, δυνάμει δὲ ὁ νοῦς , εἰ καὶ τῇ τάξει δευτερεύειν δοκεῖ παρὰ τὴν αἴσθησιν . ἀπὸ μὲν γὰρ τῶν | ||
] τὴν ] ἀνθρώπου φύσιν ? [ [ ] ντο δευτερεύειν [ [ ] ν , ἀλλὰ ? ? μὴ |
πρὸς παράμεσον : ὑπάτη δὲ ὑπάτων , ὅτι τοῦ πρώτου τετραχόρδου πρώτη τίθεται : τὸ γὰρ πρῶτον ὕπατον ἐκάλουν οἱ | ||
νήτη ὑπερβολαίων . Ὥσπερ οὖν ἐνταῦθα τὰ μὲν τοῦ ὑπατῶν τετραχόρδου κατὰ τρία γένη , τὰ δὲ μέσων , τὰ |
κεχωρισμένοις τοῦ ἐντέρου διαίρεσιν ἐμβαλόντες ἱκανὴν παραδέξασθαι δάκτυλον καθήσομεν τὸν λιχανὸν καὶ κατ ' ἐπικόπου τοῦ δακτύλου διελοῦμεν τὸ περιτόναιον | ||
οὔτε τὴν ἁρμονίαν ἁρμοττόνται , ὥστε τί μᾶλλον τὴν δίτονον λιχανὸν λεκτέον ἢ τὴν μικρῷ συντονωτέραν ; ἁρμονία μὲν γὰρ |
δευτερεύειν κατ ' ἀρετήν , τὸν δὲ τῆς τρίτης τετραρχίας τετράρχην δεξιὸν εἶναι καὶ τρίτον κατ ' ἀρετήν , τὸν | ||
τρίτον κατ ' ἀρετήν , τὸν δὲ τῆς δευτέρας τετραρχίας τετράρχην εὐώνυμον εἶναι καὶ τέταρτον κατ ' ἀρετήν . τὴν |
καὶ τρίτον κατ ' ἀρετήν , τὸν δὲ τῆς δευτέρας τετραρχίας τετράρχην εὐώνυμον εἶναι καὶ τέταρτον κατ ' ἀρετήν . | ||
; οὐχὶ τὰς πολιτείας καὶ τὰς πόλεις αὐτῶν παρῄρηται καὶ τετραρχίας κατέστησεν , ἵνα μὴ μόνον κατὰ πόλεις ἀλλὰ καὶ |
καὶ τῶν μητρέων νοσεόντων . Ἀλλὰ δεῖ ταύτῃ κατωτερικὰ διδόναι διαλείποντα , καὶ πυριῇν ὅλον τὸ σῶμα , καὶ τὰς | ||
ὑπάρχειν τοῖς διαλείπουσι παρεῖναι , ἴσθι τὸν τοιοῦτον μὴ εἶναι διαλείποντα , ἀλλὰ συνεχῆ . Εἰ δὲ καὶ ἀνώμαλον ποιήσαιτο |
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
τῶν ἁρμονικῶν λέγουσι βαρύτατον μὲν τὸν ὑποδώριον τῶν τόνων , ἡμιτονίῳ δὲ ὀξύτερον τούτου τὸν μιξολύδιον , τούτου δ ' | ||
ἄλλο τι λεγόμενον συνημμένων , εὐθὺς τὴν ἑαυτοῦ τρίτην ἔχον ἡμιτονίῳ διεστῶσαν ἀπὸ τῆς μέσης , εἶτα μετὰ τόνον τὴν |
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
καὶ παρυπάτην ὑπάτων καὶ λιχανὸν ὑπάτων καὶ ὑπάτην μέσων καὶ παρυπάτην μέσων καὶ λιχανὸν μέσων , τοὺς δὲ μετὰ τὴν | ||
διατόνου ἐπὶ ὑπάτην μέσων τόνος , ἀπὸ ὑπάτης μέσων ἐπὶ παρυπάτην μέσων ἡμιτόνιον , ἀπὸ παρυπάτης μέσων ἐπὶ μέσων διάτονον |
τὸν μετ ' αὐτόν , τουτέστι τὸν δεύτερον καὶ τὸν οὐραγὸν κοντάτους εἶναι , τοὺς δὲ λοιποὺς πάντας , τοὺς | ||
λοχαγὸν τὸν κράτιστον τοῦ λόχου εἶναι , ἀλλὰ καὶ τὸν οὐραγὸν οὐ πολύ τι ἀποδέοντα ἐπιλέγεσθαι : πολλὰ γὰρ καὶ |
τρίμετροι ἀκατάληκτοι ρλγʹ . μετὰ δὲ τὸν ριϚʹ , τὸν ριηʹ , τὸν ρκʹ , τὸν ρκβʹ κώλου τμήματα δʹ | ||
δύναμις οὐσίας ἀερώδους φανώδης , ὅρασις δ ' ἐνεργητική . ριηʹ . Ἀκοή ἐστιν ἡ γινομένη διὰ τοῦ ἐγκεκραμένου τοῖς |
ὑβρίσαντες | καὶ ὡς ἑταίραις ταῖς ἀσταῖς προσενεχθέντες , ἐὰν διάζευξιν τεχνάζωσι μηδεμίαν ἀπαλλαγῆς πρόφασιν ἀνευρίσκοντες , εἶτ ' ἐπὶ | ||
συναφὴν συστήματι ὑπαρχούσῃ τετραχόρδου τε καὶ πενταχόρδου , ἢ κατὰ διάζευξιν δυεῖν τετραχόρδων τόνῳ χωριζομένων ἀπ ' ἀλλήλων , ἀπὸ |
: διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί | ||
μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν |
τὸν αὐτὸν ἔλθῃ δεύτερον φθόγγον , εἶτα πάλιν ἀπὸ τοῦδε ἡμιτόνιον διαστήσασα τρίτον ὁρίσῃ φθόγγον ἄλλον , ἀπὸ τούτου κατὰ | ||
νήτην διεζευγμένων τόνος , ἀπὸ νήτης διεζευγμένων ἐπὶ τρίτην ὑπερβολαίων ἡμιτόνιον , ἀπὸ τρίτης ὑπερβολαίων ἐπὶ ὑπερβολαίων διάτονον τόνος , |
μὲν καλῶμεν ὑπάτην καὶ μέσην , τόδε δὲ παραμέσην καὶ νήτην , μένοντος γὰρ τοῦ μεγέθους συμβαίνει κινεῖσθαι τὰς τῶν | ||
φθόγγῳ τῇ ἀρχαίᾳ ὑπάτῃ . ὥστε ἀπὸ ὑπάτης ὑπατῶν ἐπὶ νήτην ὑπερβολαίων τέσσαρα εἶναι τετράχορδα συνημμένα . εὑρίσκετο δὲ τρισκαιδεκάχορδον |
λύδιον ἑτέρῳ τόνῳ : ἕτεροι δὲ πρὸς τοῖς εἰρημένοις τὸν ὑποφρύγιον αὐλὸν προστιθέασιν ἐπὶ τὸ βαρύ , οἱ δὲ αὖ | ||
ὑπερλύδιον , ὑπεριάστιον , λύδιον , φρύγιον , ὑπολύδιον , ὑποφρύγιον . οἱ δὲ κιθαρῳδοὶ τέτρασι τούτοις ἁρμόζονται : ὑπεριαστίῳ |
συντονωτάτῳ διατόνῳ , δύο ἔσται μεγέθη μόνα ἐξ ὧν τὸ διάτονον συνεστηκὸς ἔσται . ἐὰν δὲ τὰ μὲν δύο ἴσα | ||
καὶ δίεσιν καὶ δίτονον κινοῖτο , ἐναρμόνιον ποιεῖ γένος . διάτονον μὲν οὖν λέγεται , ἐπειδὴ κατὰ τὸ πλεῖον διὰ |
στίχων , καὶ τρίτον τὸ ὑπὸ τῶν τρίτων , καὶ τέταρτον τὸ ὑπὸ τῶν τετάρτων : ἀλλὰ τὸ μὲν α | ||
. . . . . . ρμζ γʹ ιη τὸ τέταρτον , ὃ καλεῖται Ψευδόστομον ρμζ γοʹ ιη ∠ ʹ |
μὲν ἡμιτόνιον καὶ τόνον καὶ τόνον , λέγεται δὲ συντόνου διατόνου . ἵνα δὲ δῆλον ᾖ τὸ λεγόμενον , ἐπ | ||
ἀπὸ παρυπάτης μέσων ἐπὶ μέσων διάτονον τόνος , ἀπὸ μέσων διατόνου ἐπὶ μέσην τόνος , ἀπὸ μέ - σης ἐπὶ |
ἐπὶ τὴν βαρυτάτην χρωματικὴν ἑκτημόριον , ἀπὸ δὲ τῆς βαρυτάτης χρωματικῆς ἐπὶ τὴν ἡμιόλιον δωδεκατημόριον τόνου . τὸ δὲ τεταρτημόριον | ||
ἐναρμόνιος μὲν οὖν ἐστι παρυπάτη πᾶσα ἡ βαρυτέρα τῆς βαρυτάτης χρωματικῆς , χρωματικὴ δὲ καὶ διάτονος ἡ λοιπὴ πᾶσα μέχρι |
, τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ παρυπάτην ὑπατῶν | ||
ὑπατῶν ἐπὶ ὑπατῶν διάτονον τόνος , ἀπὸ ὑπατῶν διατόνου ἐπὶ ὑπάτην μέσων τόνος , ἀπὸ ὑπάτης μέσων ἐπὶ παρυπάτην μέσων |
ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου | ||
: ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον |
ἑκάστῃ τῶν σφαιρῶν τασσομέναις , τὸν δὲ μιξολύδιον καὶ τὸν ὑποδώριον ὡς ἄκρους ταῖς βαρυτάταις καὶ νοτιωτάταις κατὰ τοὺς τροπικοὺς | ||
ὡς ἔφην , Αἰολίδα αὐτὴν ἐκάλουν , ὕστερον δ ' ὑποδώριον , ὥσπερ ἔνιοί φασιν , ἐν τοῖς αὐλοῖς τετάχθαι |
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
γὰρ ᾔδεισαν τόν τε δώριον καὶ τὸν φρύγιον καὶ τὸν λύδιον ἑνὶ τόνῳ διαφέροντας ἀλλήλων , ὡς μὴ φθάνειν ἐπὶ | ||
τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν ἤρξαντο ἐθνῶν ὀνομασίας , |
, ἕκτος φιλοσοφία ἐστὶ φιλία σοφίας καὶ ταῦτα μὲν τὸ ἕκτον κεφάλαιον . Ἕβδομον δέ ἐστι κεφάλαιον , διὰ τί | ||
εὖρον σταδίων ἑξακισχιλίων τριακοσίων ἔγγιστα : καὶ τούτων δὲ τὸ ἕκτον ἀφελόντες ὑπὲρ τοῦ τὴν παράλληλον τῷ ἰσημερινῷ ποιήσασθαι διάστασιν |
παραδιδόναι . . καὶ μὴν περὶ τοῦ γε ἔτους τοῦ ἑβδόμου ῥᾴδιον ὡσαύτως λέγειν , οὐ μὴν ταὐτὸν ἴσως . | ||
. ἀπέθανε δὲ βασιλεύσας ἔτη τε ἓξ καὶ ἐκ τοῦ ἑβδόμου μῆνας ἐπιλαβὼν οὐ πολλούς . τοῖς δὲ Μεσσηνίοις ἀπεγνωκέναι |
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
ᾖ καὶ ἡ τοῦ ἐπιφωνήματος φύσις φανερά . τὸ δὲ προσλαμβανόμενον ἔξωθεν τετολμῆσθαι δεῖ ἀσφαλῶς : διὰ τοῦτο γάρτοι καὶ | ||
τοῦ δὲ τετμημένου τὸ μὲν ἕτερον τῶν περάτων κατὰ τὸν προσλαμβανόμενον , τὸ δὲ ἕτερον κατὰ τὴν νήτην τῶν ὑπερβολαίων |
. δῆλον δὲ ὅτι τρίγωνοι οὗτοι οἱ ἀριθμοὶ κατὰ τὸν σχηματισμόν , τοῖς πρώτοις ἀριθμοῖς τοῦ ἐφεξῆς γνώμονος προστιθεμένου : | ||
καὶ παρὰ προσῳδίαν , ἢ περὶ τὸν ποιὸν τῆς λέξεως σχηματισμόν , καὶ ποιεῖ τὸν λοιπὸν ἕκτον τὸν οὕτω προσηγορευμένον |
δὲ πρὸϲ τῷ τὴν ἰϲότητα διαφθείρειν μηδὲ τάξιν τινὰ τῆϲ ἀνωμαλίαϲ διαφυλάττοι , πρὸϲ τῷ ἀνωμάλῳ καὶ ἄτακτοϲ ὁ τοιοῦτόϲ | ||
' ἑκάτερα τὰ μέρη . τῆϲ δὲ παρὰ τὸ μέγεθοϲ ἀνωμαλίαϲ τὸ μὲν πρωιαίτερον ἢ ὀψιαίτερον προϲειληφυίαϲ οἵ τε κυματώδειϲ |
ὁ δύο καὶ ἕνα διπλάσιος . ὁ ἐξ ἐπιτρίτου καὶ τετραπλασίου λαμβανόμενος ἐπίτριτος ὁ ιϚ τοῦ ιβ , καὶ ὁ | ||
δὲ δωδεκαπλάσιος λόγος σύγκειται ἐκ β λόγων τριπλασίου τε καὶ τετραπλασίου ἢ διπλασίου καὶ ἑξαπλασίου , καὶ ἐπὶ πάντων τὸ |
ἕξ : ὑπερλύδιον , ὑπεριάστιον , λύδιον , φρύγιον , ὑπολύδιον , ὑποφρύγιον . οἱ δὲ κιθαρῳδοὶ τέτρασι τούτοις ἁρμόζονται | ||
διὰ πασῶν ἐν τῷ λυδίῳ , εἶτα τετράχορδον ὑποβαίνοντες τὸ ὑπολύδιον καὶ ἑξῆς ὁμοίως τετράχορδον ἀναβαίνοντες τὸν ὑπερλύδιον . Κεχυμέναι |
κραδασμῷ : καθάπερ γὰρ ταῦτα κατὰ τὴν φορὰν καὶ τὴν ἔρεισιν ἐπισείεται τρομώδη πανταχόθεν διδόντα τὸν περὶ αὐτοῖς κλόνον , | ||
ὑπεροχὴν στρογγύλην σφαίρᾳ ὁμοίαν . Μενεσθεὺς δὲ ὁ Στρατονικεὺς τὴν ἔρεισιν . Ἐρασίστρατος ὑπεροχὴν ἐξ ἐπαγωγῆς ἀπὸ τοῦ ὑποκάτω μέρους |
. ὁ ἕκτος καὶ ἕβδομος τροχαϊκοὶ τρίμετροι ἀκατάληκτοι . τὸ ὄγδοον ὅμοιον τῷ τετάρτῳ . εἰσὶ δὲ καὶ ταῦτα τὰ | ||
δίς , οὕτως ἡμισάκις ἥμισυ ἡμισάκις , ὀκτώ τε καὶ ὄγδοον : καὶ ὡς δὶς τρία ἕξ , οὕτως ἡμισάκις |
στίχοι εἰσὶν ἰαμβικοὶ τρίμετροι ἀκατάληκτοι ρλγʹ . μετὰ δὲ τὸν ριϚʹ , τὸν ριηʹ , τὸν ρκʹ , τὸν ρκβʹ | ||
τελευταῖος : ἕπου μάραινε δευτέροις διώγμασι . μετὰ δὲ τὸν ριϚʹ , τὸν ριηʹ , τὸν ρκʹ , τὸν ρκβʹ |
μέχρι τῆς νήτης τῶν ὑπερβολαίων παραμέσην καὶ τρίτην διεζευγμένων καὶ παρανήτην διεζευγμένων καὶ νήτην διεζευγμένων καὶ τρίτην ὑπερβολαίων καὶ παρανήτην | ||
, ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτο - νον , |
στρατεύματι ἀσφαλῶς πρὸς Σεύθην ἰέναι , παραλαβὼν Πολυκράτην τὸν Ἀθηναῖον λοχαγὸν καὶ παρὰ τῶν στρατηγῶν ἑκάστου ἄνδρα πλὴν παρὰ Νέωνος | ||
ἑώρων εὐθὺς ὅπως χλωρὰ ἐγένετο ἔτι σου τὰ κατὰ τὸν λοχαγὸν ἐκεῖνα διηγουμένου καὶ συνέστειλε τὸ πρόσωπον καὶ ὑπέφριξεν , |
γὰρ τοὺς τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν ἤρξαντο ἐθνῶν | ||
ὁ δὲ ὡς τόπος φωνῆς , ὅταν λέγωμεν δώριον ἢ φρύγιον ἢ λύδιον ἢ τῶν ἄλλων τινά . εἰσὶ δὲ |
τὸν μὲν αὐτόθεν καθαρὸν κυάμου μέγεθος ἢ θέρμου , τοῦ ὀγδόου μέρους μόνον ἀφεψηθέντος , τὸν δὲ δεῖσθαι μὲν χωνείας | ||
, ἑβδόμου τοῦ δʹ , τεσσαρακαιδεκάτου τοῦ βʹ , εἰκοστοῦ ὀγδόου τοῦ αʹ . ὑπερτέλειοι δέ εἰσιν ὧν τὰ μέρη |
ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις πλειόνων φθόγγων ἐν τῷ | ||
Ἀγωγὴ προσεχὴς ἀπὸ τῶν βαρυτέρων ὁδὸς ἢ κίνησις φθόγγων ἐκ βαρυτέρου τόπου ἐπὶ ὀξύτερον , ἀνάλυσις δὲ τοὐναντίον . τὰς |
ἁρμόϲαντεϲ ἐπὶ τὸν ὦμον ἀναγάγωμεν , ἔμπροϲθεν μὲν διὰ τοῦ βουβῶνοϲ καὶ τῆϲ κλειδόϲ , ὄπιϲθεν δὲ διὰ τοῦ νώτου | ||
ὅϲον δακτύλων τὸ μῆκοϲ τριῶν ἐγκαρϲίαν κατὰ τὸ ἐξογκούμενον τοῦ βουβῶνοϲ τοὺϲ ὑμέναϲ τε καὶ τὴν πιμελὴν ἐκλαβεῖν κατὰ τὸ |
τὸ δέκατον [ δίμετρον καταληκτικόν : ] τὰς καταλήξεις ἔχον χορίαμβον καὶ μολοσσὸν δίμετρόν ἐστι καταληκτικόν . ἡ μετάληψις τῆς | ||
ἰωνικὸν ἀπὸ μείζονος ἢ παιῶνα δεύτερον , τὸν δὲ βʹ χορίαμβον : τὸ δὲ ἀναπαιστικὸν τὸν πρῶτον δάκτυλον , τὸν |
λέγῃ ἡ ἡδονὴ σπουδαία ἐστιν , εἰ μὲν πρὸς τὴν γεωμετρικὴν ἡδονὴν ἀποβλέψας φησίν , οὐ τὸ προκείμενον συνάγεται : | ||
. διὰ τοῦτο τὸν Βρύσωνος τετραγωνισμὸν οὐκ ἄν τις εἴποι γεωμετρικὴν ἀπόδειξιν : χρῆται γὰρ ἀξιώματι ἀληθεῖ μὲν κοινῷ δέ |
μὲν πρῶτον δυσὶν ἀρεταῖς ἀποδώσομεν δικαιοσύνην τε καὶ σωφροσύνην ἅμα τάττοντες ὡς τοῦ τῆς ψυχῆς ἐπιθυμητικοῦ κόσμον οὔσας , τὸ | ||
καὶ νομοθέτας μετὰ τῶν νομοφυλάκων , ὅσον ἂν ἡμεῖς ἐκλείπωμεν τάττοντες : ἀναγκαῖον δέ , ὅπερ εἴπομεν , περὶ τὰ |
μὲν οὖν καὶ ἐπισινεῖς ἢ ἐμπαθεῖς γενόμενοι βίαιον τὸ τέλος ἐφέξουσι . Κρόνος Ἄρης Ἀφροδίτη περὶ μὲν τὰς πράξεις καὶ | ||
τὸν Λέοντα : οἱ γὰρ ἡγούμενοι τῶν ἐν τῷ πλινθίῳ ἐφέξουσι κατὰ τὴν προειρημένην διαίρεσιν Λέοντος μοίρας ιηʹ . δῆλον |
καὶ ὄνομα οἰκεῖον πρόσκειται . οἱ μέν γε δύο λόχοι διλοχία καλεῖται , ἐξ ἀνδρῶν δύο καὶ τριάκοντα , καὶ | ||
δὲ λόχον ἑξκαίδεκα . Ἔσονται δὴ οἱ μὲν δύο λόχοι διλοχία καὶ ὁ ἐπ ' αὐτοῖς ἄρχων διλοχίτης , οἱ |
δὲ ἡμιτονίου , ὡς ἐλάχιστον μελῳδητὸν διάστημα , τῶν Πυθαγορείων δίεσιν καλούντων τὸ νῦν λεγόμενον ἡμιτόνιον . καλεῖσθαι δέ φησιν | ||
τὸ δὲ ἡμιόλιον κατὰ δίεσιν ἡμιόλιον τῆς ἐναρμονίου διέσεως καὶ δίεσιν τὴν ἴσην καὶ ἑπτὰ τεταρτημορίων διέσεων ἀσύνθετον διάστημα . |
μέσην ὑπολύδιον , ὁ δὲ μεσοειδὴς ἄρχεται μὲν ἀπὸ ὑπάτης φρυγίου , λήγει δὲ ἐπὶ μέσην λύδιον , ὁ δὲ | ||
ἀπὸ τοῦ δωρίου τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν |
ἔχει . ὑπόκειται δὲ καὶ ἡ παρὰ τοῖς ἀρχαίοις κατὰ διέσεις ἁρμονία , ἕως κδ διέσεων τὸ πρότερον διάγουσα διὰ | ||
τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου |
ἐξ ὧν αἱ προέσεις γίνονται . * πηρῖνα : τὸν ὄρχιν θοραίην δὲ σπερμαίνουσαν . θορὸς γὰρ τὸ σπέρμα , | ||
δὲ καὶ μετὰ χρόνον , φλεγμοναὶ μετ ' ὀδύνης ἐς ὄρχιν ἑτερόῤῥοπαι , τοῖσι δὲ ἐς ἀμφοτέρους : πυρε - |
κατὰ τὸν πόρον τοῦ ποταμοῦ τεταλαιπωρήκεσαν . Τῇ δὲ ὑστεραίᾳ διχῇ διελὼν τὸν στρατὸν τοῦ μὲν ἑτέρου αὐτὸς ἡγούμενος προσέβαλλε | ||
χρυσοῦ δὲ ἢ ἀργύρου τὸ βάμμα τοῦ ἐληλασμένου καὶ ζέοντος διχῇ ] διχῶς ἤλασε ] ἐχώρισεν λιγνὺς δέ ἐστι κυρίως |
μάλιστα ἐφοβούμην ἀφαιρεθῆναι τοῦ παιδὸς , μόνου ὄντος , μόνου διέποντος τὴν οἰκείαν , συγκάμνοντος , παραμυθουμένου ἐν ταῖς δυστυχίαις | ||
πολεύει καὶ διέπει , τὴν δὲ ἐνάτην Κρόνος πολεύει Διὸς διέποντος : τὴν δὲ δεκάτην Κρόνος πολεύει Ἄρεως διέποντος , |
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν | ||
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν |
ὑπερέχοντες , παράλληλοι δὲ δύο τόνον , οἱ δὲ τρίτοι τριημιτόνιον : ἀναλόγως δὲ ἕξει καὶ ἐπὶ τῆς τῶν λοιπῶν | ||
παρενθέσεως τῆς ἐν ὀκταχόρδῳ . ἀπεῖχε γὰρ αὕτη τῆς παρανεάτης τριημιτόνιον ἀσύνθετον , ἀφ ' οὗ διαστήματος ἡ μὲν παρεντεθεῖσα |
Στησιχόρειον τῷ Πινδαρικῷ ἰδιώματι : ὁ γὰρ τελευταῖος ἀντὶ τροχαίου ἴαμβον ἔχει . τὸ δʹ ἀναπαιστικὸν μονόμετρον ἀκατάληκτον . τὸ | ||
τῶν αὐτῶν σύνταξις . τὸ μὲν οὖν ἰαμβικὸν μέτρον εἰς ἴαμβον ἢ πυρρίχιον καταλήγει πάντως , εἰ μὴ χωλεύοι : |
σπορᾶς καὶ γονῆς αἰτία καθέστηκε . τὴν δὲ ἕκτην καὶ ἐπίκοινον ζώνην ὑγρὰν οὖσαν ὁ τοῦ Ἑρμοῦ ἀστὴρ ἐκληρώσατο . | ||
ἰδίῳ οἴκῳ καὶ τριγώνῳ καὶ αἱρέσει ἰδίᾳ : εἶτα τὴν ἐπίκοινον τούτῳ Ἀφροδίτην ὡροσκοποῦσαν ἰδίῳ οἴκῳ , τρίτην Σελήνην μεσουρανοῦσαν |
εἶναι . ὁ δὲ ὡς τόπος φωνῆς , ὅταν λέγωμεν δώριον ἢ φρύγιον ἢ λύδιον ἢ τῶν ἄλλων τινά . | ||
. ἁπλῶς γὰρ τοὺς τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν |
ἑκάστους ἕκαστον μηκύνῃ ἢ ὑπὸ ἑκάστου μηκύνοιτο , ὁμοίως γενήσονται εὔτακτοι κύβοι . ἔτι οἱ περισσοὶ ἐπειδὴ ἔτι ὁμοποιοί εἰσι | ||
τῶν ἀπὸ μονάδος ἑαυτὸν πολλαπλασιάσαντος καὶ τὸν ἐξ αὐτοῦ γίνονται εὔτακτοι κύβοι . καὶ εἰ τάξει οἱ ἀπὸ τετράδος τετράγωνοι |
σκευασία πολυτελὴς ρλβʹ . Φουλιάτου σκευασία ρλγʹ . Σπεκάτου σκευασία ρλδʹ . Οἰνανθαρίου σκευασία ρλεʹ . Ἀψινθάτου ἤτοι ῥοδαψινθάτου ὑγιεινοῦ | ||
οὕτως ἐμὲ λαμβάνει : τουτέστι τὴν τοῦ πείθειν δύναμιν . ρλδʹ Τόδε δ ' οὖν μέγα λέγω Τὸ δὲ μέγα |
τοῖς ῥηθεῖσιν : ὁ βʹ δὲ τὸν βʹ ἔχει πόδα πεντασύλλαβον . οἱ ἑξῆς δὲ πάντες τροχαϊκοὶ τετράμετροι καταληκτικοί , | ||
ὁ δεύτερος χοριαμβικὸς τρίμετρος καταληκτικὸς , τὸν πρῶτον ἔχων πόδα πεντασύλλαβον . τὸ γʹ τροχαϊκὸν πενθημιμερές . ὁ Ϛʹ Ἰωνικὸς |
ἐπινίκοις τοῖς ὑπὸ Πινδάρου γεγραμμένοις εἰς τοὺς Ὀλυμπιονίκας πρώτη ᾠδὴ ἐπῳδική ἐστι τριαδικὴ περικοπῶν δʹ . καὶ ἔστιν ἡ πρώτη | ||
οἷς ὁμοίοις ἀνόμοιόν τι ἐπιφέρεται : γίνεται δὲ ὥσπερ τριὰς ἐπῳδική , οὕτω καὶ τετρὰς καὶ πεντάς , καὶ ἐπὶ |
κατὰ μὲν ἑβδομάδα τασσομένου , τοῦ δὲ ψυχικοῦ καθ ' ἑξάδα , τὸ φυτικὸν ἀναγκαίως κατὰ τὴν πεντάδα πίπτει , | ||
τὴν ὁλότητα . ὅτι ἑπτὰ τῶν σφαιρῶν οὐσῶν κατὰ τὴν ἑξάδα τὰ διαστήματά ἐστι : μονάδι γὰρ ἀεὶ ἐλάττονα . |
μέσην δὲ τὸν τοῦ ὀκτὼ , ἐπίτριτον αὐτοῦ τυγχάνοντα , παραμέσην δὲ τὸν τοῦ ἐννέα , τόνῳ τοῦ μέσου ὀξύτερον | ||
δὲ μετὰ τὴν μέσην ὁμοίως μέχρι τῆς νήτης τῶν ὑπερβολαίων παραμέσην καὶ τρίτην διεζευγμένων καὶ παρανήτην διεζευγμένων καὶ νήτην διεζευγμένων |
τὸ μὲν γὰρ ἡμιτόνιον εἰς ἓξ δωδεκατημόρια , ἡ δὲ δίεσις , ἡ μὲν τεταρτημόριος εἰς τρία , ἡ δὲ | ||
διάστημα τόνου ἢ διέσεως : ὁ γὰρ τόνος καὶ ἡ δίεσις ἀρχὴ μὲν συμφωνίας , οὔπω δὲ συμφωνία . ὁ |
τὸ εἰκοστόν τε τρίτον , σαρακοστὸν τὸ τρίτατον καὶ τὸ πενήντα δύο , τὸ ἕκτον τῶν ἑξήκοντα , τέταρτον ἑβδομήντα | ||
πρῶτον : τριακοστὸν τὸ τέταρτον , σαρακοστὸν τὸ ἕκτον , πενήντα δυὸ , ἑβδομήκοντα τὸ τέλος ὑποστάντας . Ὁ τρίτος |
θ καὶ θ ↑ ἐννάτων , καὶ γίνεται τὰ θ ἔννατα τῆς λείψεως τοῦ Ϟοῦ Ϟὸς εἷς , ↑ τῶν | ||
τὸ ἔτος , εἰς ἐκεῖνον τὸν τόπον ἔνθα ἐπερατώθη τὰ ἔννατα . περὶ δὲ τῶν κατὰ μῆνα καὶ τῶν καθ |
ἰαμβικὰς ἢ εἰς ὄνομα κύριον καταληγούσας , σπανικὸν δὲ εἰς τροχαῖον : οὗτος γὰρ ὁ ποὺς εἰς κατάληξιν κόμματος ἢ | ||
ψύχων . Τὸ τροχαϊκὸν κατὰ μὲν τὰς περιττὰς χώρας δέχεται τροχαῖον , τρίβραχυν καὶ δάκτυλον , κατὰ δὲ τὰς ἀρτίους |
ζῳδιακὸν τῶν μεγίστων εἶναι ἐν τῇ σφαίρᾳ κύκλων , καὶ διχοτομεῖσθαι τὴν σφαῖραν ὑφ ' ἑκατέρου αὐτῶν , καὶ τὸ | ||
ἀστὴρ ἐπέχει τοῦ Αἰγόκερω μοῖραν αʹ : οὐκ ἄρα δυνατὸν διχοτομεῖσθαι αὐτὸν ὑπὸ τοῦ προειρημένου κύκλου . ὁμοίως δὲ καὶ |
, ἀριθμητικῶν τε καὶ μουσικῶν καὶ γεωμετρικῶν τῶν τε κατὰ στερεομετρίαν καὶ ἀστρονομίαν , ὧν χωρὶς οὐχ οἷόν τε εἶναί | ||
τὴν ἑτέραν , οἷον ὀπτικὴν πρὸς γεωμετρίαν , μηχανικὴν πρὸς στερεομετρίαν καὶ ἁρμονικὴν πρὸς ἀριθμητικὴν καὶ τὴν ναυτικὴν ἀστρολογίαν πρὸς |
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως . | ||
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ ' |
μέρος ἀπὸ τῆς ὀσφύος ἄγεται ἐπὶ τὴν ἕδραν καὶ τὸν περίναιον , καὶ τότε καὶ τὰ σκέλη διὰ βουβώνων ἀχθέντα | ||
Ἀρχὴ κατ ' ἐπιγαστρίου τὸ εἴλημα λοξῶς ἐπὶ κοτύλην παρὰ περίναιον ἐπὶ βουβῶνα κάτωθεν ἄνω κατὰ τῆς προεμβεβλημένης ἐπὶ ἰσχίον |
παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν ψκθʹ . Ἐὰν οὖν τις λέγῃ ὅτι Οἱ ρʹ πήχεις | ||
προσαυξηθέντες ἑπτὰ ἀριθμοὶ ποιοῦσι τὸν δεύτερον τετράγωνον καὶ κύβον τὸν ψκθʹ , αʹ γʹ θʹ κζʹ παʹ σμγʹ ψκθʹ . |
περὶ τῶν κατὰ τὰς ἀρετὰς ποιῶν , ὅπερ καὶ καλεῖται χαρακτηριστικόν : τὸ δὲ περὶ τεχνῶν : τὸ δὲ περὶ | ||
ἐπὶ τέλει εἶναι : αὕτη γάρ ἐστι τοὐπίσημον αὐτῷ καὶ χαρακτηριστικόν . Ταύτην μὲν οὖν , ὡς εἴρηται , μὴ |
ἦν πρῶτον τὸ διπλάσιον , εἶτα τὸ ἐπιμόριον καὶ τὸ ἐπιμερὲς καὶ τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ | ||
ε : τὸ γὰρ μεῖζον ἢ πολλαπλάσιον ἢ ἐπιμόριον ἢ ἐπιμερὲς ἢ πολλαπλασιεπιμόριον ἢ πολλαπλασιεπιμερές : ὡσαύτως καὶ τὸ ἔλαττον |
, ἐὰν λέγωσιν . . ὁμοφωνεῖ δὲ ἁπάντοτε κατὰ δευτέραν συζυγίαν τῶν περισπωμένων , ἐπί τε πρώτων προσώπων τῶν κατ | ||
διποδίαν ἰαμβικὴν καθαρὰν καὶ τὴν ἑπτάσημον , σπανίως δὲ καὶ συζυγίαν [ καὶ ] τὴν ἰσόχρονον αὐτῷ : ἄρχεται δ |
πολεύει Ἡλίου διέποντος : τὴν δὲ δωδεκάτην Κρόνος πολεύει Ἀφροδίτης διεπούσης . καὶ τὴν νυκτερινὴν δὲ πρώτην ὥραν τῆς αἱρέσεως | ||
ἀκολούθως διέπει , τὴν δὲ δευτέραν ὥραν Κρόνος πολεύει Σελήνης διεπούσης , τὴν μέντοι τρίτην αὐτὸς πάλιν ὁ Κρόνος πολεύει |
ἐπὶ ταῖς ἀποθέσεσι παράγραφος , ἐπὶ δὲ τῶι τέλει τῆς ἐπωιδοῦ κορωνὶς καὶ παράγραφος . καὶ νὺξ ] τὴν νύκτα | ||
στροφῆς καὶ ἀντιστροφῆς παράγραφος , ἐπὶ δὲ τῶι τέλει τῆς ἐπωιδοῦ κορωνὶς καὶ παράγραφος . Διὸς ] ἤγουν ἐκ Διὸς |
ἡ δὲ λοιπὴ μικτὴ σχέσις ἡ πολλαπλασιεπιμερὴς γεννᾶται ἐκ τῆς ἐπιμεροῦς , καὶ ἐκ μὲν τῆς ἐπιδιμεροῦς ἢ δὶς ἐπιτρίτου | ||
τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , ὧν ἕκαστον |
τοίνυν οὗτος ὑφίσταται γένη , τό τε ἐναρμόνιον καὶ τὸ χρωματικὸν καὶ τὸ διατονικόν : ἑκάστου δὲ αὐτῶν ποιεῖται τὴν | ||
[ τῶν ] εἰς τὸ ἡρμοσμένον ἤτοι διάτονόν ἐστιν ἢ χρωματικὸν ἢ ἐναρμόνιον . πρῶτον μὲν οὖν καὶ πρεσβύτατον αὐτῶν |
ἀσυνάρτητον ἐξ ἰαμβικοῦ διμέτρου βραχυκαταλήκτου , τὸν αʹ ἔχοντος πόδα τρίβραχυν ἤγουν χορεῖον , καὶ τροχαϊκοῦ πενθημιμεροῦς . εἴη δ | ||
[ τουτέστι δευτέραν , τετάρτην , ἕκτην ] ἴαμβον καὶ τρίβραχυν καὶ ἀνάπαιστον : τοῦτον δὲ παρὰ τοῖς κωμικοῖς συνεχῶς |
τῆς ἀπειρίας τῶν ἀριθμῶν ἐστι , περὶ ὃν ὡς καμπτῆρα εἱλοῦνται καὶ ἀνακάμπτουσι . . § : ἄρτιον γὰρ καὶ | ||
ὅρος τῆς ἀπειρίας τῶν ἀριθμῶν ἐστι περὶ ὃν ὡς καμπτῆρα εἱλοῦνται καὶ ἀνακάμπτουσι . . . . , ὅθεν καὶ |
σπέρμα δὸς φαγεῖν . ἐμέσει δὲ πλῆθος φλέγματος . [ Σύνθεσις κοκκίων καθαρτικῶν κενούντων φλέγμα . ] Λαβὼν ἀλόης γο | ||
καὶ φυγὴ Σελεύκου πρὸς Πτολεμαῖον εἰς Αἴγυπτον . κεʹ . Σύνθεσις Πτολεμαίου καὶ Σελεύκου καὶ Κασάνδρου , πρὸς δὲ τούτοις |
Ϛ , τοῦ δὲ β τὰ δύο καὶ δ . πολλαπλασίασον τὴν ἐλάττονα πλευρὰν τοῦ Α μετὰ τῆς μείζονος πλευρᾶς | ||
μῆκος τῆς Α . τὰ δὴ οὖν ε ια μϚ πολλαπλασίασον μετὰ τοῦ Ϛ , καὶ γίνονται μονάδες λ λεπτὰ |
ὑποκρινόμενός ποτε εἰρηκέναι ἕδρας ἐν δράματι καὶ ἐσκῶφθαι διὰ τὸ κακέμφατον . ὁ δὲ Σφυρόμαχος ψήφισμα εἰσηγήσατο , ὥστε τὰς | ||
: ἀντὶ τοῦ “ κακίας ” . ἔχει καὶ τὸ κακέμφατον . παρατηρητέον δέ , ὅτι καὶ οἱ ἀρχαῖοι τὴν |
οὕτως ἄρα καὶ τὸ γνωστικὸν ἐκεῖ κατὰ τὸ ἡνωμένον τῆς ἑνιαίας καὶ οὐσιώδους γνώ - σεως προϋπάρχον ἀμφοῖν . Ὡς | ||
Καὶ γὰρ διττῆς οὔσης τῆς ζωῆς , οὐσιώδους τε καὶ ἑνιαίας , εἴη ἂν καὶ ἡ πρὸ ἀμφοῖν ἁπλῶς οὖσα |
περιεχόμενον ὑπὸ δύο φθόγγων ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις | ||
οἱ τοῦ διὰ τεσσάρων ὅροι σύμφωνοι : ἀπὸ δὲ τοῦ ὀξυτέρου αὐτῶν λαμβάνεται φθόγγος σύμφωνος ἐπὶ τὸ ὀξὺ διὰ τεσσάρων |
ἀναλογεῖ τῇ ἐπιστήμῃ , ἡ δὲ τῇ πίστει καὶ τῇ παρωνύμῳ δόξῃ . ἀβουλήτως οὖν οἱ ῥήτορες καὶ οἱ τύραννοι | ||
τὴν γένεσιν αὐτὸς ἔσχε : διόπερ συμβαίνει αὐτῷ πρὸς τῷ παρωνύμῳ μέρει ἔτι καὶ ἑτερώνυμον ἢ ἑτερώνυμα κεκτῆσθαι , τὸ |
ἀντισπάστου καὶ ἐπιτρίτου βʹ : τὸ μέντοι τῆς ἀντιστροφῆς κῶλον διτρόχαιον ἔχει ἀντὶ ἐπιτρίτου . ἐπὶ τῷ τέλει τῆς τε | ||
Ἡφαιστίων φησίν : ἔχει δὲ τὸν αʹ πόδα ἀντίσπαστον ἢ διτρόχαιον , τὸν δὲ βʹ διίαμβον : τὸ ιβʹ ὅμοιον |
τεσσαράκοντα καὶ πέντε πήχεις , τὸ δ ' ὕψος πηχῶν ἐννενήκοντα , διειλημμένην στέγαις ἐννέα , ὑπότροχον δὲ πᾶσαν τροχοῖς | ||
ἐννέα καὶ τῶν παρ ' αὐτοῦ , οἷον ἔννατος ἐννάκις ἐννενήκοντα : ταῦτα γὰρ ψιλοῦνται : πρόσκειται ἀπὸ τοῦ ε |
Τὸ αʹ ἰαμβικὸν δίμετρον ἀκατάληκτον . ἔχει δὲ συνεκφώνησιν ἤτοι συνίζησιν τὸ αʹ κῶλον τῆς αʹ στροφῆς . Τὸ βʹ | ||
τὸ ἕβδομον δακτυλικὸν πενθημιμερές . τὸ ὄγδοον χοριαμβικὸν ἡμιόλιον , συνίζησιν ἔχον εἰς τὸ Θρηϊκία , διὰ τὸ ἡμιόλιον εἶναι |
τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
ὧν νοεῖται , οἷον ἀπὸ τοῦ κοινοῦ μεγέθους ἀνθρώπου κατὰ παραύξησιν ἐνοήσαμεν τὸν Κύκλωπα καὶ ἀπὸ τοῦ αὐτοῦ πάλιν κατὰ | ||
: τὴν μέντοι τῶν μεταξὺ τμημάτων παράθεσιν καθ ' ὁμαλὴν παραύξησιν τῆς τῶν ἑξαμοιριαίων ὑπεροχῆς πεποιήμεθα μηδεμιᾶς ἐν αὐτοῖς ἀξιολόγου |
. Εἰ δὲ πονηρὸς ὁ πλουτήσας , τὴν μὲν πονηρίαν προηγουμένην καὶ ὅ τι τὸ αἴτιον τῆς πονηρίας , προσληπτέον | ||
πότερον ἐφ ' αὑτῇ ; ἀλλ ' ἀδιανόητόν ἐστιν : προηγουμένην γάρ τινα ὑφεστάναι δεῖ οὐσίαν τοῦ ἀγαθοῦ , ἧς |
ζῳδιακοῦ μεγίστου κύκλου ἑξηκοστῶν ιε μ : ἰσάκις γὰρ ἐδείχθησαν καταμετροῦντες τοὺς ἰδίους κύκλους ὅ τε ἥλιος καὶ ἡ σελήνη | ||
. οὗτοι δώδεκα ῥυθμοί τε καὶ πόδες εἰσὶν οἱ πρῶτοι καταμετροῦντες ἅπασαν ἔμμετρόν τε καὶ ἄμετρον λέξιν , ἐξ ὧν |
ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτο - νον , τέταρτον δέ , οὗ | ||
ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην ὑπερβολαίων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτονον , ἕβδομον δέ , οὗ ἕβδομος ὁ |
μέσην , ὅταν μὴ ὡς ἔθος εἶχεν ἐπὶ τὸ τῶν διεζευγμένων τετράχορδον ἔλθῃ κατὰ τὴν διὰ πέντε συμφωνίαν τῷ τῶν | ||
ὑπερβολαίων λϚ ἀπλανῶν , νήτη ὑπερβολαίων λβ κρόνου , νήτη διεζευγμένων κδ διός , νήτη συνημμένων κα γʹ ἄρεως , |
ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος , | ||
δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , |
ἀφαιρέτης τῶν χρόνων γενήσεται , ἢ καὶ τὰ ἐλάχιστα ἔτη μεριεῖ . ἔστι δὲ Ἡλίου μὲν ζῴδια τὰ ἀρρενικά , | ||
ἀγαθοδαιμονῶν ἢ καὶ ἐπί τινος χρηματιστικοῦ τόπου , τὰ τέλεια μεριεῖ . οὐκ ἄρα ἀφελεῖ τις ἀπὸ τῆς ὥρας ἢ |