας , οὔπω δὲ συμφωνία . ὁ |
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
κλιμακτηρίζει . μεταβαίνω ἐπὶ τὴν πεντάδα : χρηματίζει δὲ τῆς πεντάδος ἡ Σελήνη καὶ Κρόνος καὶ εὑρίσκονται οὗτοι ἀλλήλοις ἀποκαθιστανόμενοι | ||
καὶ αὐτῶν ὁμοκαταλήκτων ὄντων , ὡς ὁ ρκεʹ ἀπὸ πλευρᾶς πεντάδος ὢν καὶ ὁ σιϚʹ ἀπὸ πλευρᾶς ἑξάδος . κἂν |
διεζευγμένων τὸν τρίτον , τρίτην δὲ ὑπερβολαίων τὸν ἀπὸ τοῦ βαρυτάτου δεύτερον τοῦ πρὸ τῆς βαρυτέρας διαζεύξεως τετραχόρδου , καὶ | ||
τῶν ΒΔ καὶ ΑΕ τμημάτων διέλωμεν εἰς τὰς μέχρι τοῦ βαρυτάτου φθόγγου φθανούσας μοίρας , ἀπὸ τῶν Α καὶ Β |
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
Σελήνη ἀπὸ πανσελήνου διελθοῦσα τὸ αʹ τετράγωνον καὶ τὴν βʹ διχότομον ὡς συμβαίνειν ἐπὶ τὴν σύνοδον ἢ τὸ συνοδικὸν ζῴδιον | ||
τὴν δευτέραν ἀμφίκυρτον , εἶτα ἕως σοʹ μοιρῶν τὴν δευτέραν διχότομον , εἶτα ἕως τξʹ τὴν δύσιν . ἔστι δὲ |
ἔχει . ὑπόκειται δὲ καὶ ἡ παρὰ τοῖς ἀρχαίοις κατὰ διέσεις ἁρμονία , ἕως κδ διέσεων τὸ πρότερον διάγουσα διὰ | ||
τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου |
ἔχει , ἡ δυὰς δὲ βραχεῖά τις ἐπ ' ἀριθμὸν προχώρησις , οὐκ ἄντικρυς δὲ τοιαύτη διὰ τὸ ἀρχοειδές , | ||
καὶ τάξει φυσικῇ τῶν πολλαπλασίων ἀπὸ διπλασίου εἰς πενταπλάσιον ἡ προχώρησις εἴη . ἐφοδευτέον δὴ οὕτως . ἐπεὶ ἡμίσους χρεία |
: προσλαμβανόμενος , ὑπάτη ὑπάτων , παρυπάτη ὑπάτων , ὑπάτων ἐναρμόνιος , ὑπάτων χρωματική , ὑπάτων διάτονος , ὑπάτη μέσων | ||
πάσχει ὑποκείμενος τῇ εἱμαρμένῃ . ὑπεράνω οὖν ὢν τῆς ἁρμονίας ἐναρμόνιος γέγονε δοῦλος ἀρρενόθηλυς δὲ ὤν , ἐξ ἀρρενοθήλεος ὢν |
γὰρ τοὺς τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν ἤρξαντο ἐθνῶν | ||
ὁ δὲ ὡς τόπος φωνῆς , ὅταν λέγωμεν δώριον ἢ φρύγιον ἢ λύδιον ἢ τῶν ἄλλων τινά . εἰσὶ δὲ |
καὶ τὸ τρίτον ὡσαύτως , μετὰ δὲ ταῦτα διὰ τὴν ὑποτομὴν ἐκπίπτειν τὸ δένδρον ὑπὸ τῶν πνευμάτων σαπέν : τότε | ||
δὲ φεύγουϲι τὴν ἀποδοράν , δι ' ὃ μετὰ τὴν ὑποτομὴν βλεφαροκατόχῳ μυδίῳ , τουτέϲτι πρὸϲ τὴν περιφέρειαν τοῦ βλεφάρου |
μέσων χρωματική μέση τρίτη συνημμένων παρανήτη συνημμένων χρωματική νήτη συνημμένων παραμέση τρίτη διεζευγμένων παρανήτη διεζευγμένων χρωματική νήτη διεζευγμένων τρίτη ὑπερβολαίων | ||
λιχανός . Ἑρμοῦ δὲ τὸ μεταίχμιον Ἀφροδίτης καὶ Ἡλίου κατέχοντος παραμέση . περὶ ὧν ἀκριβέστερον καὶ μετὰ γραμμικῶν καὶ ἀριθμητικῶν |
καὶ βραχείαϲ ˘ ἑπτάχρονοϲ , οἷον Καλλίξεινοϲ : διϲπόνδειοϲ ἐκ τεϲϲάρων μακρῶν = = ὀκτάχρονοϲ , οἷον Ἡρακλείδηϲ . Τὸ | ||
δὲ ἀπὸ τοῦ πρώτου λουτροῦ πρὸϲ τὸ δεύτερον ὡρῶν ἰϲημερινῶν τεϲϲάρων ἢ πέντε χρόνοϲ , εἰ τὸ τρίτον ἔτι μέλλοιϲ |
. Τὸ δέ γε τοιοῦτον ἐκ πολλῶν μερῶν ὂν οὐ συμφωνήσει τῷ [ ὅλῳ ] λόγῳ . Μανθάνω . Πότερον | ||
καὶ φανερὸν ὡς καθ ' ἑκατέραν τὴν ὑπόθεσιν τὰ αὐτὰ συμφωνήσει μέγιστα καὶ πάλιν ἐλάχιστα καὶ μέσα εἶναι ἀποστήματα . |
τρίτη διεζευγμένων ἐναρμόνιος τρίτη διεζευγμένων χρωματικὴ καὶ διάτονος ἐναρμόνιος διεζευγμένων χρωματικὴ διεζευγμένων διάτονος διεζευγμένων νήτη διεζευγμένων τρίτη ὑπερβολαίων ἐναρμόνιος τρίτη | ||
μέσων χρωματική μέσων διάτονος μέση τρίτη συνημμένων ἐναρμόνιος τρίτη συνημμένων χρωματικὴ καὶ διάτονος συνημμένων ἐναρμόνιος συνημμένων χρωματική συνημμένων διάτονος νήτη |
κατὰ μέγεθος , ἤτοι ὡς τά τε σύμφωνα καὶ ὁ τόνος ἢ ὡς τὰ τούτοις σύμμετρα , τὸ δὲ κατὰ | ||
. δεύτερον τὸ ὑπὸ μεσοπύκνων περιεχόμενον , οὗ δεύτερος ὁ τόνος ἐπὶ τὸ ὀξύ : ἔστι δὲ ἀπὸ παρυπάτης ὑπάτων |
τοῦ ἰσημερινοῦ πόλος τὸ Γ , καὶ γεγράφθω τοῦ διὰ μέσων τῶν ζῳδίων κύκλου δύο τμήματα τό τε ΑΔΕ καὶ | ||
μοίρας ε με , βορειότερον δ ' ἦν τοῦ διὰ μέσων μοίραις ε , ἐφαίνετο δ ' ἐν Ἀλεξανδρείᾳ κατὰ |
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως . | ||
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ ' |
μέχρι τετάρτου συμφώνου : πρῶτον γὰρ ἐν αὐτῷ τὸ διὰ τεσσάρων , δεύτερον τὸ διὰ πέντε , τρίτον τὸ διὰ | ||
πασῶν σύστημα ἠλέγχετο , ἤτοι τῆς διὰ πέντε καὶ διὰ τεσσάρων ἐν συναφῇ , ὡς ὁ διπλάσιος λόγος ἡμιολίου τε |
ὅρων ἕκαστος ἴδιον ἔχει τὸ αἴτιον , ἐπὶ δὲ τῶν τόνων ἕπονταί πως τῷ πρώτῳ τῶν ὅρων οἱ λοιποὶ δύο | ||
ἀμεταβόλῳ συστήματι ἕξ : ἐλάχιστον μὲν τὸ διὰ τεσσάρων , τόνων δύο ἡμίσεος , οἷόν ἐστι τὸ ἀπὸ ὑπάτης ὑπάτων |
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν | ||
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ |
ἐπὶ τὴν βαρυτάτην χρωματικὴν ἑκτημόριον , ἀπὸ δὲ τῆς βαρυτάτης χρωματικῆς ἐπὶ τὴν ἡμιόλιον δωδεκατημόριον τόνου . τὸ δὲ τεταρτημόριον | ||
ἐναρμόνιος μὲν οὖν ἐστι παρυπάτη πᾶσα ἡ βαρυτέρα τῆς βαρυτάτης χρωματικῆς , χρωματικὴ δὲ καὶ διάτονος ἡ λοιπὴ πᾶσα μέχρι |
ψυχικοῦ λογικοῦ , καὶ τοῦ μὲν λογικοῦ κατὰ μὲν ἑβδομάδα τασσομένου , τοῦ δὲ ψυχικοῦ καθ ' ἑξάδα , τὸ | ||
τρόπων ὡς τὸ ΑΒΓΔ , τοῦ Α κατὰ τὴν νήτην τασσομένου . λέγω ὅτι περιέχεται ὑπ ' αὐτοῦ τὸ τοῦ |
φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ | ||
Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # # |
τπδ , ὑπὸ τοῦ δὲ ὑπερέχεται τοῦ ͵αφλϚ . ιγʹ ͵ασϘϚ ρμδ . ιδʹ ͵αυνη ρξβ . ιεʹ ͵αφλς οη | ||
τὰ ἑξηκοστά : διῄρουν γὰρ οὕτως τὴν μονάδα εἰς μυριάδας ͵ασϘϚ . ἐπιστῆσαι οὖν ἐστιν ἐκ τούτων ὁ πᾶς κύκλος |
: διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί | ||
μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν |
στίχων ἀρχομένων ἀπὸ μονάδος ἐπί τε πλάτος καὶ ἐπὶ βάθος γαμμοειδῶς οἱ δεύτεροι ἐφ ' ἑκάτερα καὶ αὐτοὶ γαμμοειδῶς ἀπὸ | ||
, τουτέστιν ἀπὸ διπλασίου . εἰ δὲ καὶ τοὺς ἑτερομήκεις γαμμοειδῶς παρασπίζοιμεν τοῖς τετραγώνοις ἅπαξ τοὺς ἄκρους συντιθέντες καὶ δὶς |
Στησιχόρειον τῷ Πινδαρικῷ ἰδιώματι : ὁ γὰρ τελευταῖος ἀντὶ τροχαίου ἴαμβον ἔχει . τὸ δʹ ἀναπαιστικὸν μονόμετρον ἀκατάληκτον . τὸ | ||
τῶν αὐτῶν σύνταξις . τὸ μὲν οὖν ἰαμβικὸν μέτρον εἰς ἴαμβον ἢ πυρρίχιον καταλήγει πάντως , εἰ μὴ χωλεύοι : |
περὶ τὰ ἀναγκαῖα . ὀρθογωνίου μὲν γὰρ τριγώνου ἢ διέσεως ἡμιτονίου οὐδεμίαν φύσει ἔννοιαν ἥκομεν ἔχοντες , ἀλλ ' ἔκ | ||
ἀλλήλων τετάρτους τὸν διὰ τεσσάρων ἀλλήλοις διόλου συμφωνεῖν , τοῦ ἡμιτονίου κατὰ μετάβασιν τήν τε πρώτην καὶ τὴν μέσην καὶ |
τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς , καὶ ἐφεξῆς . οἷόν εἰσιν ἡμιόλιοι δ , Ϛ , θ . λαβὲ ἀπὸ τῶν | ||
πρὸς τὸ δεύτερον καὶ τὸ τρίτον πρὸς τὸ τέταρτον : ἡμιόλιοι γὰρ ἀμφότεροι ἀμφοτέρων . καὶ τὰ ἰσάκις τοίνυν πολλαπλάσια |
ϲταθμῷ δὲ ⋖ ξʹ . Ὁ ξέϲτηϲ μέτρῳ μὲν ἔχει κοτύλαϲ βʹ , ϲταθμῷ δὲ ⋖ ρκʹ . καλεῖται δὲ | ||
ηʹ . Ὁ χοῦϲ ἔχει ξέϲταϲ Ϛʹ . Ὁ ξέϲτηϲ κοτύλαϲ βʹ , αἳ καὶ [ τρίβανα ἢ ] τρυβλία |
ἥμισυ μὲν αὐτῆς ἐστιν ἡ μεραρχία , τέταρτον δὲ ἡ χιλιαρχία : τὴν μὲν ἀρίστην χιλιαρχίαν τῆς δεξιᾶς μεραρχίας τάξομεν | ||
ὁ τούτων ἀφηγούμενος πεντακοσιάρχης . αἱ δὲ δύο πεντακοσιαρχίαι καλεῖται χιλιαρχία , ἀνδρῶν ͵ακδ , λόχων ξδ , καὶ ὁ |
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν | ||
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν |
καὶ τοῦ χειμερινοῦ τροπικοῦ ἓξ ὡριαίων διαστημάτων τὸ μὲν πρῶτον ὡριαῖον διάστημα ἐπὶ τοῦ περὶ μέσας τὰς Χηλὰς κύκλου ἀφορίζει | ||
ἑπόμενος τῶν ἐπ ' εὐθείας τριῶν . Τὸ δὲ τρίτον ὡριαῖον διάστημα ἀφορίζει περὶ μέσον τὸν Ταῦρον τῶν ἐν τῇ |
τὴν Κοίνου καὶ Ἀμύντου τάξιν καὶ τῶν ἑταίρων ἱππέων τοὺς ἡμίσεας καὶ τοὺς ἱππακοντιστάς : ἤδη γὰρ αὐτῷ καὶ ἱππακοντισταὶ | ||
ἀντὶ ξυνελθόντων δὲ κεῖται ξυμμάχων Ἀλκαμένη ἄρχοντα : ἔχοντας . ἡμίσεας : ἡ ἥμισυς τὰς ὕστερον διαφερομένας : μετὰ τοῦτο |
οἳ ἐδόκουν λέγειν ἀριθμοὺς ἐκ τοῦ ἀνάλογον , οἷον δικαιοσύνην τετράδα καὶ ἄλλον ἄλλως : ἐκείνως δὲ μᾶλλον τῷ πλήθει | ||
δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς εὑρήσεις τοῦτο . μετέχει |
. Ὅτι Ἀγησίλαος πλῆθος ἱππέων βουλόμενος τοῖς πολεμίοις παραδεῖξαι εἰς διφαλαγγίαν τοὺς πρωτοστάτας τῶν ἱππέων τάξας ὑπέταξεν ὄνους τε καὶ | ||
μέρη καθ ' ἑαυτὰ παρέρχεσθαι , δύο μέρη ποιεῖν εἰς διφαλαγγίαν . Εἰ δὲ μηδὲ δύο χωροῦσιν , κατὰ ἓν |
ἴϲχεται : κἢν μὴ ἰηθῇ ἡ γυνή , ἐϲ πολλὰϲ περιόδουϲ ἀντιπερίειϲι ἡ ἀναγωγή : μετεξετέρῃϲι δὲ καὶ ἀπερράγη τὰ | ||
κοτύλην καθ ' ἑκάϲτην ἡμέραν καὶ πάλιν ἀφιϲτάμην ἐπὶ β περιόδουϲ καὶ ἅμα ἥ τε νόϲοϲ διελέλυτο καὶ τὸ ϲῶμα |
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ | ||
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος |
, ὃ δηλοῖ τὸ δαψιλῶς , τινὲς μὲν διὰ δύο δδ ἐκφέρουσιν , ἄλλοι δὲ δι ' ἑνός . ἀδηφάγος | ||
” . οἱ Μεγαρεῖς δὲ τρέπουσι τὸ ζ εἰς δύο δδ . Γ ἀκούετον δή , ποτέχετ ' ἐμὶν τὴν |
ἀναλογοῦσαν διὰ τὴν πολλὴν βαρύτητα καὶ τραχύτητα , τὴν δὲ σαμβύκην πρὸς θηλύτητα , ἀγεννῆ τε οὖσαν καὶ μετὰ πολλῆς | ||
εἶναι τὴν μάγαδιν , μετασκευασθῆναι δ ' ὀψέ ποτε καὶ σαμβύκην μετονομασθῆναι . πλεῖστον δ ' εἶναι τοῦτο τὸ ὄργανον |
, σύστημα δὲ διαστημάτων ποιὰν περιοχήν , οἷον τετράχορδον , πεντάχορδον , ὀκτάχορδον . ἁρμονία δέ ἐστι συστημάτων σύνταξις , | ||
ὠνόμαζον : ἐκείνων δ ' ἦν καὶ τὸ εὕρημα . πεντάχορδον : Σκυθῶν μὲν τὸ εὕρημα , καθῆπται δ ' |
γὰρ ἦν Ἰσχόλαος μὲν ἐν Οἰῷ τῆς Σκιρίτιδος , ἔχων νεοδαμώδεις τε φρουροὺς καὶ τῶν Τεγεατῶν φυγάδων τοὺς νεωτάτους περὶ | ||
λόχος Λακωνικὸς οὕτω λεγόμενος Βρασίδειοι : οἱ μετὰ Βρασίδου σημείωσαι νεοδαμώδεις ʃ νεοπολῖται . παρ ' αὐτούς : πλησίον . |
πυθμὴν οὖν , πύθματος , καὶ ἀποβολῇ τοῦ θ , πύματος . Παγός . παρὰ τὸ πεπῆχθαι . Πατήρ . | ||
, ἢ ἀπὸ δευτέρας συζυγίας τῶν περισπωμένων προπαροξύνονται : μέσατος πύματος ὀγδόατος τρίτατος τέταρτος νέατος . τὸ μέντοι ἐρατός ἐλατός |
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς | ||
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς |
τῶν ἁρμονικῶν λέγουσι βαρύτατον μὲν τὸν ὑποδώριον τῶν τόνων , ἡμιτονίῳ δὲ ὀξύτερον τούτου τὸν μιξολύδιον , τούτου δ ' | ||
ἄλλο τι λεγόμενον συνημμένων , εὐθὺς τὴν ἑαυτοῦ τρίτην ἔχον ἡμιτονίῳ διεστῶσαν ἀπὸ τῆς μέσης , εἶτα μετὰ τόνον τὴν |
ιδ πρὸς τὸν δ καὶ ἁπλῶς οἱ καθ ' ἑβδομάδα προχωροῦντες πρὸς τοὺς ἀπὸ δυάδος εὐτάκτους ἀρτίους . εἶτα πάλιν | ||
καὶ ἀπὸ ἑξαγώνου καὶ ἑπταγώνου βάσεως καὶ ἐπὶ πλεῖον ἀεὶ προχωροῦντες πυραμίδας συστησόμεθα τοὺς ἀναλογοῦντας ἑκάστῃ πολυγώνους ἐπισωρεύοντες ἀλλήλοις ἀπὸ |
, καὶ τῇ τούτων διαφορᾷ , ἐπογδόῳ . τὴν δὲ πρόβασιν ἀνάγκῃ τινὶ φυσικῇ ἀπὸ τοῦ βαρυτάτου ἐπὶ τὸ ὀξύτατον | ||
τῷ ζῳδίῳ οἱ ἀγαθοποιοὶ ἀστέρες ἐπιπαρόντες κατὰ τὴν τῶν χρόνων πρόβασιν τὰς εὐτυχίας ἀποτελοῦσιν , ὁτὲ δὲ καὶ κληρονόμους ἀλλοτρίων |
ὡς ἡ ἑξὰς ὑπὸ τοῦ δύο καὶ τρία καὶ ἡ ὀγδοὰς ὑπὸ τοῦ δύο καὶ τέσσαρα : καὶ οὐδένα γεννᾷ | ||
λέγομεν ὅτι αὕτη σύνθεσίς ἐστιν , οὐ μὴν πολλαπλασιασμός . ὀγδοὰς δὲ λέγεται οἱονεὶ ἀγοδυὰς παρὰ τὸ δύο ἄγειν : |
τὸν μετ ' αὐτόν , τουτέστι τὸν δεύτερον καὶ τὸν οὐραγὸν κοντάτους εἶναι , τοὺς δὲ λοιποὺς πάντας , τοὺς | ||
λοχαγὸν τὸν κράτιστον τοῦ λόχου εἶναι , ἀλλὰ καὶ τὸν οὐραγὸν οὐ πολύ τι ἀποδέοντα ἐπιλέγεσθαι : πολλὰ γὰρ καὶ |
βρέγμα καὶ χιασθεῖσαι διακρατείσθωσαν , ἄλλη δὲ μεσότης ὑπὸ τὸ σφαίριον τῆς ῥινός . αἱ δ ' ἀρχαὶ καὶ ὑπὸ | ||
, οὗπερ ἡλίου περιδινηθέντος εἰς τὸ ὑπὸ γῆν ἡμι - σφαίριον γίνεται νύξ , ἀπὸ δὲ τοῦ ὑπὸ θάλασσαν καὶ |
. ) Ὅτι ὁ Ἀντίοχος διὰ στρατηγήματος ἀμφιδοξουμένου ἐκυρίευσε τοῦ Πηλουσίου . πᾶς γὰρ πόλεμος ἐκβεβηκὼς τὰ νόμιμα καὶ δίκαια | ||
δὲ θαυμάζειν , πῶς ἐθάρρησεν εἰπεῖν ἑξακισχιλίων σταδίων τὸ ἀπὸ Πηλουσίου εἰς Θάψακον , πλειόνων ὄντων ἢ ὀκτακισχιλίων , οὐκ |
λεγόμενον ἀρχισαγιττάτορα . Τὸ δὲ μένον δίμοιρον μέρος διανεῖμαι εἰς ἀκίας ἀπὸ ἀνδρῶν δεκαοκτὼ παλαιῶν καὶ νέων , ὥστε τοὺς | ||
. Χρὴ ἀφορίζειν ἐκ τῶν περὶ τὸ βάνδον τασσομένων δύο ἀκίας , χρησίμους εἰς φυλακὴν τοῦ βάνδου ἐπὶ καιρῷ πολέμου |
παρανήτην διεζευγμένων , ἐκαλεῖτο δὲ φρύγιον . τέταρτον τὸ ὑπὸ βαρυπύκνων περιεχόμενον , οὗ τέταρτος ὁ τόνος ἐπὶ τὸ ὀξύ | ||
διὰ τεσσάρων τρία ἐστὶν εἴδη . πρῶτον μὲν τὸ ὑπὸ βαρυπύκνων περιεχόμενον , οἷόν ἐστι τὸ ἀπὸ ὑπάτης ὑπάτων ἐπὶ |
ὁ δύο καὶ ἕνα διπλάσιος . ὁ ἐξ ἐπιτρίτου καὶ τετραπλασίου λαμβανόμενος ἐπίτριτος ὁ ιϚ τοῦ ιβ , καὶ ὁ | ||
δὲ δωδεκαπλάσιος λόγος σύγκειται ἐκ β λόγων τριπλασίου τε καὶ τετραπλασίου ἢ διπλασίου καὶ ἑξαπλασίου , καὶ ἐπὶ πάντων τὸ |
. . . . ἐπὶ τὸ π , τοῦ ἐπικύκλου μεταβαίνοντος ἀπὸ τοῦ ο ἐπὶ τὸ ν , συντρέχων αὐτῷ | ||
ἀπὸ τοῦ υ φερόμενος ἐπὶ τὸ φ , τοῦ ἐπικύκλου μεταβαίνοντος ἀπὸ τοῦ ν ἐπὶ τὸ ξ , οἷον προφθάνων |
δὲ διὰ καταρραφὴν ἢ καῦϲιν ἄτεχνον ἐκτρέπεται τὸ βλέφαρον . βελόνην τοίνυν λαβόντεϲ λίνον διπλοῦν ἔχουϲαν διαπείρωμεν τὸ ϲάρκωμα ἀπὸ | ||
' ὑπερβαίνονταϲ ἄμφω τὰ χείλη τοῦ περιτοναίου πάλιν ἀντιϲτρέφειν τὴν βελόνην ἔξωθεν ἔϲω δι ' ἀμφοτέρων τῶν χειλῶν τοῦ περιτοναίου |
ἰσημερινὸν ὥσπερ ἐν ἑκάστῃ τῶν σφαιρῶν τασσομέναις , τὸν δὲ μιξολύδιον καὶ τὸν ὑποδώριον ὡς ἄκρους ταῖς βαρυτάταις καὶ νοτιωτάταις | ||
φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου . τί δ ' ἐστὶ πρὸς ὃ |
ἀπὸ τοῦ ἑνὸς πρὸς τὸ πλῆθος σχέσιν δηλοῖ . Κατὰ ἀποτομήν φησι κατὰ προσηγορίαν : ἡ γὰρ προσηγορία δίκην ὁρισμοῦ | ||
καὶ πρὸς ἣν ἥδε λόγον ἔχει δοθέντα λόγον ἔχει πρὸς ἀποτομήν . . ὅτι ἔστιν τι δοθὲν σημεῖον , ἀφ |
στίχων , καὶ τρίτον τὸ ὑπὸ τῶν τρίτων , καὶ τέταρτον τὸ ὑπὸ τῶν τετάρτων : ἀλλὰ τὸ μὲν α | ||
. . . . . . ρμζ γʹ ιη τὸ τέταρτον , ὃ καλεῖται Ψευδόστομον ρμζ γοʹ ιη ∠ ʹ |