πρὸς παράμεσον : ὑπάτη δὲ ὑπάτων , ὅτι τοῦ πρώτου τετραχόρδου πρώτη τίθεται : τὸ γὰρ πρῶτον ὕπατον ἐκάλουν οἱ
νήτη ὑπερβολαίων . Ὥσπερ οὖν ἐνταῦθα τὰ μὲν τοῦ ὑπατῶν τετραχόρδου κατὰ τρία γένη , τὰ δὲ μέσων , τὰ
8098402 παρυπατην
καὶ παρυπάτην ὑπάτων καὶ λιχανὸν ὑπάτων καὶ ὑπάτην μέσων καὶ παρυπάτην μέσων καὶ λιχανὸν μέσων , τοὺς δὲ μετὰ τὴν
διατόνου ἐπὶ ὑπάτην μέσων τόνος , ἀπὸ ὑπάτης μέσων ἐπὶ παρυπάτην μέσων ἡμιτόνιον , ἀπὸ παρυπάτης μέσων ἐπὶ μέσων διάτονον
7716403 διατονον
συντονωτάτῳ διατόνῳ , δύο ἔσται μεγέθη μόνα ἐξ ὧν τὸ διάτονον συνεστηκὸς ἔσται . ἐὰν δὲ τὰ μὲν δύο ἴσα
καὶ δίεσιν καὶ δίτονον κινοῖτο , ἐναρμόνιον ποιεῖ γένος . διάτονον μὲν οὖν λέγεται , ἐπειδὴ κατὰ τὸ πλεῖον διὰ
7645913 διεζευγμενων
μέσην , ὅταν μὴ ὡς ἔθος εἶχεν ἐπὶ τὸ τῶν διεζευγμένων τετράχορδον ἔλθῃ κατὰ τὴν διὰ πέντε συμφωνίαν τῷ τῶν
ὑπερβολαίων λϚ ἀπλανῶν , νήτη ὑπερβολαίων λβ κρόνου , νήτη διεζευγμένων κδ διός , νήτη συνημμένων κα γʹ ἄρεως ,
7633128 διατονου
μὲν ἡμιτόνιον καὶ τόνον καὶ τόνον , λέγεται δὲ συντόνου διατόνου . ἵνα δὲ δῆλον ᾖ τὸ λεγόμενον , ἐπ
ἀπὸ παρυπάτης μέσων ἐπὶ μέσων διάτονον τόνος , ἀπὸ μέσων διατόνου ἐπὶ μέσην τόνος , ἀπὸ μέ - σης ἐπὶ
7573752 ὑπερβολαιων
: υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - Μʹσμένον ,
τυγχάνει κατὰ διαίρεσιν θεωρούμενα πέντε , ὑπάτων μέσων συνημμένων διεζευγμένων ὑπερβολαίων , πεντάχορδα δὲ σύμφωνα τρία , μέσων συνημμένων διεζευγμένων
7438804 νητην
μὲν καλῶμεν ὑπάτην καὶ μέσην , τόδε δὲ παραμέσην καὶ νήτην , μένοντος γὰρ τοῦ μεγέθους συμβαίνει κινεῖσθαι τὰς τῶν
φθόγγῳ τῇ ἀρχαίᾳ ὑπάτῃ . ὥστε ἀπὸ ὑπάτης ὑπατῶν ἐπὶ νήτην ὑπερβολαίων τέσσαρα εἶναι τετράχορδα συνημμένα . εὑρίσκετο δὲ τρισκαιδεκάχορδον
7384839 ὑπατης
ἡ δὲ σελήνη ἑβδόμη οὖσα τάξιν ἐπέχει φθόγγου τοῦ λεγομένου ὑπάτης μέσης . τὸ δὲ ἀπὸ γῆς διάστημα μέχρι τῆς
ἔχει λόγον , τὸν δὲ βαρὺν τὸν Κρόνον , εἴπερ ὑπάτης . Οἱ δὲ δὴ πρῶτοι ἀπὸ τῶν πρὸς ἡμᾶς
7360099 φθογγου
καὶ τρίτον γένος μελῳδίας ἐναρμόνιον , ἐπειδὰν ἀπὸ τοῦ βαρυτάτου φθόγγου κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον ἡ φωνὴ προελθοῦσα
οἷον σφραγῖδα σφραγῖδι ἐπιβάλλων ἐναργῆ μᾶλλον καὶ εὔδηλον , οὐδενὸς φθόγγου ἀπεχόμενος , ἀλλὰ ἔμβραχυ ποταμῶν τε μιμούμενος φωνὰς καὶ
7325666 λιχανου
, διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ
, οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων
7321002 συνημμενων
χρωματική , μέσων διάτονος , μέση , τρίτη συνημμένων , συνημμένων ἐναρμόνιος , συνημμένων χρωματική , παρανήτη συνημμένων , νήτη
ὑπερβολαίων λβ κρόνου , νήτη διεζευγμένων κδ διός , νήτη συνημμένων κα γʹ ἄρεως , παράμεσος ιη ἡλίου , μέση
7309155 ἡμιτονιον
τὸν αὐτὸν ἔλθῃ δεύτερον φθόγγον , εἶτα πάλιν ἀπὸ τοῦδε ἡμιτόνιον διαστήσασα τρίτον ὁρίσῃ φθόγγον ἄλλον , ἀπὸ τούτου κατὰ
νήτην διεζευγμένων τόνος , ἀπὸ νήτης διεζευγμένων ἐπὶ τρίτην ὑπερβολαίων ἡμιτόνιον , ἀπὸ τρίτης ὑπερβολαίων ἐπὶ ὑπερβολαίων διάτονον τόνος ,
7165337 παρυπατης
, οὗ αἱ διέσεις ἐφ ' ἑκάτερα τοῦ διατόνου ἀπὸ παρυπάτης μέσων ἐπὶ τρίτην συνημμένων , τρίτον δέ , οὗ
μὲν ὑπάτης καὶ παρυπάτης διάστημα ἡμιτονιαῖόν ἐστι , τὸ δὲ παρυπάτης καὶ λιχανοῦ ἐννέα δωδεκατημορίων ἀσύνθετον λαμβανομένων . δεύτερον δὲ
7138448 διεσιν
δὲ ἡμιτονίου , ὡς ἐλάχιστον μελῳδητὸν διάστημα , τῶν Πυθαγορείων δίεσιν καλούντων τὸ νῦν λεγόμενον ἡμιτόνιον . καλεῖσθαι δέ φησιν
τὸ δὲ ἡμιόλιον κατὰ δίεσιν ἡμιόλιον τῆς ἐναρμονίου διέσεως καὶ δίεσιν τὴν ἴσην καὶ ἑπτὰ τεταρτημορίων διέσεων ἀσύνθετον διάστημα .
7091759 ἐναρμονιου
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ .
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων ,
7025285 χρωματικην
ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτο - νον , τέταρτον δέ , οὗ
ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην ὑπερβολαίων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτονον , ἕβδομον δέ , οὗ ἕβδομος ὁ
7007304 παραμεσην
μέσην δὲ τὸν τοῦ ὀκτὼ , ἐπίτριτον αὐτοῦ τυγχάνοντα , παραμέσην δὲ τὸν τοῦ ἐννέα , τόνῳ τοῦ μέσου ὀξύτερον
δὲ μετὰ τὴν μέσην ὁμοίως μέχρι τῆς νήτης τῶν ὑπερβολαίων παραμέσην καὶ τρίτην διεζευγμένων καὶ παρανήτην διεζευγμένων καὶ νήτην διεζευγμένων
6972704 βαρυτατου
διεζευγμένων τὸν τρίτον , τρίτην δὲ ὑπερβολαίων τὸν ἀπὸ τοῦ βαρυτάτου δεύτερον τοῦ πρὸ τῆς βαρυτέρας διαζεύξεως τετραχόρδου , καὶ
τῶν ΒΔ καὶ ΑΕ τμημάτων διέλωμεν εἰς τὰς μέχρι τοῦ βαρυτάτου φθόγγου φθανούσας μοίρας , ἀπὸ τῶν Α καὶ Β
6963034 τριημιτονιον
ὑπερέχοντες , παράλληλοι δὲ δύο τόνον , οἱ δὲ τρίτοι τριημιτόνιον : ἀναλόγως δὲ ἕξει καὶ ἐπὶ τῆς τῶν λοιπῶν
παρενθέσεως τῆς ἐν ὀκταχόρδῳ . ἀπεῖχε γὰρ αὕτη τῆς παρανεάτης τριημιτόνιον ἀσύνθετον , ἀφ ' οὗ διαστήματος ἡ μὲν παρεντεθεῖσα
6947681 διαζευξιν
ὑβρίσαντες | καὶ ὡς ἑταίραις ταῖς ἀσταῖς προσενεχθέντες , ἐὰν διάζευξιν τεχνάζωσι μηδεμίαν ἀπαλλαγῆς πρόφασιν ἀνευρίσκοντες , εἶτ ' ἐπὶ
συναφὴν συστήματι ὑπαρχούσῃ τετραχόρδου τε καὶ πενταχόρδου , ἢ κατὰ διάζευξιν δυεῖν τετραχόρδων τόνῳ χωριζομένων ἀπ ' ἀλλήλων , ἀπὸ
6946808 λιχανον
κεχωρισμένοις τοῦ ἐντέρου διαίρεσιν ἐμβαλόντες ἱκανὴν παραδέξασθαι δάκτυλον καθήσομεν τὸν λιχανὸν καὶ κατ ' ἐπικόπου τοῦ δακτύλου διελοῦμεν τὸ περιτόναιον
οὔτε τὴν ἁρμονίαν ἁρμοττόνται , ὥστε τί μᾶλλον τὴν δίτονον λιχανὸν λεκτέον ἢ τὴν μικρῷ συντονωτέραν ; ἁρμονία μὲν γὰρ
6919870 παραμεσης
: τοῖς γοῦν αὐτοῖς λόγοις οἱ ἄκροι τῆς μέσης καὶ παραμέσης ὑπερέχουσι καὶ ὑπερέχονται , ἐπιτρίτῳ καὶ ἡμιολίῳ . τοιαύτη
τῷ αὑτῆς ὑπερέχουσαν , τὴν δ ' ὑπάτην ὑπὸ τῆς παραμέσης ὑπερεχομένην ὁμοίως : ὡς γίγνεσθαι τὰς αὐτὰς ὑπεροχὰς τῶν
6870571 ἡμιτονιου
περὶ τὰ ἀναγκαῖα . ὀρθογωνίου μὲν γὰρ τριγώνου ἢ διέσεως ἡμιτονίου οὐδεμίαν φύσει ἔννοιαν ἥκομεν ἔχοντες , ἀλλ ' ἔκ
ἀλλήλων τετάρτους τὸν διὰ τεσσάρων ἀλλήλοις διόλου συμφωνεῖν , τοῦ ἡμιτονίου κατὰ μετάβασιν τήν τε πρώτην καὶ τὴν μέσην καὶ
6849676 διεσις
τὸ μὲν γὰρ ἡμιτόνιον εἰς ἓξ δωδεκατημόρια , ἡ δὲ δίεσις , ἡ μὲν τεταρτημόριος εἰς τρία , ἡ δὲ
διάστημα τόνου ἢ διέσεως : ὁ γὰρ τόνος καὶ ἡ δίεσις ἀρχὴ μὲν συμφωνίας , οὔπω δὲ συμφωνία . ὁ
6789231 δευτερευειν
, δυνάμει δὲ ὁ νοῦς , εἰ καὶ τῇ τάξει δευτερεύειν δοκεῖ παρὰ τὴν αἴσθησιν . ἀπὸ μὲν γὰρ τῶν
] τὴν ] ἀνθρώπου φύσιν ? [ [ ] ντο δευτερεύειν [ [ ] ν , ἀλλὰ ? ? μὴ
6786256 σωρειαν
: διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί
μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν
6758509 παρανητη
ἐστὶν τοῦ κορυφαίου , οἷον τοῦ βασιλέως , ἡ δὲ παρανήτη πλησίον μᾶλλον τῆς μέσης : ἔστι δὲ ἡ μέση
παραμέση τρίτη διεζευγμένων παρανήτη διεζευγμένων διάτονος νήτη διεζευγμένων τρίτη ὑπερβολαίων παρανήτη ὑπερβολαίων διάτονος νήτη ὑπερβολαίων . Ἐν δὲ χρώματι οἵδε
6740590 λιχανος
ἐπὶ τὴν αὐτὴν τάσιν ἀφίκωνται ἥ τε παρυπάτη καὶ ἡ λιχανός , ἡ μὲν ἐπιτεινομένη ἡ δ ' ἀνιεμένη ,
. τὸ γὰρ δίτονον , ὅταν μὲν ὁρίζωσι μέση καὶ λιχανός , ἀσύνθετόν ἐστιν , ὅταν δὲ μέση καὶ παρυπάτη
6730558 βαρυτερου
ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις πλειόνων φθόγγων ἐν τῷ
Ἀγωγὴ προσεχὴς ἀπὸ τῶν βαρυτέρων ὁδὸς ἢ κίνησις φθόγγων ἐκ βαρυτέρου τόπου ἐπὶ ὀξύτερον , ἀνάλυσις δὲ τοὐναντίον . τὰς
6728843 ἡμιολιου
ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος
ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς
6716173 παρυπατη
ὑπερβολαίων . Ἐν δὲ ἁρμονίᾳ οἵδε : προσλαμβανόμενος ὑπάτη ὑπάτων παρυπάτη ὑπάτων λιχανὸς ὑπάτων ἐναρμόνιος ὑπάτη μέσων παρυπάτη μέσων λιχανὸς
ὑπερβολαίων . Ἐν δὲ χρώματι οἵδε : προσλαμβανόμενος ὑπάτη ὑπάτων παρυπάτη ὑπάτων λιχανὸς ὑπάτων χρωματική ὑπάτη μέσων παρυπάτη μέσων λιχανὸς
6671305 τονιαιου
ἄλλων πλειόνων : τὰ γὰρ ηʹ πρὸς τὰ θʹ ἐποίει τονιαίου ἀκούειν διαστήματος . διὰ τοῦτο δὲ πρῶτον διάστημα ὁ
δ ' ὅτι , καὶ εἴ τις ἐν τῇ τοῦ τονιαίου δυνάμει τιθείη τὸ τοῦ συντονωτέρου σπονδειασμοῦ ἴδιον , συμβαίνοι
6662347 προσλαμβανομενου
διὰ πασῶν , τόνων ἕξ , οἷόν ἐστι τὸ ἀπὸ προσλαμβανομένου ἐπὶ μέσην : τέταρτον δὲ τὸ διὰ πασῶν καὶ
τρίτη συνημμένων , τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ
6641533 χρωματικον
τοίνυν οὗτος ὑφίσταται γένη , τό τε ἐναρμόνιον καὶ τὸ χρωματικὸν καὶ τὸ διατονικόν : ἑκάστου δὲ αὐτῶν ποιεῖται τὴν
[ τῶν ] εἰς τὸ ἡρμοσμένον ἤτοι διάτονόν ἐστιν ἢ χρωματικὸν ἢ ἐναρμόνιον . πρῶτον μὲν οὖν καὶ πρεσβύτατον αὐτῶν
6630075 ὑπατην
, τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ παρυπάτην ὑπατῶν
ὑπατῶν ἐπὶ ὑπατῶν διάτονον τόνος , ἀπὸ ὑπατῶν διατόνου ἐπὶ ὑπάτην μέσων τόνος , ἀπὸ ὑπάτης μέσων ἐπὶ παρυπάτην μέσων
6602452 ὑπατη
ὑπάτων λιχανὸς ὑπάτων ἐναρμόνιος λιχανὸς ὑπάτων χρωματική λιχανὸς ὑπάτων διάτονος ὑπάτη μέσων παρυπάτη μέσων λιχανὸς μέσων ἐναρμόνιος λιχανὸς μέσων χρωματική
παραμέση τὸν τῶν ἐννέα . τούτου γενομένου , ἕξει ἡ ὑπάτη πρὸς μέσην ὡς παραμέση πρὸς νήτην διεζευγμένων : ἀπὸ
6592911 χρωματικης
ἐπὶ τὴν βαρυτάτην χρωματικὴν ἑκτημόριον , ἀπὸ δὲ τῆς βαρυτάτης χρωματικῆς ἐπὶ τὴν ἡμιόλιον δωδεκατημόριον τόνου . τὸ δὲ τεταρτημόριον
ἐναρμόνιος μὲν οὖν ἐστι παρυπάτη πᾶσα ἡ βαρυτέρα τῆς βαρυτάτης χρωματικῆς , χρωματικὴ δὲ καὶ διάτονος ἡ λοιπὴ πᾶσα μέχρι
6591779 ἡμιτονιῳ
τῶν ἁρμονικῶν λέγουσι βαρύτατον μὲν τὸν ὑποδώριον τῶν τόνων , ἡμιτονίῳ δὲ ὀξύτερον τούτου τὸν μιξολύδιον , τούτου δ '
ἄλλο τι λεγόμενον συνημμένων , εὐθὺς τὴν ἑαυτοῦ τρίτην ἔχον ἡμιτονίῳ διεστῶσαν ἀπὸ τῆς μέσης , εἶτα μετὰ τόνον τὴν
6585194 τονου
ἐν τόνῳ δέ , καθὸ οὐδεμία λέξις εἰς ο λήγουσα τόνου ἔχεται τοῦ ὀξέος , καὶ ἕνεκά γε τούτου τὸ
λοιπὸν ἐκ τοῦ τεθὲν ἐπὶ γῆς εὐθέως αὐτὸ κλαυθμυρίσαι μετὰ τόνου τοῦ προσήκοντος : τὸ γὰρ ἕως πλείονος ἀκλαυστὶ διάγον
6579626 ἐναρμονιος
: προσλαμβανόμενος , ὑπάτη ὑπάτων , παρυπάτη ὑπάτων , ὑπάτων ἐναρμόνιος , ὑπάτων χρωματική , ὑπάτων διάτονος , ὑπάτη μέσων
πάσχει ὑποκείμενος τῇ εἱμαρμένῃ . ὑπεράνω οὖν ὢν τῆς ἁρμονίας ἐναρμόνιος γέγονε δοῦλος ἀρρενόθηλυς δὲ ὤν , ἐξ ἀρρενοθήλεος ὢν
6526049 πολλαπλασιου
ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου
: ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον
6524090 νητη
τὸ πρὸ τῆς νήτης κεῖσθαι . ἐπὶ δὲ ταύταις ἡ νήτη , τουτέστιν ἐσχάτη . νέατον γὰρ ἐκάλουν τὸ ἔσχατον
βαρεῖα τε μεσσόθι ναίει : ἀπλανέων δὲ σφαῖρα συνημμένη ἔπλετο νήτη : μέσσην δ ' ἠέλιος πλαγκτῶν θέσιν ἔσχεθεν ἄστρων
6521151 ἐπογδοον
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν
6520589 φρυγιου
μέσην ὑπολύδιον , ὁ δὲ μεσοειδὴς ἄρχεται μὲν ἀπὸ ὑπάτης φρυγίου , λήγει δὲ ἐπὶ μέσην λύδιον , ὁ δὲ
ἀπὸ τοῦ δωρίου τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν
6514653 ἐπιτεταρτος
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως .
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ '
6509789 ἐκκειμενου
ἀπὸ τοῦ ΑΒ μεγέθους τὸ ΑΚ μέγεθος ἔλασσον ὂν τοῦ ἐκκειμένου ἐλάσσονος μεγέθους τοῦ Γ : ὅπερ ἔδει δεῖξαι .
τὸ Μουσεῖον ἀπιόντες αὕτη ἡ Ἄσκρη . τοῦ δὲ Ἑλικῶνος ἐκκειμένου τοῖς ἀνέμοις καὶ θαυμαστὰς μὲν ἀναπαύλας ἔχοντος ἐν θέρει
6501443 παραμεσος
πρῶτος τῶν τεσσάρων , ὁ δὲ μέσος , ὁ δὲ παράμεσος , ὁ δὲ μικρός . τούτων τὰ ὀστᾶ σκυταλίδες
τῆς μέσης ἐπιτείναντι τόνον ἡ παρ ' αὐτὴν κειμένη χορδὴ παράμεσος καλεῖται . αἱ δὲ μετὰ ταύτην διὰ τὰς ὁμοίας
6484077 λυδιον
γὰρ ᾔδεισαν τόν τε δώριον καὶ τὸν φρύγιον καὶ τὸν λύδιον ἑνὶ τόνῳ διαφέροντας ἀλλήλων , ὡς μὴ φθάνειν ἐπὶ
τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν ἤρξαντο ἐθνῶν ὀνομασίας ,
6483870 διατονος
παρυπάτη μέσων , μέσων ἐναρμόνιος , μέσων χρωματική , μέσων διάτονος , μέση , τρίτη συνημμένων , συνημμένων ἐναρμόνιος ,
τὸ ὑπατῶν , οἷον ὑπάτη ὑπατῶν , παρυπάτη ὑπατῶν , διάτονος ὑπατῶν ἢ λιχανὸς ὑπατῶν , οὐδὲν γὰρ διαφέρει ὁποτερωσοῦν
6473888 παρανητην
μέχρι τῆς νήτης τῶν ὑπερβολαίων παραμέσην καὶ τρίτην διεζευγμένων καὶ παρανήτην διεζευγμένων καὶ νήτην διεζευγμένων καὶ τρίτην ὑπερβολαίων καὶ παρανήτην
, ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτο - νον ,
6422322 μελῳδειται
ἀσύνθετον οὔτε πλείω ἑνὸς ἡμιτόνια κατὰ τὸ ἑξῆς ἐν τούτῳ μελῳδεῖται τῷ γένει : οὔτε μὴν κατὰ χρῶμα : πάλιν
δὲ παρυπάτης καὶ λιχανοῦ τῷ λιχανοῦ καὶ μέσης καὶ ἴσον μελῳδεῖται καὶ ἄνισον ἀμφοτέρως : ἴσον μὲν ἐν τῷ συντονωτέρῳ
6402379 ἐπιμοριου
ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος ,
δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς ,
6366441 διτονου
οὔτε δίτονον πρὸς διτόνῳ τεθήσεται οὔτε τόνος ἐπὶ τὸ βαρὺ διτόνου , ὥστε λείπεται τὸ πυκνόν . φανερὸν δὴ ὅτι
πρὸς αὐτῷ κατ ' οὐδέτερον τῶν τόπων οὔτε τόνος . διτόνου γὰρ οὕτω τιθεμένου ἤτοι βαρύτατος πυκνοῦ ἢ ὀξύτατος πεσεῖται
6356928 ἡμιολιον
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον
6355792 βαρυτεραν
μὲν ὅλον οὐ διαλείποντα , μίαν δὲ κουφοτέραν καὶ μίαν βαρυτέραν ἐπιφέροντα . οἱ δὲ ἀπὸ τῆς μεθόδου ἡμιτριταῖον μικρὸν
' αὐτῆς ταχεῖα , ὀξεῖαν , ὅση δὲ βραδυτέρα , βαρυτέραν : τὴν δὲ ὁμοίαν ὁμαλήν τε καὶ λείαν ,
6354809 τεταρτου
καὶ τὸν τρίτον ἀριθμὸν συνάμφω ἐπιτρίτους χρὴ εἶναι δευτέρου καὶ τετάρτου , ἔστι δὲ πρόλογος ἐν ἐπιτρίτῳ πυθμέσιν ὁ δʹ
τέσσαρα : καὶ ταῦτα ἑψείσθω μέχρι τοῦ τρίτου μέρους ἢ τετάρτου , τὸν ἀφρὸν ἀφαιρούντων ἡμῶν . εἰ δ '
6352193 τετραχορδων
πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ
οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν
6341514 τριαδα
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα :
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων
6332548 διεσεων
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος
6327301 διτονον
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ
6313040 προσλαμβανομενον
ᾖ καὶ ἡ τοῦ ἐπιφωνήματος φύσις φανερά . τὸ δὲ προσλαμβανόμενον ἔξωθεν τετολμῆσθαι δεῖ ἀσφαλῶς : διὰ τοῦτο γάρτοι καὶ
τοῦ δὲ τετμημένου τὸ μὲν ἕτερον τῶν περάτων κατὰ τὸν προσλαμβανόμενον , τὸ δὲ ἕτερον κατὰ τὴν νήτην τῶν ὑπερβολαίων
6310767 χρωματικη
τρίτη διεζευγμένων ἐναρμόνιος τρίτη διεζευγμένων χρωματικὴ καὶ διάτονος ἐναρμόνιος διεζευγμένων χρωματικὴ διεζευγμένων διάτονος διεζευγμένων νήτη διεζευγμένων τρίτη ὑπερβολαίων ἐναρμόνιος τρίτη
μέσων χρωματική μέσων διάτονος μέση τρίτη συνημμένων ἐναρμόνιος τρίτη συνημμένων χρωματικὴ καὶ διάτονος συνημμένων ἐναρμόνιος συνημμένων χρωματική συνημμένων διάτονος νήτη
6308398 προστιθεμενου
ἀπὸ νάρθηκος ἀληθινοῦ , ἐπὶ τῆς ἐσχάτης ἐπιδεσμίδος , ἐρίου προστιθεμένου , ἐκ διαστημάτων τασσομένων τῶν ναρθήκων : ὅταν ἀκριβῶς
γὰρ τοῦ τος εἰς μι καὶ ἐκβαλλομένου τοῦ ν , προστιθεμένου δὲ τοῦ ι τῷ ο , τὸ τύπτοντος τύπτοιμι
6302144 ἑβδομου
παραδιδόναι . . καὶ μὴν περὶ τοῦ γε ἔτους τοῦ ἑβδόμου ῥᾴδιον ὡσαύτως λέγειν , οὐ μὴν ταὐτὸν ἴσως .
. ἀπέθανε δὲ βασιλεύσας ἔτη τε ἓξ καὶ ἐκ τοῦ ἑβδόμου μῆνας ἐπιλαβὼν οὐ πολλούς . τοῖς δὲ Μεσσηνίοις ἀπεγνωκέναι
6299963 ὡριαιον
καὶ τοῦ χειμερινοῦ τροπικοῦ ἓξ ὡριαίων διαστημάτων τὸ μὲν πρῶτον ὡριαῖον διάστημα ἐπὶ τοῦ περὶ μέσας τὰς Χηλὰς κύκλου ἀφορίζει
ἑπόμενος τῶν ἐπ ' εὐθείας τριῶν . Τὸ δὲ τρίτον ὡριαῖον διάστημα ἀφορίζει περὶ μέσον τὸν Ταῦρον τῶν ἐν τῇ
6299826 ἑξαδος
ιʹ τῷ προκειμένῳ ἀριθμῷ . ἐὰν κατὰ τὰ μέσα ἡσδηποτοῦν ἑξάδος ὡς ἐπὶ τῆς δευτέρας δεδήλωται ἀπαρτηθῇ ὁ τριακοστὸς ἀριθμός
Διὸς ἀνατέλλοντος ἐν ταῖς μοίραις πλησίον : ἀπὸ δ ' ἑξάδος εἰκοστῆς καὶ μέχρι τριαντάδος ὁ Κρόνος ἐπαρέλαβεν , εἰ
6292176 κηʹ
Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως
ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ
6288955 μεσων
τοῦ ἰσημερινοῦ πόλος τὸ Γ , καὶ γεγράφθω τοῦ διὰ μέσων τῶν ζῳδίων κύκλου δύο τμήματα τό τε ΑΔΕ καὶ
μοίρας ε με , βορειότερον δ ' ἦν τοῦ διὰ μέσων μοίραις ε , ἐφαίνετο δ ' ἐν Ἀλεξανδρείᾳ κατὰ
6287181 διεσεως
διέσεως καὶ διέσεως καὶ διτόνου καὶ τόνου καὶ διέσεως καὶ διέσεως καὶ διτόνου , τὸ δὲ φρύγιον ἐκ τόνου καὶ
ᾧ κινεῖται , τονιαῖος , ὁ δὲ τῆς παρυπάτης τόπος διέσεως ἐλαχίστης . Διαστημάτων εἰσὶ διαφοραὶ πέντε , πρώτη μέν
6284605 διατονικον
δὲ κἀνταῦθα τῶν μειζόνων λόγων γίνεται τετράχορδον παρὰ τὸ σύντονον διατονικὸν ὁμαλώτερον ἐκείνου καὶ καθ ' αὑτὸ καὶ ἔτι μᾶλλον
ἐστι τρία τὰ προειρημένα . πᾶν οὖν ἔσται μέλος ἤτοι διατονικὸν ἢ χρωματικὸν ἢ ἐναρμόνιον ἢ κοινὸν ἢ μικτὸν ἐκ
6278148 ἐπιτριτον
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ
6275488 ὑποδωριου
. ἄρχεται δὲ ὁ μὲν ὑπατοειδὴς τόπος ἀπὸ ὑπάτης μέσων ὑποδωρίου καὶ λήγει ἐπὶ μέσην ὑπολύδιον , ὁ δὲ μεσοειδὴς
ἡ περὶ τὴν δίαιταν ἄνεσις . διόπερ ἔχουσι τὸ τῆς ὑποδωρίου καλουμένης ἁρμονίας ἦθος . αὕτη γάρ ἐστι , φησὶν
6270385 πεμπτου
τοῦ ἐννάτου , καὶ κύριον τῆς δευτέρας τὸν κύριον τοῦ πέμπτου ἀπ ' αὐτοῦ τοῦ ζῳδίου , καὶ κύριον τῆς
δὲ τὴν γένεσιν τοῦ κόσμου 〛 ἀπὸ πυρὸς καὶ τοῦ πέμπτου στοιχείου . Πλάτων τὸν ὁρατὸν κόσμον γεγονέναι παράδειγμα τοῦ
6268254 τονος
κατὰ μέγεθος , ἤτοι ὡς τά τε σύμφωνα καὶ ὁ τόνος ἢ ὡς τὰ τούτοις σύμμετρα , τὸ δὲ κατὰ
. δεύτερον τὸ ὑπὸ μεσοπύκνων περιεχόμενον , οὗ δεύτερος ὁ τόνος ἐπὶ τὸ ὀξύ : ἔστι δὲ ἀπὸ παρυπάτης ὑπάτων
6267518 τοπικου
τοῦ ἀποτελεσθησομένου ποιότητα θεωρήσομεν . Τοῦ μὲν οὖν πρώτου καὶ τοπικοῦ τὴν διάληψιν ποιησόμεθα τοιαύτην . κατὰ γὰρ τὰς γινομένας
δὲ ἀπὸ συμβεβηκότος οὕτως : πόρισμά ἐστιν τὸ λεῖπον ὑποθέσει τοπικοῦ θεωρήματος . τούτου δὲ τοῦ γένους . τῶν πορισμάτων
6230882 πεντασυλλαβου
' ἐπὶ τῶν προτέρων “ δίμετρον ἀκατάληκτον ἐξ ἐπιτρίτου τρίτου πεντασυλλάβου καὶ χοριάμβου : τὸ εʹ ” πρὸς οὖν τάδ
ὅμοιον τῷ δʹ τῆς πρώτης στροφῆς ἐκ χοριάμβου καὶ διιάμβου πεντασυλλάβου . ἐπὶ τῷ τέλει παράγραφος καὶ διπλαῖ ἐν ἀρχῇ
6223525 ὀξυτατου
. τὸν δὲ ἐν τῶι χρωματικῶι γένει δεύτερον ἀπὸ τοῦ ὀξυτάτου φθόγγου λαμβάνει διὰ τοῦ τὴν αὐτὴν θέσιν ἔχοντος ἐν
γὰρ λόγον ἔχειν τὸν ἐν τῶι χρωματικῶι δεύτερον ἀπὸ τοῦ ὀξυτάτου πρὸς τὸν ὅμοιον τὸν ἐν τῶι διατονικῶι τὸν τῶν
6218468 ἀντιτυπιαν
ἐχῖνον . δυσχρηστούμενον οὖν τῇ βρώσει καὶ οὐ συνιέντα τὴν ἀντιτυπίαν τῆς τραχύτητος εἰπεῖν : ὦ φάγημα μιαρόν , οὔτε
ἐχῖνον . δυσχρηστούμενον οὖν τῇ βρώσει καὶ οὐ συνιέντα τὴν ἀντιτυπίαν τῆς τραχύτητος εἰπεῖν : ὦ φάγημα μιαρόν , οὔτε
6204950 ἑκτου
πλασματικὰ πολλὰ συλλέξας καὶ διάφορα ἕτερα εἰς τὸ τέλος τοῦ ἕκτου λόγου καταντήσεις . . Δημοσθένου ] | κατὰ [
οὐ πολλοῦ χρόνου ἐπὶ μέγα ἐχώρησαν δυνάμεως . Τέλος τοῦ ἕκτου λόγου Νικολάου Δαμασκηνοῦ . . . : Ὅτι Κύψελος
6204950 τονων
ὅρων ἕκαστος ἴδιον ἔχει τὸ αἴτιον , ἐπὶ δὲ τῶν τόνων ἕπονταί πως τῷ πρώτῳ τῶν ὅρων οἱ λοιποὶ δύο
ἀμεταβόλῳ συστήματι ἕξ : ἐλάχιστον μὲν τὸ διὰ τεσσάρων , τόνων δύο ἡμίσεος , οἷόν ἐστι τὸ ἀπὸ ὑπάτης ὑπάτων
6201673 Μʹ
φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ
Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # #
6192496 ἐξαιρεθεντος
ἐκείνης ἀεὶ διάστημα μεταξὺ εἶναί φασιν . Ἀλλ ' ὑποθώμεθα ἐξαιρεθέντος τοῦ ὕδατος μηδὲν ἕτερον εἰσρυῆναι σῶμα . μένει τοίνυν
ἵνα ὕστερον , ὅταν ἀκριβῶς παγῇ τὸ περιελιττόμενον ἔξωθεν , ἐξαιρεθέντος τοῦ στηρίγματος , εὐθέως οὐρεῖν ὑπάρχῃ τῷ θεραπευομένῳ .
6187413 διεσεις
ἔχει . ὑπόκειται δὲ καὶ ἡ παρὰ τοῖς ἀρχαίοις κατὰ διέσεις ἁρμονία , ἕως κδ διέσεων τὸ πρότερον διάγουσα διὰ
τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου
6183397 ἐπιτεταρτοι
δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία
χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ
6181072 προσληφθεντος
. ἴση ἄρα ἡ ΔΞ τῇ ΔΖ . Κοινοῦ ἄρα προσληφθέντος λόγου τοῦ τῆς ΒΔ πρὸς τὴν ΔΖ , ἔσται
, σύστημα δύο τόνων καὶ τοῦ λεγομένου ἡμιτονίου . εἶτα προσληφθέντος ἄλλου τόνου , τουτέστι τοῦ μεσεμβοληθέντος , ἡ διὰ
6157179 ἐκθλιψιν
τοῦ ῑ εἰς τὴν ῳ̄ δίφθογγον καταχρηστικῶς . Κατ ' ἔκθλιψιν δὲ καὶ κρᾶσιν καὶ συναίρεσιν , οἷον οἱ αἰπόλοι
γινομένην πληγὴν ἐν ἡμῖν , ὅταν φωνὴν ἀφίωμεν , τοιαύτην ἔκθλιψιν ὄγκων τινῶν ῥεύματος πνευματώδους ἀποτελεστικῶν ποιεῖσθαι , ἣ τὸ
6153766 διαζευξεως
ταῦτα τὸν τόνον . ἐὰν οὖν δειχθῇ τὸ ἴδιον τῆς διαζεύξεως μὴ κινούμενον ἐν ταῖς τῶν γενῶν διαφοραῖς , δῆλον
. . . εἰς δὲ τὴν Ἀργείων ἐνέβαλον ] σχῆμα διαζεύξεως , τὸ λεγόμενον ἐφ ' ἑκάστῳ . διὰ μὲν
6142515 ἀσυνθετον
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις
6141540 ἀναπαιστος
ἐν ἐκθέσει ἐστὶ τὸ ἔθιμον , 〚 διπλῆ 〛 δίστιχος ἀνάπαιστος τετράμετρος καταληκτικός : ὑφ ' ὃ διπλῆ καὶ ἑξῆς
μόνον βακχεῖος ἐν τῷ διμέτρῳ χοριαμβικῷ κώλῳ , ἀλλὰ καὶ ἀνάπαιστος , πλὴν ἴστωσαν ὡς ἐπειδὴ οὐ μόνον θεμιτὸς εὕρηται
6120817 ἐπιτεταρτου
δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον
, ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ
6116964 ἡμιολιοι
τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς , καὶ ἐφεξῆς . οἷόν εἰσιν ἡμιόλιοι δ , Ϛ , θ . λαβὲ ἀπὸ τῶν
πρὸς τὸ δεύτερον καὶ τὸ τρίτον πρὸς τὸ τέταρτον : ἡμιόλιοι γὰρ ἀμφότεροι ἀμφοτέρων . καὶ τὰ ἰσάκις τοίνυν πολλαπλάσια
6111758 παραμεση
μέσων χρωματική μέση τρίτη συνημμένων παρανήτη συνημμένων χρωματική νήτη συνημμένων παραμέση τρίτη διεζευγμένων παρανήτη διεζευγμένων χρωματική νήτη διεζευγμένων τρίτη ὑπερβολαίων
λιχανός . Ἑρμοῦ δὲ τὸ μεταίχμιον Ἀφροδίτης καὶ Ἡλίου κατέχοντος παραμέση . περὶ ὧν ἀκριβέστερον καὶ μετὰ γραμμικῶν καὶ ἀριθμητικῶν
6111194 υλβ
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ
6110075 φρυγιον
γὰρ τοὺς τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν ἤρξαντο ἐθνῶν
ὁ δὲ ὡς τόπος φωνῆς , ὅταν λέγωμεν δώριον ἢ φρύγιον ἢ λύδιον ἢ τῶν ἄλλων τινά . εἰσὶ δὲ
6099923 ἐπογδοου
καὶ περὶ τὰς τέτταρας περιεχομένας λόγοις τοῖς ἐφεξῆς ἀπὸ τοῦ ἐπογδόου μέχρι τοῦ ἐπὶ ιαʹ . ποιοῦσι μὲν οὖν τὸ
τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν , τῷ τοῦ ἐπογδόου διαστήματι τὰ ἐπίτριτα πάντα συνεπληροῦτο , λείπων αὐτῶν ἑκάστου
6098750 εὐτακτων
ἀλλήλων διαφέροντες , διπλάσιοι ἄρτιοι περισσῶν , ἐπίπλαστος περισσάρτιοι εὔτακτοι εὐτάκτων . εἶτ ' ἀπ ' ἄλλης ἀρχῆς οἱ αὐτῶν
δὲ ἐπὶ τούτοις γενήσονται καθεξῆς προσσωρευομένων τῶν κατὰ τριάδος ὑπεροχὴν εὐτάκτων μετὰ τὴν ἑβδομάδα ὄντων , οἷον τοῦ ι ,
6096191 ἐπιτεταρτον
τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου
λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις
6095322 τριαδος
τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ
τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ
6089170 ἐφεξουσι
μὲν οὖν καὶ ἐπισινεῖς ἢ ἐμπαθεῖς γενόμενοι βίαιον τὸ τέλος ἐφέξουσι . Κρόνος Ἄρης Ἀφροδίτη περὶ μὲν τὰς πράξεις καὶ
τὸν Λέοντα : οἱ γὰρ ἡγούμενοι τῶν ἐν τῷ πλινθίῳ ἐφέξουσι κατὰ τὴν προειρημένην διαίρεσιν Λέοντος μοίρας ιηʹ . δῆλον
6077759 ὀξυτερου
περιεχόμενον ὑπὸ δύο φθόγγων ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις
οἱ τοῦ διὰ τεσσάρων ὅροι σύμφωνοι : ἀπὸ δὲ τοῦ ὀξυτέρου αὐτῶν λαμβάνεται φθόγγος σύμφωνος ἐπὶ τὸ ὀξὺ διὰ τεσσάρων
6072926 ῥυθμοποιιας
ἐπὶ τῷ τῆς Ἀθηνᾶς νόμῳ : προσληφθείσης γὰρ μελοποιίας καὶ ῥυθμοποιίας , τεχνικῶς τε μεταληφθέντος τοῦ ῥυθμοῦ μόνον αὐτοῦ καὶ
τὴν τοῦ ποδὸς δύναμιν φυλάσσοντα σημεῖα καὶ τὰς ὑπὸ τῆς ῥυθμοποιίας γινομένας διαιρέσεις : καὶ προσθετέον δὲ τοῖς εἰρημένοις ,

Back