μὲν καλῶμεν ὑπάτην καὶ μέσην , τόδε δὲ παραμέσην καὶ νήτην , μένοντος γὰρ τοῦ μεγέθους συμβαίνει κινεῖσθαι τὰς τῶν
φθόγγῳ τῇ ἀρχαίᾳ ὑπάτῃ . ὥστε ἀπὸ ὑπάτης ὑπατῶν ἐπὶ νήτην ὑπερβολαίων τέσσαρα εἶναι τετράχορδα συνημμένα . εὑρίσκετο δὲ τρισκαιδεκάχορδον
8958075 ὑπατην
, τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ παρυπάτην ὑπατῶν
ὑπατῶν ἐπὶ ὑπατῶν διάτονον τόνος , ἀπὸ ὑπατῶν διατόνου ἐπὶ ὑπάτην μέσων τόνος , ἀπὸ ὑπάτης μέσων ἐπὶ παρυπάτην μέσων
8628905 διεζευγμενων
μέσην , ὅταν μὴ ὡς ἔθος εἶχεν ἐπὶ τὸ τῶν διεζευγμένων τετράχορδον ἔλθῃ κατὰ τὴν διὰ πέντε συμφωνίαν τῷ τῶν
ὑπερβολαίων λϚ ἀπλανῶν , νήτη ὑπερβολαίων λβ κρόνου , νήτη διεζευγμένων κδ διός , νήτη συνημμένων κα γʹ ἄρεως ,
8361835 παραμεσην
μέσην δὲ τὸν τοῦ ὀκτὼ , ἐπίτριτον αὐτοῦ τυγχάνοντα , παραμέσην δὲ τὸν τοῦ ἐννέα , τόνῳ τοῦ μέσου ὀξύτερον
δὲ μετὰ τὴν μέσην ὁμοίως μέχρι τῆς νήτης τῶν ὑπερβολαίων παραμέσην καὶ τρίτην διεζευγμένων καὶ παρανήτην διεζευγμένων καὶ νήτην διεζευγμένων
8234503 ὑπερβολαιων
: υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - Μʹσμένον ,
τυγχάνει κατὰ διαίρεσιν θεωρούμενα πέντε , ὑπάτων μέσων συνημμένων διεζευγμένων ὑπερβολαίων , πεντάχορδα δὲ σύμφωνα τρία , μέσων συνημμένων διεζευγμένων
8181478 συνημμενων
χρωματική , μέσων διάτονος , μέση , τρίτη συνημμένων , συνημμένων ἐναρμόνιος , συνημμένων χρωματική , παρανήτη συνημμένων , νήτη
ὑπερβολαίων λβ κρόνου , νήτη διεζευγμένων κδ διός , νήτη συνημμένων κα γʹ ἄρεως , παράμεσος ιη ἡλίου , μέση
8122728 παρανητην
μέχρι τῆς νήτης τῶν ὑπερβολαίων παραμέσην καὶ τρίτην διεζευγμένων καὶ παρανήτην διεζευγμένων καὶ νήτην διεζευγμένων καὶ τρίτην ὑπερβολαίων καὶ παρανήτην
, ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτο - νον ,
8024806 διατονον
συντονωτάτῳ διατόνῳ , δύο ἔσται μεγέθη μόνα ἐξ ὧν τὸ διάτονον συνεστηκὸς ἔσται . ἐὰν δὲ τὰ μὲν δύο ἴσα
καὶ δίεσιν καὶ δίτονον κινοῖτο , ἐναρμόνιον ποιεῖ γένος . διάτονον μὲν οὖν λέγεται , ἐπειδὴ κατὰ τὸ πλεῖον διὰ
7914476 παρυπατην
καὶ παρυπάτην ὑπάτων καὶ λιχανὸν ὑπάτων καὶ ὑπάτην μέσων καὶ παρυπάτην μέσων καὶ λιχανὸν μέσων , τοὺς δὲ μετὰ τὴν
διατόνου ἐπὶ ὑπάτην μέσων τόνος , ἀπὸ ὑπάτης μέσων ἐπὶ παρυπάτην μέσων ἡμιτόνιον , ἀπὸ παρυπάτης μέσων ἐπὶ μέσων διάτονον
7837687 ἡμιτονιον
τὸν αὐτὸν ἔλθῃ δεύτερον φθόγγον , εἶτα πάλιν ἀπὸ τοῦδε ἡμιτόνιον διαστήσασα τρίτον ὁρίσῃ φθόγγον ἄλλον , ἀπὸ τούτου κατὰ
νήτην διεζευγμένων τόνος , ἀπὸ νήτης διεζευγμένων ἐπὶ τρίτην ὑπερβολαίων ἡμιτόνιον , ἀπὸ τρίτης ὑπερβολαίων ἐπὶ ὑπερβολαίων διάτονον τόνος ,
7717546 προσλαμβανομενον
ᾖ καὶ ἡ τοῦ ἐπιφωνήματος φύσις φανερά . τὸ δὲ προσλαμβανόμενον ἔξωθεν τετολμῆσθαι δεῖ ἀσφαλῶς : διὰ τοῦτο γάρτοι καὶ
τοῦ δὲ τετμημένου τὸ μὲν ἕτερον τῶν περάτων κατὰ τὸν προσλαμβανόμενον , τὸ δὲ ἕτερον κατὰ τὴν νήτην τῶν ὑπερβολαίων
7693888 χρωματικην
ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτο - νον , τέταρτον δέ , οὗ
ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην ὑπερβολαίων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτονον , ἕβδομον δέ , οὗ ἕβδομος ὁ
7681836 ὑπατης
ἡ δὲ σελήνη ἑβδόμη οὖσα τάξιν ἐπέχει φθόγγου τοῦ λεγομένου ὑπάτης μέσης . τὸ δὲ ἀπὸ γῆς διάστημα μέχρι τῆς
ἔχει λόγον , τὸν δὲ βαρὺν τὸν Κρόνον , εἴπερ ὑπάτης . Οἱ δὲ δὴ πρῶτοι ἀπὸ τῶν πρὸς ἡμᾶς
7467415 τριημιτονιον
ὑπερέχοντες , παράλληλοι δὲ δύο τόνον , οἱ δὲ τρίτοι τριημιτόνιον : ἀναλόγως δὲ ἕξει καὶ ἐπὶ τῆς τῶν λοιπῶν
παρενθέσεως τῆς ἐν ὀκταχόρδῳ . ἀπεῖχε γὰρ αὕτη τῆς παρανεάτης τριημιτόνιον ἀσύνθετον , ἀφ ' οὗ διαστήματος ἡ μὲν παρεντεθεῖσα
7451660 παρυπατης
, οὗ αἱ διέσεις ἐφ ' ἑκάτερα τοῦ διατόνου ἀπὸ παρυπάτης μέσων ἐπὶ τρίτην συνημμένων , τρίτον δέ , οὗ
μὲν ὑπάτης καὶ παρυπάτης διάστημα ἡμιτονιαῖόν ἐστι , τὸ δὲ παρυπάτης καὶ λιχανοῦ ἐννέα δωδεκατημορίων ἀσύνθετον λαμβανομένων . δεύτερον δὲ
7438804 τετραχορδου
πρὸς παράμεσον : ὑπάτη δὲ ὑπάτων , ὅτι τοῦ πρώτου τετραχόρδου πρώτη τίθεται : τὸ γὰρ πρῶτον ὕπατον ἐκάλουν οἱ
νήτη ὑπερβολαίων . Ὥσπερ οὖν ἐνταῦθα τὰ μὲν τοῦ ὑπατῶν τετραχόρδου κατὰ τρία γένη , τὰ δὲ μέσων , τὰ
7190046 λιχανου
, διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ
, οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων
7151704 παρανητη
ἐστὶν τοῦ κορυφαίου , οἷον τοῦ βασιλέως , ἡ δὲ παρανήτη πλησίον μᾶλλον τῆς μέσης : ἔστι δὲ ἡ μέση
παραμέση τρίτη διεζευγμένων παρανήτη διεζευγμένων διάτονος νήτη διεζευγμένων τρίτη ὑπερβολαίων παρανήτη ὑπερβολαίων διάτονος νήτη ὑπερβολαίων . Ἐν δὲ χρώματι οἵδε
7122399 διεσιν
δὲ ἡμιτονίου , ὡς ἐλάχιστον μελῳδητὸν διάστημα , τῶν Πυθαγορείων δίεσιν καλούντων τὸ νῦν λεγόμενον ἡμιτόνιον . καλεῖσθαι δέ φησιν
τὸ δὲ ἡμιόλιον κατὰ δίεσιν ἡμιόλιον τῆς ἐναρμονίου διέσεως καὶ δίεσιν τὴν ἴσην καὶ ἑπτὰ τεταρτημορίων διέσεων ἀσύνθετον διάστημα .
7105188 χρωματικον
τοίνυν οὗτος ὑφίσταται γένη , τό τε ἐναρμόνιον καὶ τὸ χρωματικὸν καὶ τὸ διατονικόν : ἑκάστου δὲ αὐτῶν ποιεῖται τὴν
[ τῶν ] εἰς τὸ ἡρμοσμένον ἤτοι διάτονόν ἐστιν ἢ χρωματικὸν ἢ ἐναρμόνιον . πρῶτον μὲν οὖν καὶ πρεσβύτατον αὐτῶν
7084396 παραμεσης
: τοῖς γοῦν αὐτοῖς λόγοις οἱ ἄκροι τῆς μέσης καὶ παραμέσης ὑπερέχουσι καὶ ὑπερέχονται , ἐπιτρίτῳ καὶ ἡμιολίῳ . τοιαύτη
τῷ αὑτῆς ὑπερέχουσαν , τὴν δ ' ὑπάτην ὑπὸ τῆς παραμέσης ὑπερεχομένην ὁμοίως : ὡς γίγνεσθαι τὰς αὐτὰς ὑπεροχὰς τῶν
7080426 διαζευξιν
ὑβρίσαντες | καὶ ὡς ἑταίραις ταῖς ἀσταῖς προσενεχθέντες , ἐὰν διάζευξιν τεχνάζωσι μηδεμίαν ἀπαλλαγῆς πρόφασιν ἀνευρίσκοντες , εἶτ ' ἐπὶ
συναφὴν συστήματι ὑπαρχούσῃ τετραχόρδου τε καὶ πενταχόρδου , ἢ κατὰ διάζευξιν δυεῖν τετραχόρδων τόνῳ χωριζομένων ἀπ ' ἀλλήλων , ἀπὸ
7060736 λυδιον
γὰρ ᾔδεισαν τόν τε δώριον καὶ τὸν φρύγιον καὶ τὸν λύδιον ἑνὶ τόνῳ διαφέροντας ἀλλήλων , ὡς μὴ φθάνειν ἐπὶ
τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν ἤρξαντο ἐθνῶν ὀνομασίας ,
7053048 τετραχορδον
εἶναι τὰς παρυπάτας ἀμφοτέρων τῶν γενῶν , γίγνεται γὰρ ἐμμελὲς τετράχορδον ἐκ παρυπάτης τε χρωματικῆς τῆς βαρυτάτης καὶ διατόνου λιχανοῦ
διὰ πασῶν , σύστημα δὲ διαστημάτων ποιὰν περιοχήν , οἷον τετράχορδον , πεντάχορδον , ὀκτάχορδον . ἁρμονία δέ ἐστι συστημάτων
7028595 νητη
τὸ πρὸ τῆς νήτης κεῖσθαι . ἐπὶ δὲ ταύταις ἡ νήτη , τουτέστιν ἐσχάτη . νέατον γὰρ ἐκάλουν τὸ ἔσχατον
βαρεῖα τε μεσσόθι ναίει : ἀπλανέων δὲ σφαῖρα συνημμένη ἔπλετο νήτη : μέσσην δ ' ἠέλιος πλαγκτῶν θέσιν ἔσχεθεν ἄστρων
7022515 ἐναρμονιου
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ .
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων ,
6965294 παρυπατη
ὑπερβολαίων . Ἐν δὲ ἁρμονίᾳ οἵδε : προσλαμβανόμενος ὑπάτη ὑπάτων παρυπάτη ὑπάτων λιχανὸς ὑπάτων ἐναρμόνιος ὑπάτη μέσων παρυπάτη μέσων λιχανὸς
ὑπερβολαίων . Ἐν δὲ χρώματι οἵδε : προσλαμβανόμενος ὑπάτη ὑπάτων παρυπάτη ὑπάτων λιχανὸς ὑπάτων χρωματική ὑπάτη μέσων παρυπάτη μέσων λιχανὸς
6961319 διατονικον
δὲ κἀνταῦθα τῶν μειζόνων λόγων γίνεται τετράχορδον παρὰ τὸ σύντονον διατονικὸν ὁμαλώτερον ἐκείνου καὶ καθ ' αὑτὸ καὶ ἔτι μᾶλλον
ἐστι τρία τὰ προειρημένα . πᾶν οὖν ἔσται μέλος ἤτοι διατονικὸν ἢ χρωματικὸν ἢ ἐναρμόνιον ἢ κοινὸν ἢ μικτὸν ἐκ
6950401 διτονον
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ
6915632 διατονος
παρυπάτη μέσων , μέσων ἐναρμόνιος , μέσων χρωματική , μέσων διάτονος , μέση , τρίτη συνημμένων , συνημμένων ἐναρμόνιος ,
τὸ ὑπατῶν , οἷον ὑπάτη ὑπατῶν , παρυπάτη ὑπατῶν , διάτονος ὑπατῶν ἢ λιχανὸς ὑπατῶν , οὐδὲν γὰρ διαφέρει ὁποτερωσοῦν
6898562 βαρυτεραν
μὲν ὅλον οὐ διαλείποντα , μίαν δὲ κουφοτέραν καὶ μίαν βαρυτέραν ἐπιφέροντα . οἱ δὲ ἀπὸ τῆς μεθόδου ἡμιτριταῖον μικρὸν
' αὐτῆς ταχεῖα , ὀξεῖαν , ὅση δὲ βραδυτέρα , βαρυτέραν : τὴν δὲ ὁμοίαν ὁμαλήν τε καὶ λείαν ,
6881509 παραμεσος
πρῶτος τῶν τεσσάρων , ὁ δὲ μέσος , ὁ δὲ παράμεσος , ὁ δὲ μικρός . τούτων τὰ ὀστᾶ σκυταλίδες
τῆς μέσης ἐπιτείναντι τόνον ἡ παρ ' αὐτὴν κειμένη χορδὴ παράμεσος καλεῖται . αἱ δὲ μετὰ ταύτην διὰ τὰς ὁμοίας
6835848 τετραχορδων
πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ
οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν
6812784 προσλαμβανομενου
διὰ πασῶν , τόνων ἕξ , οἷόν ἐστι τὸ ἀπὸ προσλαμβανομένου ἐπὶ μέσην : τέταρτον δὲ τὸ διὰ πασῶν καὶ
τρίτη συνημμένων , τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ
6781391 λιχανον
κεχωρισμένοις τοῦ ἐντέρου διαίρεσιν ἐμβαλόντες ἱκανὴν παραδέξασθαι δάκτυλον καθήσομεν τὸν λιχανὸν καὶ κατ ' ἐπικόπου τοῦ δακτύλου διελοῦμεν τὸ περιτόναιον
οὔτε τὴν ἁρμονίαν ἁρμοττόνται , ὥστε τί μᾶλλον τὴν δίτονον λιχανὸν λεκτέον ἢ τὴν μικρῷ συντονωτέραν ; ἁρμονία μὲν γὰρ
6776152 διατονου
μὲν ἡμιτόνιον καὶ τόνον καὶ τόνον , λέγεται δὲ συντόνου διατόνου . ἵνα δὲ δῆλον ᾖ τὸ λεγόμενον , ἐπ
ἀπὸ παρυπάτης μέσων ἐπὶ μέσων διάτονον τόνος , ἀπὸ μέσων διατόνου ἐπὶ μέσην τόνος , ἀπὸ μέ - σης ἐπὶ
6762765 λιχανος
ἐπὶ τὴν αὐτὴν τάσιν ἀφίκωνται ἥ τε παρυπάτη καὶ ἡ λιχανός , ἡ μὲν ἐπιτεινομένη ἡ δ ' ἀνιεμένη ,
. τὸ γὰρ δίτονον , ὅταν μὲν ὁρίζωσι μέση καὶ λιχανός , ἀσύνθετόν ἐστιν , ὅταν δὲ μέση καὶ παρυπάτη
6724999 ὑπολυδιον
ἕξ : ὑπερλύδιον , ὑπεριάστιον , λύδιον , φρύγιον , ὑπολύδιον , ὑποφρύγιον . οἱ δὲ κιθαρῳδοὶ τέτρασι τούτοις ἁρμόζονται
διὰ πασῶν ἐν τῷ λυδίῳ , εἶτα τετράχορδον ὑποβαίνοντες τὸ ὑπολύδιον καὶ ἑξῆς ὁμοίως τετράχορδον ἀναβαίνοντες τὸν ὑπερλύδιον . Κεχυμέναι
6684738 ὑπατη
ὑπάτων λιχανὸς ὑπάτων ἐναρμόνιος λιχανὸς ὑπάτων χρωματική λιχανὸς ὑπάτων διάτονος ὑπάτη μέσων παρυπάτη μέσων λιχανὸς μέσων ἐναρμόνιος λιχανὸς μέσων χρωματική
παραμέση τὸν τῶν ἐννέα . τούτου γενομένου , ἕξει ἡ ὑπάτη πρὸς μέσην ὡς παραμέση πρὸς νήτην διεζευγμένων : ἀπὸ
6673044 διεσις
τὸ μὲν γὰρ ἡμιτόνιον εἰς ἓξ δωδεκατημόρια , ἡ δὲ δίεσις , ἡ μὲν τεταρτημόριος εἰς τρία , ἡ δὲ
διάστημα τόνου ἢ διέσεως : ὁ γὰρ τόνος καὶ ἡ δίεσις ἀρχὴ μὲν συμφωνίας , οὔπω δὲ συμφωνία . ὁ
6612278 ἐπογδοον
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν
6596310 πενταδος
κλιμακτηρίζει . μεταβαίνω ἐπὶ τὴν πεντάδα : χρηματίζει δὲ τῆς πεντάδος ἡ Σελήνη καὶ Κρόνος καὶ εὑρίσκονται οὗτοι ἀλλήλοις ἀποκαθιστανόμενοι
καὶ αὐτῶν ὁμοκαταλήκτων ὄντων , ὡς ὁ ρκεʹ ἀπὸ πλευρᾶς πεντάδος ὢν καὶ ὁ σιϚʹ ἀπὸ πλευρᾶς ἑξάδος . κἂν
6583133 βαρυτατου
διεζευγμένων τὸν τρίτον , τρίτην δὲ ὑπερβολαίων τὸν ἀπὸ τοῦ βαρυτάτου δεύτερον τοῦ πρὸ τῆς βαρυτέρας διαζεύξεως τετραχόρδου , καὶ
τῶν ΒΔ καὶ ΑΕ τμημάτων διέλωμεν εἰς τὰς μέχρι τοῦ βαρυτάτου φθόγγου φθανούσας μοίρας , ἀπὸ τῶν Α καὶ Β
6579437 ἡμιολιον
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον
6557994 ἐπιτριτον
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ
6515633 διχοτομον
Σελήνη ἀπὸ πανσελήνου διελθοῦσα τὸ αʹ τετράγωνον καὶ τὴν βʹ διχότομον ὡς συμβαίνειν ἐπὶ τὴν σύνοδον ἢ τὸ συνοδικὸν ζῴδιον
τὴν δευτέραν ἀμφίκυρτον , εἶτα ἕως σοʹ μοιρῶν τὴν δευτέραν διχότομον , εἶτα ἕως τξʹ τὴν δύσιν . ἔστι δὲ
6486141 διεσεις
ἔχει . ὑπόκειται δὲ καὶ ἡ παρὰ τοῖς ἀρχαίοις κατὰ διέσεις ἁρμονία , ἕως κδ διέσεων τὸ πρότερον διάγουσα διὰ
τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου
6480241 προχωρησις
ἔχει , ἡ δυὰς δὲ βραχεῖά τις ἐπ ' ἀριθμὸν προχώρησις , οὐκ ἄντικρυς δὲ τοιαύτη διὰ τὸ ἀρχοειδές ,
καὶ τάξει φυσικῇ τῶν πολλαπλασίων ἀπὸ διπλασίου εἰς πενταπλάσιον ἡ προχώρησις εἴη . ἐφοδευτέον δὴ οὕτως . ἐπεὶ ἡμίσους χρεία
6476838 ἐναρμονιος
: προσλαμβανόμενος , ὑπάτη ὑπάτων , παρυπάτη ὑπάτων , ὑπάτων ἐναρμόνιος , ὑπάτων χρωματική , ὑπάτων διάτονος , ὑπάτη μέσων
πάσχει ὑποκείμενος τῇ εἱμαρμένῃ . ὑπεράνω οὖν ὢν τῆς ἁρμονίας ἐναρμόνιος γέγονε δοῦλος ἀρρενόθηλυς δὲ ὤν , ἐξ ἀρρενοθήλεος ὢν
6470957 φρυγιον
γὰρ τοὺς τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν ἤρξαντο ἐθνῶν
ὁ δὲ ὡς τόπος φωνῆς , ὅταν λέγωμεν δώριον ἢ φρύγιον ἢ λύδιον ἢ τῶν ἄλλων τινά . εἰσὶ δὲ
6453609 ὑποτομην
καὶ τὸ τρίτον ὡσαύτως , μετὰ δὲ ταῦτα διὰ τὴν ὑποτομὴν ἐκπίπτειν τὸ δένδρον ὑπὸ τῶν πνευμάτων σαπέν : τότε
δὲ φεύγουϲι τὴν ἀποδοράν , δι ' ὃ μετὰ τὴν ὑποτομὴν βλεφαροκατόχῳ μυδίῳ , τουτέϲτι πρὸϲ τὴν περιφέρειαν τοῦ βλεφάρου
6447398 παραμεση
μέσων χρωματική μέση τρίτη συνημμένων παρανήτη συνημμένων χρωματική νήτη συνημμένων παραμέση τρίτη διεζευγμένων παρανήτη διεζευγμένων χρωματική νήτη διεζευγμένων τρίτη ὑπερβολαίων
λιχανός . Ἑρμοῦ δὲ τὸ μεταίχμιον Ἀφροδίτης καὶ Ἡλίου κατέχοντος παραμέση . περὶ ὧν ἀκριβέστερον καὶ μετὰ γραμμικῶν καὶ ἀριθμητικῶν
6438669 τεϲϲαρων
καὶ βραχείαϲ ˘ ἑπτάχρονοϲ , οἷον Καλλίξεινοϲ : διϲπόνδειοϲ ἐκ τεϲϲάρων μακρῶν = = ὀκτάχρονοϲ , οἷον Ἡρακλείδηϲ . Τὸ
δὲ ἀπὸ τοῦ πρώτου λουτροῦ πρὸϲ τὸ δεύτερον ὡρῶν ἰϲημερινῶν τεϲϲάρων ἢ πέντε χρόνοϲ , εἰ τὸ τρίτον ἔτι μέλλοιϲ
6436476 συμφωνησει
. Τὸ δέ γε τοιοῦτον ἐκ πολλῶν μερῶν ὂν οὐ συμφωνήσει τῷ [ ὅλῳ ] λόγῳ . Μανθάνω . Πότερον
καὶ φανερὸν ὡς καθ ' ἑκατέραν τὴν ὑπόθεσιν τὰ αὐτὰ συμφωνήσει μέγιστα καὶ πάλιν ἐλάχιστα καὶ μέσα εἶναι ἀποστήματα .
6433397 χρωματικη
τρίτη διεζευγμένων ἐναρμόνιος τρίτη διεζευγμένων χρωματικὴ καὶ διάτονος ἐναρμόνιος διεζευγμένων χρωματικὴ διεζευγμένων διάτονος διεζευγμένων νήτη διεζευγμένων τρίτη ὑπερβολαίων ἐναρμόνιος τρίτη
μέσων χρωματική μέσων διάτονος μέση τρίτη συνημμένων ἐναρμόνιος τρίτη συνημμένων χρωματικὴ καὶ διάτονος συνημμένων ἐναρμόνιος συνημμένων χρωματική συνημμένων διάτονος νήτη
6429302 τονος
κατὰ μέγεθος , ἤτοι ὡς τά τε σύμφωνα καὶ ὁ τόνος ἢ ὡς τὰ τούτοις σύμμετρα , τὸ δὲ κατὰ
. δεύτερον τὸ ὑπὸ μεσοπύκνων περιεχόμενον , οὗ δεύτερος ὁ τόνος ἐπὶ τὸ ὀξύ : ἔστι δὲ ἀπὸ παρυπάτης ὑπάτων
6415768 μεσων
τοῦ ἰσημερινοῦ πόλος τὸ Γ , καὶ γεγράφθω τοῦ διὰ μέσων τῶν ζῳδίων κύκλου δύο τμήματα τό τε ΑΔΕ καὶ
μοίρας ε με , βορειότερον δ ' ἦν τοῦ διὰ μέσων μοίραις ε , ἐφαίνετο δ ' ἐν Ἀλεξανδρείᾳ κατὰ
6405082 τριαδα
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα :
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων
6384773 ἐπιτεταρτος
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως .
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ '
6366246 τεσσαρων
μέχρι τετάρτου συμφώνου : πρῶτον γὰρ ἐν αὐτῷ τὸ διὰ τεσσάρων , δεύτερον τὸ διὰ πέντε , τρίτον τὸ διὰ
πασῶν σύστημα ἠλέγχετο , ἤτοι τῆς διὰ πέντε καὶ διὰ τεσσάρων ἐν συναφῇ , ὡς ὁ διπλάσιος λόγος ἡμιολίου τε
6348041 τονων
ὅρων ἕκαστος ἴδιον ἔχει τὸ αἴτιον , ἐπὶ δὲ τῶν τόνων ἕπονταί πως τῷ πρώτῳ τῶν ὅρων οἱ λοιποὶ δύο
ἀμεταβόλῳ συστήματι ἕξ : ἐλάχιστον μὲν τὸ διὰ τεσσάρων , τόνων δύο ἡμίσεος , οἷόν ἐστι τὸ ἀπὸ ὑπάτης ὑπάτων
6345076 υλβ
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ
6284190 χρωματικης
ἐπὶ τὴν βαρυτάτην χρωματικὴν ἑκτημόριον , ἀπὸ δὲ τῆς βαρυτάτης χρωματικῆς ἐπὶ τὴν ἡμιόλιον δωδεκατημόριον τόνου . τὸ δὲ τεταρτημόριον
ἐναρμόνιος μὲν οὖν ἐστι παρυπάτη πᾶσα ἡ βαρυτέρα τῆς βαρυτάτης χρωματικῆς , χρωματικὴ δὲ καὶ διάτονος ἡ λοιπὴ πᾶσα μέχρι
6273897 τασσομενου
ψυχικοῦ λογικοῦ , καὶ τοῦ μὲν λογικοῦ κατὰ μὲν ἑβδομάδα τασσομένου , τοῦ δὲ ψυχικοῦ καθ ' ἑξάδα , τὸ
τρόπων ὡς τὸ ΑΒΓΔ , τοῦ Α κατὰ τὴν νήτην τασσομένου . λέγω ὅτι περιέχεται ὑπ ' αὐτοῦ τὸ τοῦ
6252333 Μʹ
φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ
Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # #
6225397 ͵ασϘϚ
τπδ , ὑπὸ τοῦ δὲ ὑπερέχεται τοῦ ͵αφλϚ . ιγʹ ͵ασϘϚ ρμδ . ιδʹ ͵αυνη ρξβ . ιεʹ ͵αφλς οη
τὰ ἑξηκοστά : διῄρουν γὰρ οὕτως τὴν μονάδα εἰς μυριάδας ͵ασϘϚ . ἐπιστῆσαι οὖν ἐστιν ἐκ τούτων ὁ πᾶς κύκλος
6225300 σωρειαν
: διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί
μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν
6221265 γαμμοειδως
στίχων ἀρχομένων ἀπὸ μονάδος ἐπί τε πλάτος καὶ ἐπὶ βάθος γαμμοειδῶς οἱ δεύτεροι ἐφ ' ἑκάτερα καὶ αὐτοὶ γαμμοειδῶς ἀπὸ
, τουτέστιν ἀπὸ διπλασίου . εἰ δὲ καὶ τοὺς ἑτερομήκεις γαμμοειδῶς παρασπίζοιμεν τοῖς τετραγώνοις ἅπαξ τοὺς ἄκρους συντιθέντες καὶ δὶς
6198161 ἰαμβον
Στησιχόρειον τῷ Πινδαρικῷ ἰδιώματι : ὁ γὰρ τελευταῖος ἀντὶ τροχαίου ἴαμβον ἔχει . τὸ δʹ ἀναπαιστικὸν μονόμετρον ἀκατάληκτον . τὸ
τῶν αὐτῶν σύνταξις . τὸ μὲν οὖν ἰαμβικὸν μέτρον εἰς ἴαμβον ἢ πυρρίχιον καταλήγει πάντως , εἰ μὴ χωλεύοι :
6193672 ἡμιτονιου
περὶ τὰ ἀναγκαῖα . ὀρθογωνίου μὲν γὰρ τριγώνου ἢ διέσεως ἡμιτονίου οὐδεμίαν φύσει ἔννοιαν ἥκομεν ἔχοντες , ἀλλ ' ἔκ
ἀλλήλων τετάρτους τὸν διὰ τεσσάρων ἀλλήλοις διόλου συμφωνεῖν , τοῦ ἡμιτονίου κατὰ μετάβασιν τήν τε πρώτην καὶ τὴν μέσην καὶ
6175987 ἡμιολιοι
τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς , καὶ ἐφεξῆς . οἷόν εἰσιν ἡμιόλιοι δ , Ϛ , θ . λαβὲ ἀπὸ τῶν
πρὸς τὸ δεύτερον καὶ τὸ τρίτον πρὸς τὸ τέταρτον : ἡμιόλιοι γὰρ ἀμφότεροι ἀμφοτέρων . καὶ τὰ ἰσάκις τοίνυν πολλαπλάσια
6171371 κοτυλαϲ
ϲταθμῷ δὲ ⋖ ξʹ . Ὁ ξέϲτηϲ μέτρῳ μὲν ἔχει κοτύλαϲ βʹ , ϲταθμῷ δὲ ⋖ ρκʹ . καλεῖται δὲ
ηʹ . Ὁ χοῦϲ ἔχει ξέϲταϲ Ϛʹ . Ὁ ξέϲτηϲ κοτύλαϲ βʹ , αἳ καὶ [ τρίβανα ἢ ] τρυβλία
6162218 χιλιαρχια
ἥμισυ μὲν αὐτῆς ἐστιν ἡ μεραρχία , τέταρτον δὲ ἡ χιλιαρχία : τὴν μὲν ἀρίστην χιλιαρχίαν τῆς δεξιᾶς μεραρχίας τάξομεν
ὁ τούτων ἀφηγούμενος πεντακοσιάρχης . αἱ δὲ δύο πεντακοσιαρχίαι καλεῖται χιλιαρχία , ἀνδρῶν ͵ακδ , λόχων ξδ , καὶ ὁ
6156240 πενταπλασιος
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν
6131081 ὡριαιον
καὶ τοῦ χειμερινοῦ τροπικοῦ ἓξ ὡριαίων διαστημάτων τὸ μὲν πρῶτον ὡριαῖον διάστημα ἐπὶ τοῦ περὶ μέσας τὰς Χηλὰς κύκλου ἀφορίζει
ἑπόμενος τῶν ἐπ ' εὐθείας τριῶν . Τὸ δὲ τρίτον ὡριαῖον διάστημα ἀφορίζει περὶ μέσον τὸν Ταῦρον τῶν ἐν τῇ
6125235 ἡμισεας
τὴν Κοίνου καὶ Ἀμύντου τάξιν καὶ τῶν ἑταίρων ἱππέων τοὺς ἡμίσεας καὶ τοὺς ἱππακοντιστάς : ἤδη γὰρ αὐτῷ καὶ ἱππακοντισταὶ
ἀντὶ ξυνελθόντων δὲ κεῖται ξυμμάχων Ἀλκαμένη ἄρχοντα : ἔχοντας . ἡμίσεας : ἡ ἥμισυς τὰς ὕστερον διαφερομένας : μετὰ τοῦτο
6124458 τετραδα
οἳ ἐδόκουν λέγειν ἀριθμοὺς ἐκ τοῦ ἀνάλογον , οἷον δικαιοσύνην τετράδα καὶ ἄλλον ἄλλως : ἐκείνως δὲ μᾶλλον τῷ πλήθει
δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς εὑρήσεις τοῦτο . μετέχει
6118372 διφαλαγγιαν
. Ὅτι Ἀγησίλαος πλῆθος ἱππέων βουλόμενος τοῖς πολεμίοις παραδεῖξαι εἰς διφαλαγγίαν τοὺς πρωτοστάτας τῶν ἱππέων τάξας ὑπέταξεν ὄνους τε καὶ
μέρη καθ ' ἑαυτὰ παρέρχεσθαι , δύο μέρη ποιεῖν εἰς διφαλαγγίαν . Εἰ δὲ μηδὲ δύο χωροῦσιν , κατὰ ἓν
6107278 περιοδουϲ
ἴϲχεται : κἢν μὴ ἰηθῇ ἡ γυνή , ἐϲ πολλὰϲ περιόδουϲ ἀντιπερίειϲι ἡ ἀναγωγή : μετεξετέρῃϲι δὲ καὶ ἀπερράγη τὰ
κοτύλην καθ ' ἑκάϲτην ἡμέραν καὶ πάλιν ἀφιϲτάμην ἐπὶ β περιόδουϲ καὶ ἅμα ἥ τε νόϲοϲ διελέλυτο καὶ τὸ ϲῶμα
6102331 διεσεων
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος
6101848 δδ
, ὃ δηλοῖ τὸ δαψιλῶς , τινὲς μὲν διὰ δύο δδ ἐκφέρουσιν , ἄλλοι δὲ δι ' ἑνός . ἀδηφάγος
” . οἱ Μεγαρεῖς δὲ τρέπουσι τὸ ζ εἰς δύο δδ . Γ ἀκούετον δή , ποτέχετ ' ἐμὶν τὴν
6101435 σαμβυκην
ἀναλογοῦσαν διὰ τὴν πολλὴν βαρύτητα καὶ τραχύτητα , τὴν δὲ σαμβύκην πρὸς θηλύτητα , ἀγεννῆ τε οὖσαν καὶ μετὰ πολλῆς
εἶναι τὴν μάγαδιν , μετασκευασθῆναι δ ' ὀψέ ποτε καὶ σαμβύκην μετονομασθῆναι . πλεῖστον δ ' εἶναι τοῦτο τὸ ὄργανον
6094357 πενταχορδον
, σύστημα δὲ διαστημάτων ποιὰν περιοχήν , οἷον τετράχορδον , πεντάχορδον , ὀκτάχορδον . ἁρμονία δέ ἐστι συστημάτων σύνταξις ,
ὠνόμαζον : ἐκείνων δ ' ἦν καὶ τὸ εὕρημα . πεντάχορδον : Σκυθῶν μὲν τὸ εὕρημα , καθῆπται δ '
6088247 νεοδαμωδεις
γὰρ ἦν Ἰσχόλαος μὲν ἐν Οἰῷ τῆς Σκιρίτιδος , ἔχων νεοδαμώδεις τε φρουροὺς καὶ τῶν Τεγεατῶν φυγάδων τοὺς νεωτάτους περὶ
λόχος Λακωνικὸς οὕτω λεγόμενος Βρασίδειοι : οἱ μετὰ Βρασίδου σημείωσαι νεοδαμώδεις ʃ νεοπολῖται . παρ ' αὐτούς : πλησίον .
6084700 πυματος
πυθμὴν οὖν , πύθματος , καὶ ἀποβολῇ τοῦ θ , πύματος . Παγός . παρὰ τὸ πεπῆχθαι . Πατήρ .
, ἢ ἀπὸ δευτέρας συζυγίας τῶν περισπωμένων προπαροξύνονται : μέσατος πύματος ὀγδόατος τρίτατος τέταρτος νέατος . τὸ μέντοι ἐρατός ἐλατός
6073294 εὐθυμετρικον
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς
6068485 ἡμιτονιῳ
τῶν ἁρμονικῶν λέγουσι βαρύτατον μὲν τὸν ὑποδώριον τῶν τόνων , ἡμιτονίῳ δὲ ὀξύτερον τούτου τὸν μιξολύδιον , τούτου δ '
ἄλλο τι λεγόμενον συνημμένων , εὐθὺς τὴν ἑαυτοῦ τρίτην ἔχον ἡμιτονίῳ διεστῶσαν ἀπὸ τῆς μέσης , εἶτα μετὰ τόνον τὴν
6067807 προχωρουντες
ιδ πρὸς τὸν δ καὶ ἁπλῶς οἱ καθ ' ἑβδομάδα προχωροῦντες πρὸς τοὺς ἀπὸ δυάδος εὐτάκτους ἀρτίους . εἶτα πάλιν
καὶ ἀπὸ ἑξαγώνου καὶ ἑπταγώνου βάσεως καὶ ἐπὶ πλεῖον ἀεὶ προχωροῦντες πυραμίδας συστησόμεθα τοὺς ἀναλογοῦντας ἑκάστῃ πολυγώνους ἐπισωρεύοντες ἀλλήλοις ἀπὸ
6066132 προβασιν
, καὶ τῇ τούτων διαφορᾷ , ἐπογδόῳ . τὴν δὲ πρόβασιν ἀνάγκῃ τινὶ φυσικῇ ἀπὸ τοῦ βαρυτάτου ἐπὶ τὸ ὀξύτατον
τῷ ζῳδίῳ οἱ ἀγαθοποιοὶ ἀστέρες ἐπιπαρόντες κατὰ τὴν τῶν χρόνων πρόβασιν τὰς εὐτυχίας ἀποτελοῦσιν , ὁτὲ δὲ καὶ κληρονόμους ἀλλοτρίων
6065001 ὀγδοας
ὡς ἡ ἑξὰς ὑπὸ τοῦ δύο καὶ τρία καὶ ἡ ὀγδοὰς ὑπὸ τοῦ δύο καὶ τέσσαρα : καὶ οὐδένα γεννᾷ
λέγομεν ὅτι αὕτη σύνθεσίς ἐστιν , οὐ μὴν πολλαπλασιασμός . ὀγδοὰς δὲ λέγεται οἱονεὶ ἀγοδυὰς παρὰ τὸ δύο ἄγειν :
6064309 οὐραγον
τὸν μετ ' αὐτόν , τουτέστι τὸν δεύτερον καὶ τὸν οὐραγὸν κοντάτους εἶναι , τοὺς δὲ λοιποὺς πάντας , τοὺς
λοχαγὸν τὸν κράτιστον τοῦ λόχου εἶναι , ἀλλὰ καὶ τὸν οὐραγὸν οὐ πολύ τι ἀποδέοντα ἐπιλέγεσθαι : πολλὰ γὰρ καὶ
6059924 σφαιριον
βρέγμα καὶ χιασθεῖσαι διακρατείσθωσαν , ἄλλη δὲ μεσότης ὑπὸ τὸ σφαίριον τῆς ῥινός . αἱ δ ' ἀρχαὶ καὶ ὑπὸ
, οὗπερ ἡλίου περιδινηθέντος εἰς τὸ ὑπὸ γῆν ἡμι - σφαίριον γίνεται νύξ , ἀπὸ δὲ τοῦ ὑπὸ θάλασσαν καὶ
6050319 Πηλουσιου
. ) Ὅτι ὁ Ἀντίοχος διὰ στρατηγήματος ἀμφιδοξουμένου ἐκυρίευσε τοῦ Πηλουσίου . πᾶς γὰρ πόλεμος ἐκβεβηκὼς τὰ νόμιμα καὶ δίκαια
δὲ θαυμάζειν , πῶς ἐθάρρησεν εἰπεῖν ἑξακισχιλίων σταδίων τὸ ἀπὸ Πηλουσίου εἰς Θάψακον , πλειόνων ὄντων ἢ ὀκτακισχιλίων , οὐκ
6048402 ἀκιας
λεγόμενον ἀρχισαγιττάτορα . Τὸ δὲ μένον δίμοιρον μέρος διανεῖμαι εἰς ἀκίας ἀπὸ ἀνδρῶν δεκαοκτὼ παλαιῶν καὶ νέων , ὥστε τοὺς
. Χρὴ ἀφορίζειν ἐκ τῶν περὶ τὸ βάνδον τασσομένων δύο ἀκίας , χρησίμους εἰς φυλακὴν τοῦ βάνδου ἐπὶ καιρῷ πολέμου
6042178 βαρυπυκνων
παρανήτην διεζευγμένων , ἐκαλεῖτο δὲ φρύγιον . τέταρτον τὸ ὑπὸ βαρυπύκνων περιεχόμενον , οὗ τέταρτος ὁ τόνος ἐπὶ τὸ ὀξύ
διὰ τεσσάρων τρία ἐστὶν εἴδη . πρῶτον μὲν τὸ ὑπὸ βαρυπύκνων περιεχόμενον , οἷόν ἐστι τὸ ἀπὸ ὑπάτης ὑπάτων ἐπὶ
6037820 τετραπλασιου
ὁ δύο καὶ ἕνα διπλάσιος . ὁ ἐξ ἐπιτρίτου καὶ τετραπλασίου λαμβανόμενος ἐπίτριτος ὁ ιϚ τοῦ ιβ , καὶ ὁ
δὲ δωδεκαπλάσιος λόγος σύγκειται ἐκ β λόγων τριπλασίου τε καὶ τετραπλασίου ἢ διπλασίου καὶ ἑξαπλασίου , καὶ ἐπὶ πάντων τὸ
6036463 μεταβαινοντος
. . . . ἐπὶ τὸ π , τοῦ ἐπικύκλου μεταβαίνοντος ἀπὸ τοῦ ο ἐπὶ τὸ ν , συντρέχων αὐτῷ
ἀπὸ τοῦ υ φερόμενος ἐπὶ τὸ φ , τοῦ ἐπικύκλου μεταβαίνοντος ἀπὸ τοῦ ν ἐπὶ τὸ ξ , οἷον προφθάνων
6035020 βελονην
δὲ διὰ καταρραφὴν ἢ καῦϲιν ἄτεχνον ἐκτρέπεται τὸ βλέφαρον . βελόνην τοίνυν λαβόντεϲ λίνον διπλοῦν ἔχουϲαν διαπείρωμεν τὸ ϲάρκωμα ἀπὸ
' ὑπερβαίνονταϲ ἄμφω τὰ χείλη τοῦ περιτοναίου πάλιν ἀντιϲτρέφειν τὴν βελόνην ἔξωθεν ἔϲω δι ' ἀμφοτέρων τῶν χειλῶν τοῦ περιτοναίου
6026888 μιξολυδιον
ἰσημερινὸν ὥσπερ ἐν ἑκάστῃ τῶν σφαιρῶν τασσομέναις , τὸν δὲ μιξολύδιον καὶ τὸν ὑποδώριον ὡς ἄκρους ταῖς βαρυτάταις καὶ νοτιωτάταις
φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου . τί δ ' ἐστὶ πρὸς ὃ
6024673 ἀποτομην
ἀπὸ τοῦ ἑνὸς πρὸς τὸ πλῆθος σχέσιν δηλοῖ . Κατὰ ἀποτομήν φησι κατὰ προσηγορίαν : ἡ γὰρ προσηγορία δίκην ὁρισμοῦ
καὶ πρὸς ἣν ἥδε λόγον ἔχει δοθέντα λόγον ἔχει πρὸς ἀποτομήν . . ὅτι ἔστιν τι δοθὲν σημεῖον , ἀφ
6023751 τεταρτον
στίχων , καὶ τρίτον τὸ ὑπὸ τῶν τρίτων , καὶ τέταρτον τὸ ὑπὸ τῶν τετάρτων : ἀλλὰ τὸ μὲν α
. . . . . . ρμζ γʹ ιη τὸ τέταρτον , ὃ καλεῖται Ψευδόστομον ρμζ γοʹ ιη ∠ ʹ

Back