Στησιχόρειον τῷ Πινδαρικῷ ἰδιώματι : ὁ γὰρ τελευταῖος ἀντὶ τροχαίου ἴαμβον ἔχει . τὸ δʹ ἀναπαιστικὸν μονόμετρον ἀκατάληκτον . τὸ
τῶν αὐτῶν σύνταξις . τὸ μὲν οὖν ἰαμβικὸν μέτρον εἰς ἴαμβον ἢ πυρρίχιον καταλήγει πάντως , εἰ μὴ χωλεύοι :
9125667 ἀναπαιστον
τὸ πρῶτον ἰαμβικὸν δίμετρον ἀκατάληκτον , ἔχον τὸν πρῶτον πόδα ἀνάπαιστον , τὸν δὲ δεύτερον τρίβραχυν . ἑξῆς δύο καὶ
' ἐκφωνῶν * ἠιόνες * : τὸ γὰρ ἰαμβικὸν καὶ ἀνάπαιστον δέχεται πόδα , οἷός ἐστιν οὗτος , καὶ δάκτυλον
9102268 τροχαιον
ἰαμβικὰς ἢ εἰς ὄνομα κύριον καταληγούσας , σπανικὸν δὲ εἰς τροχαῖον : οὗτος γὰρ ὁ ποὺς εἰς κατάληξιν κόμματος ἢ
ψύχων . Τὸ τροχαϊκὸν κατὰ μὲν τὰς περιττὰς χώρας δέχεται τροχαῖον , τρίβραχυν καὶ δάκτυλον , κατὰ δὲ τὰς ἀρτίους
8969456 τριβραχυν
ἀσυνάρτητον ἐξ ἰαμβικοῦ διμέτρου βραχυκαταλήκτου , τὸν αʹ ἔχοντος πόδα τρίβραχυν ἤγουν χορεῖον , καὶ τροχαϊκοῦ πενθημιμεροῦς . εἴη δ
[ τουτέστι δευτέραν , τετάρτην , ἕκτην ] ἴαμβον καὶ τρίβραχυν καὶ ἀνάπαιστον : τοῦτον δὲ παρὰ τοῖς κωμικοῖς συνεχῶς
8821695 σπονδειον
τροχαϊκὴν ἀλλὰ ἰαμβικὴν καὶ μὴ ἐν τῇ αʹ χώρᾳ τὸν σπονδεῖον ἀλλ ' ἐν τῇ βʹ . Τὸ ιϚʹ ἐπιωνικὸν
πυρριχίου : τρέπει δὲ πολλάκις ἐν τῇ πρώτῃ διποδίᾳ τὸν σπονδεῖον εἰς ἴαμβον κατὰ πᾶν μέγεθος μέτρου . πρόεισι δ
8464746 πυρριχιον
, ἴαμβον , ἐν δὲ τῇ ἕκτῃ ἢ ἴαμβον ἢ πυρρίχιον . κωμῳδίαι λέγονται τὰ τῶν κωμικῶν ποιήματα , ὡς
ἐστιν , ἐπὶ τῆς τελευταίας τὸν ἴαμβον δέχεται μόνον ἢ πυρρίχιον διὰ τὴν ἀδιάφορον , ὅταν δὲ καταληκτικόν , τὸν
8400445 ἀμφιβραχυν
δʹ τὸν πρῶτον πόδα ἐπίτριτον τέταρτον , τὸν δὲ βʹ ἀμφίβραχυν . ἐπὶ τῷ τέλει παράγραφος μόνη . διπλάκεσσιν :
ἐστιν , ἐς τὴν ἰαμβικὴν κατακλεῖδα περαιοῦται , τουτέστιν εἰς ἀμφίβραχυν ἢ βακχεῖον διὰ τὴν ἀδιάφορον : περαιοῦται μὲν γὰρ
8282416 χορειον
” σοὶ ταῦτα μεταμελήσειν “ τὸν βʹ πόδα τρίβραχυν ἤτοι χορεῖον . ἐπὶ τῷ τέλει παράγραφος . σύστημα κατὰ περικοπήν
, διτροχαίου καὶ ἰάμβου : τὸ μέντοι κῶλον τῆς στροφῆς χορεῖον ἔχει ἀντὶ ἰάμβου . τὸ γʹ ἰωνικὸν ἀπ '
7898531 προκελευσματικον
τὰ κῶλα ἀναπαιστικὰ δίμετρα ἀκατάληκτα βʹ : τὸ βʹ δὲ προκελευσματικὸν ἔχει τὸν γʹ πόδα . ἐπὶ τῷ τέλει παράγραφος
δὲ καὶ δακτυλικὸν δοκεῖ πενθημιμε - ρές . Τὸ ιγʹ προκελευσματικὸν δίμετρον καταληκτικόν . ἐχρήσατο δὲ προκελευσματικῷ ἐνταῦθα , ὃς
7871116 βακχειον
οὗ ἐστιν ἐπισημότατον τὸ μετὰ τέσσαρας πόδας αὐτὸν ἔχον τὸν βακχεῖον : ὧν ὁ πρῶτος γίνεται καὶ σπονδεῖος καὶ ἴαμβος
δή . ὦ τέκνον τέκνον , αἰαῖ , κατάρχομαι νόμον βακχεῖον , ἐξ ἀλάστορος ἀρτιμαθὴς κακῶν . ἔγνως γὰρ ἄτην
7846645 ἰαμβικην
, τὸ δὲ καὶ ἀποδέχεται . † ἐν εἰσθέσει δὲ ἰαμβικὴν τὴν “ ἄληθες ὦπίτριπτε ” . Γ καὶ συκοφάντης
: ἔστι γὰρ ἐκ χοριαμβικοῦ ἐπιμίκτου , τοῦ τὴν δευτέραν ἰαμβικὴν ἔχοντος καὶ τροχαϊκοῦ ἑφθημιμεροῦς : Εὔιε κισσοχαῖτ ' ἄναξ
7760805 τροχαϊκον
δίμετρα ἀκατάληκτα ἃ καλεῖται κρητικὰ δίρρυθμα . τὸ δὲ δʹ τροχαϊκὸν ἑφθημιμερὲς ὃ καλεῖται Εὐριπίδειον ἢ ληκύθιον , ὁ εʹ
ἑξῆς δʹ ἰαμβικὰ δίμετρα ἀκατάληκτα , τὸ δὲ εʹ , τροχαϊκὸν ἑφθημιμερές . ὁ κζʹ ἰαμβικὸς στίχος τρίμετρος ἀκατάληκτος .
7752190 ἰαμβικον
τὸ ἰαμβικὸν μέτρον καὶ ἄριστά γε εἰδέναι τί ἐστι τὸ ἰαμβικόν , οὕτως ἔχει καὶ ἐπὶ τῶν μελῳδουμένωνοὐ γὰρ ἀναγκαῖόν
. Καὶ ἀπορήσεις ἐντεῦθεν , πῶς ἐπεὶ καὶ τὸ Δημοσθένης ἰαμβικόν ἐστιν ὄνομα , ἅτε τὴν παραλήγουσαν βραχεῖαν ἔχων ,
7597988 ἀναπαιστικον
, ἐκ δύο χοριάμβων καὶ συλλαβῆς , εἰ δὲ βούλει ἀναπαιστικὸν ἑφθημιμερές : τὸ βʹ ἰωνικὸν ἀπ ' ἐλάττονος δίμετρον
ἀπ ' ἐλάττονος δίμετρα ἀκατάληκτα καθαρά : τὸ δὲ γʹ ἀναπαιστικὸν ἑφθημιμερές . ἐπὶ τῷ τέλει παράγραφος καὶ διπλαῖ .
7525391 καταληκτικον
ἢ δακτυλικὸν ὃ καλεῖται Φαλαίκειον . τὸ βʹ τροχαϊκὸν δίμετρον καταληκτικόν , ἤτοι ἑφθημιμερὲς Εὐριπίδειον . τὸ γʹ ἰαμβικὸν ἑφθημιμερές
ἀκατάληκτον μετρούμενον ὡς οἱ ἡρωϊκοί , τὸ δεύτερον δὲ ἑξάμετρον καταληκτικόν , τὸ τρίτον πεντάμετρον ἀκατάληκτον , τὸ τέταρτον πεντάμετρον
7490967 κατακλειδα
καταβολὴ κατὰ τῆς ἀριστερᾶς ὠμοπλάτης , εἶτ ' ἐπὶ τὴν κατακλεῖδα φέρεται , καὶ κατὰ τοῦ στήθους ὑπὸ τὴν δεξιὰν
τῆς ἀδιαφόρου . τὸ ιγʹ χοριαμβικὸν δίμετρον καταληκτικὸν εἰς ἰαμβικὴν κατακλεῖδα περαιούμενον , τουτέστιν εἰς ἀμφίβραχυν ἢ βακχεῖον διὰ τὸ
7397411 ἀντισπαστον
ιʹ ὅμοιον κατὰ πάντα : τὸ δὲ τῆς ἀντιστροφῆς κῶλον ἀντίσπαστον ἔχει καθαρόν . τὸ ιαʹ ὅμοιον ἐξ ἐπιτρίτου τετάρτου
– καὶ διιάμβου : καλεῖται δὲ οὕτως διὰ τὸ τὸν ἀντίσπαστον μὴ ἔχειν καθαρόν , ἀλλὰ τέταρτον ἐπίτριτον [ καὶ
7369127 ἐπιτριτον
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ
7319454 κρητικον
, ὃ καὶ ἀνεπιτήδειόν ἐστι πρὸς μελοποιίαν : τὸ δὲ κρητικὸν ἐπιτήδειον , δέχεται δὲ καὶ λύσεις τὰς εἰς τοὺς
κρητικὴν ἐν οἴνῳ ἑψεῖν , καὶ κλύζειν : ἢ κισσὸν κρητικὸν ἐν ὕδατι , ταὐτὸ δρᾷ . Ἢ ἐχέτρωσιν καὶ
7270791 ἀκαταληκτον
στροφὴ καὶ ἀντίστροφος κώλων δέκα . τὸ αʹ ἰαμβικὸν δίμετρον ἀκατάληκτον , ὡς τὸ τίς σὰς παρήειρε φρένας . τὸ
] διὰ τὸ δριμύ . ἰοὺ ἰού ] ἰαμβικὸν μονόμετρον ἀκατάληκτον . ἰοὺ ἰού : ἔκθεσις κορωνίδος ἐκ στίχων ἰαμβικῶν
7265124 τρισυλλαβον
γρηὸς ὀδυρομένης . ἡ γὰρ εἰς ηυς εὐθεῖα δισύλλαβος γενικὴν τρισύλλαβον ἀποτελεῖ , καθάπερ ἡ γένυς τῆς γένυος . ἀποτελεῖ
καὶ τὰ λοιπά : τὸ ἰῶτα μόνον ἐκ πάντων καὶ τρισύλλαβον καὶ προπερισπώμενον : καὶ ἐχρὴν αὐτὸ προπαροξύνεσθαι , ἀλλ
7220879 τριμετρον
καὶ πρέπον ἥρωσιν , ἡ κωμῳδία δὲ συνέσταλται εἰς τὸ τρίμετρον ἡ νέα . Τὰ πολλὰ οὖν κώλοις † τριμέτροις
, ὅ ἐστι Φερεκράτειον παρὰ συλλαβήν . τὸ ζʹ ἐπιωνικὸν τρίμετρον καταληκτικόν . ἡ αʹ συζυγία ἰωνική : ἡ βʹ
7208509 χοριαμβικον
κατὰ τὸ ἰαμβικόν . τὸ δὲ δʹ ὅμοιον τοῖς πρώτοις χοριαμβικὸν δίμετρον ἀκατάληκτον , τὸ εʹ χοριαμβικὸν καθαρόν , τὸ
βραχυκατάληκτον . τὸ δʹ ἰαμβικὸν δίμετρον καταληκτικόν . τὸ εʹ χοριαμβικὸν δίμετρον βραχυκατάληκτον . τὸ Ϛʹ ἀναπαιστικὸν δίμετρον ὑπερκατάληκτον .
7201099 τροχαϊκην
, ἀπὸ μὲν τριμέτρου καταληκτικόν . ἀτακτότερον δὲ ἔχει τὴν τροχαϊκὴν βάσιν ἑπτάσημον . τὸ δὲ δεύτερον πενθημιμερὲς κοινὸν δακτυλικὸν
ἀναπαιστικὸν μονόμετρον ὑπερκατάληκτον . τὸ βʹ ἰωνικὸν δίμετρον καταληκτικὸν εἰς τροχαϊκὴν συζυγίαν . τὸ γʹ Φαλαίκειον ἀντισπαστικόν . τὸ δʹ
7147121 ἰαμβικας
ὅτε τὴν μὲν αʹ ἔχει ἀντισπαστικήν , τὰς δὲ λοιπὰς ἰαμβικάς . ἐνταῦθα δὲ ἀντιπαθής ἐστιν ἡ μῖξις αὐτοῦ .
μὲν καὶ καθαρόν , συντίθεται δὲ καὶ ἐπίμικτον πρὸς τὰς ἰαμβικάς : ὡς ἐπίπαν δέ , ὅτε καταληκτικόν ἐστιν ,
7126745 βραχυκαταληκτον
τὸ ηʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον . τὸ θʹ ἀντισπαστικὸν δίμετρον βραχυκατάληκτον . τὸ ιʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον : ἰδίως δὲ
τὸ βʹ τροχαϊκὸν μονόμετρον ὑπερκατάληκτον . τὸ γʹ Ἰωνικὸν δίμετρον βραχυκατάληκτον . τὸ δʹ χοριαμβικὸν δίμετρον ὑπερκατάληκτον . τὸ εʹ
7071339 Φερεκρατειον
καταληκτικοῦ , ὃς γίνεται δάκτυλος . Τὸ γʹ ἀντισπαστικὸν διπλοῦν Φερεκράτειον : σύγκειται γὰρ ἐκ βʹ κώλων Φερεκρατείων , ὧν
τὸ ζʹ τροχαικὸν δίμετρον ὅμοιον τῷ εʹ . τὸ ηʹ Φερεκράτειον λεῖπον μιᾷ συλλαβῇ . τὸ θʹ ἰαμβικὸν δίμετρον ὑπερκατάληκτον
7070538 ἀντισπαστικον
ὅμοιον εἴη τῷ τῆς ἀντιστροφῆς ἤτοι δίμετρον : τὸ Ϙʹ ἀντισπαστικὸν ἐξ ἀντισπάστου καὶ κρητικοῦ ἤτοι ἀμφιμάκρου : τὸ ζʹ
καταληκτικόν . τὸ ηʹ ἰαμβικὸν δίμετρον βραχυκατάληκτον . τὸ θʹ ἀντισπαστικὸν δίμετρον βραχυκατάληκτον . τὸ ιʹ τὸ αὐτό . τὸ
7045109 τετραμετρον
τὸ ὁμηρικὸν δεῦρο νῦν ἢ τρίποδος περιδώμεθα . εἰ μὴ τετράμετρον : πρὸς τὸ “ τετράμετρον ” ἀπήντησεν . τὸ
γʹ καὶ συλλαβήν , ὡς εἴρηται : τὸ δʹ δακτυλικὸν τετράμετρον ἀκατάληκτον , ὃ καλεῖται καὶ αὐτὸ ἀρχιλόχειον : καὶ
6989972 ἡμιολιον
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον
6963906 κωλον
, καὶ τούτοις σπανίως . Πόδες τοίνυν ἐμπίπτουσιν εἰς τὸ κῶλον ἤτοι τὸ κόμμα ιζʹ : δισύλλαβοι μὲν τρεῖς οἵδε
πλησίον ὑπάρχοντα . , ὄντα . τὸν πρωκτὸν ] τὸν κῶλον . . ἠχεῖν ] ᾄδειν , βοᾶν , φωνὴν
6842960 πενθημιμερες
δίμετρον ἀκατάληκτον παίωνα ἔχον ἀντὶ ἰωνικοῦ : τὸ δʹ δακτυλικὸν πενθημιμερές : τὸ αὐτὸ δὲ καὶ χοριαμβικὸν δύναται εἶναι δίμετρον
τῆς ἀμφήκης . λάμπων πρόβολος ἐμός ] τὸ ηʹ ἀναπαιστικὸν πενθημιμερές . πρόβολος ] τεῖχος , ἀσφαλὴς προστάτης . πρόβολος
6824072 διμετρου
τὴν βάσιν : οἷον εἰ ἐκκειμένου μὲν ἑνὸς δακτύλου , διμέτρου δὲ ἀναπαιστικοῦ κατὰ μέσον πέσοι σπονδεῖος , ἄδηλον πότερα
δέ ἐστι παρὰ Ἀρχιλόχῳ ἀσυνάρτητον ἐκ δακτυλικοῦ πενθημιμεροῦς καὶ ἰαμβικοῦ διμέτρου ἀκαταλήκτου ἀλλά μ ' ὁ λυσιμελής , ὠταῖρε ,
6809991 ἡμιτονιον
τὸν αὐτὸν ἔλθῃ δεύτερον φθόγγον , εἶτα πάλιν ἀπὸ τοῦδε ἡμιτόνιον διαστήσασα τρίτον ὁρίσῃ φθόγγον ἄλλον , ἀπὸ τούτου κατὰ
νήτην διεζευγμένων τόνος , ἀπὸ νήτης διεζευγμένων ἐπὶ τρίτην ὑπερβολαίων ἡμιτόνιον , ἀπὸ τρίτης ὑπερβολαίων ἐπὶ ὑπερβολαίων διάτονον τόνος ,
6796421 χοριαμβον
τὸ δέκατον [ δίμετρον καταληκτικόν : ] τὰς καταλήξεις ἔχον χορίαμβον καὶ μολοσσὸν δίμετρόν ἐστι καταληκτικόν . ἡ μετάληψις τῆς
ἰωνικὸν ἀπὸ μείζονος ἢ παιῶνα δεύτερον , τὸν δὲ βʹ χορίαμβον : τὸ δὲ ἀναπαιστικὸν τὸν πρῶτον δάκτυλον , τὸν
6791603 δακτυλικον
τὸ δὲ βʹ παίων πρῶτος . τὸ δὲ δʹ ἤτοι δακτυλικὸν διπλοῦν ἢ τροχαϊκὸν πενθημιμερὲς εἴη ἄν . τὸ εʹ
αʹ τῆς στροφῆς . τὸ ζʹ ἐγκωμιολογικόν . τὸ ηʹ δακτυλικὸν πενθημιμερές . τὸ θʹ Στησιχόρειον ὁμοίως τῷ θʹ τῆς
6785817 παρατελευτον
. ἀτεχνῶς ] ἐκ παντὸς τρόπου . Γ ] τοῦτο παρατέλευτον λέγεται . πάντα ⌈ σοι , φησίν , δίδωμι
φησί , τὰ εἰς ρ βραχύτονα ἔχοντα τὴν ει δίφθογγον παρατέλευτον μετατιθέντες τὸ ι εἰς ἕτερον ρ προφέρονται τὸ κείρω
6782260 διποδιαν
ἀρξάμενον δὲ ἀπὸ διμέτρου προχωρεῖ μέχρι τετραμέτρου καὶ βαίνεται κατὰ διποδίαν . ἐπιδέχεται δὲ καὶ τὰ τῶν καταλήξεων εἴδη πάντα
τοίνυν μέτρον καλοῦμεν τὴν συζυγίαν , τουτ - έστι τὴν διποδίαν , ὡς ὅταν τὸ ἰαμβικὸν τὸ ἀπὸ ἓξ ποδῶν
6735708 τροχαικον
: τὸ εʹ ἰαμβικὸν τρίμετρον βραχυκατάληκτον καθαρόν : τὸ Ϛʹ τροχαικὸν ἑφθημιμερὲς Εὐριπίδειον τὸν αʹ ἔχον πόδα χορεῖον : τὸ
δακτυλικὸν πενθημιμερές : τὸ βʹ ἀναπαιστικὸν πενθημιμερές : τὸ τρίτον τροχαικὸν ἑφθημιμερὲς Εὐριπίδειον : τὸ δʹ ὅμοιον τῷ αʹ :
6690811 προσλαμβανομενον
ᾖ καὶ ἡ τοῦ ἐπιφωνήματος φύσις φανερά . τὸ δὲ προσλαμβανόμενον ἔξωθεν τετολμῆσθαι δεῖ ἀσφαλῶς : διὰ τοῦτο γάρτοι καὶ
τοῦ δὲ τετμημένου τὸ μὲν ἕτερον τῶν περάτων κατὰ τὸν προσλαμβανόμενον , τὸ δὲ ἕτερον κατὰ τὴν νήτην τῶν ὑπερβολαίων
6678304 ἐννεασυλλαβον
αὐτό . τὸ ιγʹ ἰαμβικὸν δίμετρον καταληκτικόν . τὸ ιδʹ ἐννεασύλλαβον Σαπφικὸν πλεονάζον μιᾷ συλλαβῇ τοῦ Γλυκωνείου . τὸ ιεʹ
, ὁ δὲ Ἱππώναξ πολλάκις ἐχρήσατο . ἔστι δ ' ἐννεασύλλαβον . Τὸ βʹ ἐπιωνικὸν τρίμετρον καταληκτικὸν , τοῦ αʹ
6665722 πεντασυλλαβον
τοῖς ῥηθεῖσιν : ὁ βʹ δὲ τὸν βʹ ἔχει πόδα πεντασύλλαβον . οἱ ἑξῆς δὲ πάντες τροχαϊκοὶ τετράμετροι καταληκτικοί ,
ὁ δεύτερος χοριαμβικὸς τρίμετρος καταληκτικὸς , τὸν πρῶτον ἔχων πόδα πεντασύλλαβον . τὸ γʹ τροχαϊκὸν πενθημιμερές . ὁ Ϛʹ Ἰωνικὸς
6664727 ἰαμβος
ἁπασῶν τελευταίας συλλαβὰς εἰς μακρὰν ποιήσει τις , ὁ Ἱππώνακτος ἴαμβος ἔσται . ὅτι ἐν τῷ βυρσηναίων καλουμένῳ χορῷ ἕκαστον
ἔχειν αἱμάτων ἄγος ἐπαίροντα . στροφὴ ἑτέρα κώλων εʹ . ἴαμβος . μάντι ] ὦ . αὐτὸς ἑαυτὸν καλέσας ἐπὶ
6643359 χοριαμβικην
θʹ ἀναπαιστικὸν ἰσοκατάληκτον . τὸ ιʹ ἀπὸ ἰαμβικῆς βάσεως εἰς χοριαμβικήν . τὸ ιαʹ δακτυλικὸν ἑφθημιμερές . τὸ ιβʹ γλυκώνειον
συζυγίαν ἔχει τροχαϊκὴν ἑξάσημον ἢ ἑπτάσημον , τὴν δὲ δευτέραν χοριαμβικήν , τὴν δὲ κατάκλειδα ἐξ ἰάμβου καὶ τῆς ἀδιαφόρου
6642718 ῥυθμοποιιαν
, καθ ' οὓς συνίστανταί οἱ ῥυθμοὶ οἱ δυνάμενοι συνεχῆ ῥυθμοποιίαν ἐπιδέξασθαι , τρεῖς : ἴσος , διπλασίων , ἡμιόλιος
ῥητὸν χρόνου μέγεθος πρῶτον μὲν δεῖ τῶν πιπτόντων εἰς τὴν ῥυθμοποιίαν εἶναι , ἔπειτα τοῦ ποδὸς ἐν ᾧ τέτακται μέρος
6638405 πενταμετρον
, ἣ πεποίηκεν αὐτὸ ἄσημον ἐπισυνάπτουσα τῷ τρίτῳ κώλῳ , πεντάμετρον ἐλεγειακὸν ἔσται συντετελεσμένον τουτί : μήτ ' ἰδίας ἔχθρας
ἡρωϊκοί , τὸ δεύτερον δὲ ἑξάμετρον καταληκτικόν , τὸ τρίτον πεντάμετρον ἀκατάληκτον , τὸ τέταρτον πεντάμετρον καταληκτικόν , τὸ πέμπτον
6606342 ἑπτασημον
ὃ τὴν μὲν πρώτην ἔχει ἰαμβικήν , ἤτοι ἑξάσημον ἢ ἑπτάσημον , τὴν δὲ δευτέραν ἰωνικὴν ἢ δευτέραν παιωνικήν ,
καὶ τὴν τροχαϊκήν , ὁπόταν προτάττοιτο τῆς ἰωνικῆς , γίνεσθαι ἑπτάσημον [ τροχαϊκήν ] , τὸν καλούμενον δεύτερον ἐπίτριτον :
6580011 παιωνα
Χρείη . γρ . : δέοι . ὀλιγομισθοτέρους ὀλιγομισθοτέρους . παιῶνα . ἀλαλαγμόν . πελταστῶν . στρατιωτῶν πέλτας ἐχόντων .
πτηνοῖς ἰοῖς , στυγερὸν στυγερῶς , οὐδέ τιν ' αὐτῷ παιῶνα κακῶν ἐπινωμᾶν . Οἰκτίρω νιν ἔγωγ ' , ὅπως
6554763 στιχον
μὲν ὅμοια περιλαμβάνουσα μέτρα καὶ τεταγμένους σῴζουσα ῥυθμοὺς καὶ κατὰ στίχον ἢ περίοδον ἢ στροφὴν διὰ τῶν αὐτῶν σχημάτων περαινομένη
στίχοι ἰαμβικοὶ τρίμετροι ἀκατάληκτοι νʹ . μετὰ δὲ τὸν ιθʹ στίχον κῶλον ἰαμβικὸν μονόμετρον ἀκατάληκτον . ἐπὶ τῷ τέλει κορωνίς
6548128 περιτταις
καὶ γιγνώσκοντι νοητῷ τε , μνήμης μεταλαβόντι λογισμοῦ τε ἐν περιτταῖς τε καὶ ἀρτίαις ἅμα μεταβολαῖς . πέντε οὖν ὄντων
παύονται . Οἱ βορέαι παύονται ὡς ἐπὶ τὸ πολὺ ἐν περιτταῖς οἱ δὲ νότοι ἐν ἀρτίαις . Ἄνεμοι αἴρονται ἁμ
6516505 ἑφθημιμερες
δίμετρον καταληκτικὸν ἐκ διτροχαίου καὶ παλιμβακχείου , καὶ ἔστιν [ ἑφθημιμερὲς ] φερεκράτειον : τὸ βʹ “ δι ' ἡμᾶς
τὸ Ϙʹ “ πρᾶγμ ' , ὃ τοῦτον ποιήσει ” ἑφθημιμερὲς [ ἐξ ] ἐπιτρίτου βʹ – ˘ – –
6509293 ὀγδοον
. ὁ ἕκτος καὶ ἕβδομος τροχαϊκοὶ τρίμετροι ἀκατάληκτοι . τὸ ὄγδοον ὅμοιον τῷ τετάρτῳ . εἰσὶ δὲ καὶ ταῦτα τὰ
δίς , οὕτως ἡμισάκις ἥμισυ ἡμισάκις , ὀκτώ τε καὶ ὄγδοον : καὶ ὡς δὶς τρία ἕξ , οὕτως ἡμισάκις
6483472 τροχαιου
ἕξ : κρητικός , ὃς συνέστηκεν ἐκ τροχαίου θέσεως καὶ τροχαίου ἄρσεως : δάκτυλος κατ ' ἴαμβον , ὃς σύγκειται
προσοδιακὸν τρίμετρον ἀκατάληκτον : ἡ αʹ συζυγία τροχαϊκὴ τοῦ αʹ τροχαίου διαλελυμένου εἰς τρίβραχυν , εἶτα Ἰωνικὸς ἀπὸ μείζονος ,
6465786 τροχαιων
γὰρ αἱ μακραὶ συλλαβαί , ὥσπερ ἐπὶ τῶν ἰάμβων καὶ τροχαίων , ὡς εἴρηται , εἰς δύο βραχείας , οὕτω
ἐπιωνικὸν τρίμετρον ἀκατάληκτον . τὸ δʹ περίοδος ἐξ ἰάμβων καὶ τροχαίων . τὸ εʹ τὸ αὐτό . τὸ Ϛʹ ἰαμβικὸν
6430899 ἰαμβου
καταληκτικόν : τὸ Ϙʹ δίμετρον ἐξ ἀμφιμάκρου , βακχείου , ἰάμβου καὶ ἀμφιμάκρου : τὸ ζʹ ἀναπαιστικὸν δίμετρον ἀκατάληκτον :
, τῶν ἑξῆς χοριάμβου γινομένων . διὰ τοῦτο καὶ ἀπὸ ἰάμβου ἄρχονται ἐν τῷ ἀναπαιστικῷ , ὥσπερ Ἀρχίλοχος ἐν τῷ
6429059 Φαλαικειον
ἐξ ἀντισπάστου , διτροχαίου καὶ ἀναπαίστου . καλεῖται δὲ τοῦτο Φαλαίκειον , ὅτε τὴν μὲν αʹ ἔχει ἀντισπαστικήν , τὰς
συζυγίαν . Τὸ γʹ ἀντισπαστικὸν τρίμετρον καταληκτικόν , ὃ καλεῖται Φαλαίκειον : Φάλαικος γὰρ τούτου εὑρετής . ἔχει δὲ τὴν
6418089 διατονον
συντονωτάτῳ διατόνῳ , δύο ἔσται μεγέθη μόνα ἐξ ὧν τὸ διάτονον συνεστηκὸς ἔσται . ἐὰν δὲ τὰ μὲν δύο ἴσα
καὶ δίεσιν καὶ δίτονον κινοῖτο , ἐναρμόνιον ποιεῖ γένος . διάτονον μὲν οὖν λέγεται , ἐπειδὴ κατὰ τὸ πλεῖον διὰ
6406841 διιαμβον
χοριάμβων καὶ ἰάμβων : τινὰ δὲ τούτων ἀντὶ μὲν χοριάμβου διίαμβον ἔχουσιν , ἀντὶ δὲ ἰάμβου τροχαῖον ἢ σπονδεῖον ,
τὸ Ϛʹ συνίζησιν κατὰ τὸν δεύτερον πόδα , ἤτοι τὸν διίαμβον . ἐπὶ τῷ τέλει παράγραφος μόνη . ἀλλ '
6389443 ρμδʹ
οὕτως : τὰ ιβʹ τοῦ μήκους ἐφ ' ἑαυτὰ γίνονται ρμδʹ : καὶ τὰ εʹ τοῦ πλάτους ἐφ ' ἑαυτὰ
διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ σπθʹ πρὸς ρμδʹ . καὶ δὴ ὁμοίως κατὰ τὸν αὐτὸν λόγον τῆς
6375757 περαιουται
δὲ κόσμος κινεῖται ἐν τῷ αἰῶνι , ὁ δὲ χρόνος περαιοῦται ἐν τῷ κόσμῳ , ἡ δὲ γένεσις γίνεται ἐν
πολυτρόποις ἰδέαις πορισμῶν , ἐλπίδι δ ' ὁ ναύκληρος εὐπλοίας περαιοῦται τὰ μακρὰ πελάγη : ἐλπίδι δόξης καὶ ὁ φιλότιμος
6365793 ἑβδομον
ἄλλο τι τῶν συμφώνων , ὁ πρῶτος φθόγγος πρὸς τὸν ἕβδομον οὐ ποιήσει τὸ διὰ πασῶν . εἴτε δὴ μὴ
παράθεσις καὶ ἐπὶ τῶν εἰς ΩΝ ληγόντων . Τὸ δὲ ἕβδομον ἀπὸ τῶν εἰς ΜΟΣ μέχρι τῶν εἰς ΠΟΣ .
6354775 ὑπερκαταληκτον
καὶ μέχρι πενταμέτρου χωρεῖ τὸ προσοδιακόν . Τὸ δʹ δίμετρον ὑπερκατάληκτον προσοδιακὸν ἀπὸ Ἰωνικοῦ ἀπὸ μείζονος καὶ χοριάμβου . τοῦτο
ἀπ ' ἐλάττονος καὶ συλλαβῆς . Τὸ εʹ ἀντισπαστικὸν δίμετρον ὑπερκατάληκτον : ἔχει δ ' ἐπιτρίτους δʹ ἀντὶ ἀντισπάστων .
6333545 τροχαϊκης
ἀκατάληκτος . τὸ δʹ περίοδος καταληκτικὴ ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς : εἰ δὲ βούλει , χοριαμβικὸν δίμετρον καταληκτικὸν
Σαπφικοῦ ἑνδεκασύλλαβον , ἤτοι τρίμετρον καταληκτικόν . σύγκειται δὲ ἐκ τροχαϊκῆς συζυγίας , χοριάμβου καὶ Ἰωνικῆς καταληκτικῆς , ἤτοι ἀναπαίστου
6316189 πυρριχιου
ιγʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον ἐξ ἐπιτρίτου πρώτου , διιάμβου καὶ πυρριχίου ἢ ἰάμβου διὰ τὴν ἀδιάφορον : τὸ μέντοι τῆς
. τὸ Ϛʹ καὶ Ϛʹ χοριαμβικὰ ἡμιόλια ἐκ χοριάμβου καὶ πυρριχίου , ἢ ἰάμβου διὰ τὴν ἀδιάφορον : εἰ δὲ
6300127 σπονδειος
: ὧν ὁ μέν ἐστιν ἐκ δύο συλλαβῶν μακρῶν , σπονδεῖος καλούμενος , ὁ δὲ ἐκ τριῶν , μιᾶς μὲν
ἤτοι τὸ κόμμα ιζʹ : δισύλλαβοι μὲν τρεῖς οἵδε : σπονδεῖος ἐκ δύο μακρῶν , τετράχρονος , οἷον ἥρως :
6290613 ἰθυφαλικον
” πρῶτον ἑστιᾶσαι “ τροχαϊκὸν δίμετρον βραχυκατάληκτον , ὃ καλεῖται ἰθυφαλικόν . μάκαρ ὦ Στρεψίαδες : ἔκθεσις τῆς διπλῆς περιοδικὴ
ἐν βροτοῖσιν ἕξων ” τροχαϊκὸν δίμετρον βραχυκατάληκτον , ὃ καλεῖται ἰθυφαλικόν : ⌊ οἱ παλαιοὶ δέ φασι τοῦτο φερεκράτειον ἀτελές
6282985 τριημιτονιον
ὑπερέχοντες , παράλληλοι δὲ δύο τόνον , οἱ δὲ τρίτοι τριημιτόνιον : ἀναλόγως δὲ ἕξει καὶ ἐπὶ τῆς τῶν λοιπῶν
παρενθέσεως τῆς ἐν ὀκταχόρδῳ . ἀπεῖχε γὰρ αὕτη τῆς παρανεάτης τριημιτόνιον ἀσύνθετον , ἀφ ' οὗ διαστήματος ἡ μὲν παρεντεθεῖσα
6260548 συντιθεται
δὲ , ὅτι τὰς λεγομένας στάσεις φησὶν , οὐ γὰρ συντίθεται Μινουκιανῷ τὴν στάσιν ἀπὸ τούτου εἰρῆσθαι ἐτυμολογοῦντι , ἀπὸ
μὲν ἔξωθεν ἀκροβολισμοὺς τῶν ἐραστῶν εἰς πεῖραν φέρει καὶ ἄφνω συντίθεται τοῖς νεύμασιν : ἐὰν δὲ αἰτήσῃς τὸ ἔργον προσελθών
6252339 ψκθʹ
παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν ψκθʹ . Ἐὰν οὖν τις λέγῃ ὅτι Οἱ ρʹ πήχεις
προσαυξηθέντες ἑπτὰ ἀριθμοὶ ποιοῦσι τὸν δεύτερον τετράγωνον καὶ κύβον τὸν ψκθʹ , αʹ γʹ θʹ κζʹ παʹ σμγʹ ψκθʹ .
6252218 ἀκαταληκτος
οἶμαί γε τῶν νεωτέρων τὰς καρδίας ” στίχος τρίμετρος ἰαμβικὸς ἀκατάληκτος : τὸ βʹ “ πηδᾶν ὅ τι λέξει ”
δʹ κῶλα . μεθ ' ὃ ἐν εἰσθέσει ἰαμβικὸς τρίμετρος ἀκατάληκτος . τῆς βʹ περιόδου κῶλα Ϛʹ , ὧν ὁ
6251011 ἰαμβικου
ὅσα πρὸς τῷ τελείῳ προσέλαβε μέρος ποδός , οἷον ἐπὶ ἰαμβικοῦ εἶμ ' ὧτε πυσσάκω λυθεῖσα : τοῦτο μὲν οὖν
μιᾶς λειπούσης συλλαβῆς . τὸ γὰρ ἐγκωμιολογικὸν ἐκ δακτυλικοῦ καὶ ἰαμβικοῦ πενθημιμερῶν σύγκειται . Τὸ εʹ ὅμοιον τῷ βʹ ,
6235629 ὑπολυδιον
ἕξ : ὑπερλύδιον , ὑπεριάστιον , λύδιον , φρύγιον , ὑπολύδιον , ὑποφρύγιον . οἱ δὲ κιθαρῳδοὶ τέτρασι τούτοις ἁρμόζονται
διὰ πασῶν ἐν τῷ λυδίῳ , εἶτα τετράχορδον ὑποβαίνοντες τὸ ὑπολύδιον καὶ ἑξῆς ὁμοίως τετράχορδον ἀναβαίνοντες τὸν ὑπερλύδιον . Κεχυμέναι
6227822 βακχειακον
καταληκτικόν . τὸ ιαʹ ἰαμβικὸν δίμετρον ἀκατάληκτον . τὸ ιβʹ βακχειακόν . τὸ ιγʹ ἰαμβικὸν δίμετρον ὑπερκατάληκτον . ἡ ἐπῳδὸς
καταληκτικόν . τὸ ιαʹ ἰαμβικὸν δίμετρον ἀκατάληκτον . τὸ ιβʹ βακχειακόν . τὸ ιγʹ ἰαμβικὸν δίμετρον ὑπερκατάληκτον . ἡ ἐπῳδὸς
6218229 δισυλλαβον
: μέγαρον βλέφαρον γάργαρον ἔντερον ἔλλερον . τὸ μέντοι πτερόν δισύλλαβον , καὶ τὸ σαυρόν ἀττικῶς . Τὰ εἰς ΡΟΝ
γένους λάβωμεν ἀλλὰ τὰ συμβεβηκότα αὐτῷ , τὸ εἶναι αὐτὸ δισύλλαβον , τὸ καλεῖσθαι αὐτὸ γένος , τὸ καθολικῶς αὐτὸ
6214312 ἐπιχοριαμβικον
μεʹ . τὸ δὲ μέτρον καλεῖται εὐπολίδειον : ἔστι δὲ ἐπιχοριαμβικόν , οὗ τὸ τροχαϊκὸν μέρος οὐ κατὰ τάξιν δέχεται
ἀντίστροφος κώλων θʹ . τὸ αʹ τροχαϊκὸν ἐπίτριτον , ἢ ἐπιχοριαμβικόν . τὸ βʹ ἰωνικὸν ἀπ ' ἐλάσσονος , τρίτου
6212293 ἐπιφθεγματικον
τῷ τέλει παράγραφος . † ὦ βαθυζώνων : σύστημα ἕτερον ἐπιφθεγματικὸν ὀνομαζόμενον ἐν ἐκθέσει στίχων τροχαικῶν τετραμέτρων καταληκτικῶν δʹ :
ἀποθέσεσι παράγραφος , ἐπὶ δὲ τῶι τέλει κορωνίς . σύστημα ἐπιφθεγματικὸν στίχων ιʹ . προσγελᾶι ] θέλγει , προσέρχεται .
6198161 νητην
μὲν καλῶμεν ὑπάτην καὶ μέσην , τόδε δὲ παραμέσην καὶ νήτην , μένοντος γὰρ τοῦ μεγέθους συμβαίνει κινεῖσθαι τὰς τῶν
φθόγγῳ τῇ ἀρχαίᾳ ὑπάτῃ . ὥστε ἀπὸ ὑπάτης ὑπατῶν ἐπὶ νήτην ὑπερβολαίων τέσσαρα εἶναι τετράχορδα συνημμένα . εὑρίσκετο δὲ τρισκαιδεκάχορδον
6197973 ἐπιωνικον
καὶ ἡμιόλιον . Τὸ θʹ ἰαμβικὸν ἑφθημιμερές . Τὸ ιʹ ἐπιωνικὸν τρίμετρον βραχυκατάληκτον : τῆς γὰρ αʹ συζυγίας οὔσης ἰαμβικῆς
καὶ κατ ' ἀντιπάθειαν μέτρα δύο : ὧν τὸ μὲν ἐπιωνικὸν καλεῖται , ὅτε διποδίας ἰαμβικῆς προκειμένης ἰωνικὴν ἐπιφέρεσθαι συμβαίνει
6194482 χοριαμβος
ιʹ χοριαμβικὸν ἑφθημιμερές . αʹ χορίαμβος δίμετρος ἀκατάληκτος . βʹ χορίαμβος δίμετρος καταληκτικός . γʹ ἴαμβος πενθημιμερής . δʹ ἀπὸ
χοριαμβικὸν † δίμετρον . τὸ ιʹ χοριαμβικὸν ἑφθημιμερές . αʹ χορίαμβος δίμετρος ἀκατάληκτος . βʹ χορίαμβος δίμετρος καταληκτικός . γʹ
6188857 λυδιον
γὰρ ᾔδεισαν τόν τε δώριον καὶ τὸν φρύγιον καὶ τὸν λύδιον ἑνὶ τόνῳ διαφέροντας ἀλλήλων , ὡς μὴ φθάνειν ἐπὶ
τρεῖς τοὺς ἀρχαιοτάτους , καλουμένους δὲ δώριον καὶ φρύγιον καὶ λύδιον παρὰ τὰς ἀφ ' ὧν ἤρξαντο ἐθνῶν ὀνομασίας ,
6177594 Εὐριπιδειον
τὰ τροχαικά : τὸ βʹ ὅμοιον δίμετρον καταληκτικὸν ἤτοι ἑφθημιμερὲς Εὐριπίδειον : τὸ γʹ ὅμοιον τὸν τρίτον ἔχον πόδα ἴαμβον
τούτου λέγουσιν , οὔ μοι δοκεῖ εὔλογα . Τὸ ζʹ Εὐριπίδειον ἢ ληκύθιον : τροχαϊκὸν γάρ ἐστιν ἑφθημιμερές . Τὸ
6175508 δισυλλαβους
καὶ τῆς ἰαμβικῆς τὸν πρότερον πόδα τρέπον εἰς τοὺς λοιποὺς δισυλλάβους , ἐνίοτε δὲ εἰς τρίβραχυν ἢ ἀνάπαιστον διὰ τὴν
. ῥυθμὸν ἐκ τριποδίας ἀναπαιστικόν , ὃς δέχεται πάντας τοὺς δισυλλάβους πόδας . οἱ δὲ ἐνόπλιον τὸν ἀμφίμακρον , ὃς
6173922 συζυγιαν
, ἐὰν λέγωσιν . . ὁμοφωνεῖ δὲ ἁπάντοτε κατὰ δευτέραν συζυγίαν τῶν περισπωμένων , ἐπί τε πρώτων προσώπων τῶν κατ
διποδίαν ἰαμβικὴν καθαρὰν καὶ τὴν ἑπτάσημον , σπανίως δὲ καὶ συζυγίαν [ καὶ ] τὴν ἰσόχρονον αὐτῷ : ἄρχεται δ
6169990 ἰθυφαλλικον
παίωνα δεύτερον ἔχει ἀντὶ ἰωνικοῦ . τὸ ηʹ τροχαϊκὸν καθαρὸν ἰθυφαλλικόν . ἐπὶ τῷ τέλει τῆς τε στροφῆς καὶ ἀντιστροφῆς
ἐκ παίωνος βʹ καὶ χοριάμβου : τὸ δὲ γʹ τροχαϊκὸν ἰθυφαλλικόν : τὸ εʹ ἰαμβικὸν πενθημιμερές : τὸ δὲ ζʹ
6163111 ἐγκωμιολογικον
ἐννέα , καὶ ἡ ἐπῳδὸς κώλων ἐννέα . τὸ αʹ ἐγκωμιολογικὸν δίμετρον καταληκτικόν . τὸ βʹ προσοδιακὸν δίμετρον ἀκατάληκτον ἐκ
ἡ στροφὴ καὶ ἀντίστροφος κώλων ὀκτώ . τὸ αʹ Πινδαρικὸν ἐγκωμιολογικὸν , τὴν τελευταίαν συλλαβὴν μεταθὲν εἰς τὴν πρώτην .
6158250 παρακειμενον
τὸ ὅπου κατὰ τάσιντῇδε . ἔχει καὶ τὸ οὐδαμοῦ , παρακείμενον τῷ οὐδαμός . ] Ἔστι καὶ συνύπαρξις τῶν εἰς
μὲν γὰρ ά συζυγία διὰ τοῦ Φ προάγει τὸν ἐνεργητικὸν παρακείμενον τέτυφα λέλειφα , ἡ δὲ βʹ διὰ τοῦ Χ
6152105 ιεʹ
πέντε τὸν ἀριθμὸν , ὧν ἡ μὲν δυτικωτέρα καλεῖται Αἰβοῦδα ιεʹ ξβʹ ἡ δ ' ἐφεξῆς αὐτῆς πρὸς ἀνατολὰς ὁμοίως
ἀπολῶ σε κακῶς ” μονόμετρον ἐκ δύο ἀναπαίστων : τὸ ιεʹ “ εἰπέ , τί ποιῶν ” μονόμετρον ἐξ ἀναπαίστου
6152100 Στησιχορειον
Τὸ ηʹ ὅμοιον τῷ αʹ τῆς στροφῆς . Τὸ θʹ Στησιχόρειον ἐξ ἐπιτρίτων Στησιχόρου εὑρόντος αὐτό : δεύτεροι δὲ οἱ
συλλαβῇ τοῦ Ἀρχιλοχείου ἢ τοῦ Ἐρασμονίδη Χαρίλαε . τὸ ιαʹ Στησιχόρειον . Γέγραφε τὴν ᾠδὴν Ἡροδότῳ τῷ Θηβαίῳ , τινὲς
6149782 τροχαιος
. , ὁ τροχαῖος τροχαλὸν ποιεῖ τὸν λόγον , διὸ τροχαῖος καλεῖται ὁ τῶν τρεχόντων ῥυθμός , ὥς φησιν Λογγῖνος
ποὺς ἁπλοῦς . τὸ βʹ προσοδιακὸν τρίμετρον ἀκατάληκτον : αʹ τροχαῖος τοῦ αʹ ποδὸς λελυμένου : εἶτα ἰωνικὸς ἀπὸ μείζονος
6148105 ἀμοιβαιον
ιβʹ . ἡμέτερον : + ἰὼ ἰώ : σύστημα ἕτερον ἀμοιβαῖον κατὰ περικοπὴν ἐν ἐκθέσει κώλων ιβʹ , ὧν τὸ
. τοῦθ ' ἕτερον αὖ μεῖζον : διπλῆ καὶ μέλος ἀμοιβαῖον , οὗ ἡ ἀρχὴ ” τοῦθ ' ἕτερον αὖ
6143760 διτροχαιον
ἀντισπάστου καὶ ἐπιτρίτου βʹ : τὸ μέντοι τῆς ἀντιστροφῆς κῶλον διτρόχαιον ἔχει ἀντὶ ἐπιτρίτου . ἐπὶ τῷ τέλει τῆς τε
Ἡφαιστίων φησίν : ἔχει δὲ τὸν αʹ πόδα ἀντίσπαστον ἢ διτρόχαιον , τὸν δὲ βʹ διίαμβον : τὸ ιβʹ ὅμοιον
6139489 ἰαμβικη
] νέα γὰρ ἦν . κῶλα ιβʹ . τὰ πρῶτα ἰαμβικὴ βάσις , τὰ δὲ δεύτερα τροχαϊκὰ ἑφθημιμερῆ . +
ξένων βέλτιστε : διπλῆ καὶ ἄλλη περίοδος τοῦ χοροῦ , ἰαμβικὴ καὶ αὕτη , ἐκ τριῶν μὲν διμέτρων ἀκαταλήκτων καὶ
6126565 δωδεκασημον
. ἡ ἐπῳδὸς κώλων ἐστὶν ἕνδεκα . τὸ αʹ προσοδικὸν δωδεκάσημον . τὸ βʹ μονόμετρον ἰωνικὸν ἢ ἀναπαιστικόν . τὸ
. τὸ εʹ τὸ αὐτὸ τῷ γʹ , ἀλλὰ τοῦτο δωδεκάσημον , τὸ δὲ γʹ ἑνδεκάσημον . τὸ Ϛʹ δίμετρον
6122669 πενθημιμερους
τε διμέτρου ἀκαταλήκτου καὶ τοῦ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ πενθημιμεροῦς . καὶ ἐν ἐκθέσει τὸ σύνηθες διστίχιον . φροντίζειν
τῷ γʹ τῆς ἐπῳδοῦ . τὸ ηʹ μικτὸν ἐκ τροχαίου πενθημιμεροῦς καὶ δακτυλικοῦ πενθημιμεροῦς . τὸ θʹ ἰαμβέλεγος , ὑπερτιθεμένου
6113698 τροχαϊκου
εἰκοσίκωλον , ὧν τὰ μὲν βʹ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ ἑφθημιμεροῦς : τὰ δὲ ἑξῆς δύο ἐν ἐκθέσει ἰαμβεῖα
. Ἄλλο ἀσυνάρτητον ὁμοίως κατὰ τὴν πρώτην ἀντιπάθειαν , ἐκ τροχαϊκοῦ διμέτρου ἀκαταλήκτου καὶ ἰαμβικοῦ ἑφθημιμεροῦς , ὅπερ ἐὰν παραλλάξῃ
6108612 ἰαμβικος
ποιῆσαι πρίν με τὰς πληγὰς λαβεῖν . ὁ ξʹ μέντοι ἰαμβικὸς ἑφθημιμερής . εἶτα κῶλον ἀντισπαστικὸν ἐξ ἐπιτρίτου πρώτου ἡμιόλιον
τοῦ τέλους τῆς ἐπῳδοῦ τὰ σημεῖα , ὡς εἴρηται . ἰαμβικὸς τρίμετρος . τάδ ' αὐτόδηλα : αὐτὰ δὲ ταῦτα
6080170 μονομετρα
τὸν ρκʹ , τὸν ρκβʹ κώλου τμήματα δʹ , ἃ μονόμετρά ἐστι βραχυκατάληκτα . μετὰ δὲ τὸν ρκδʹ ἕτερα βʹ
ἰώ , ἢ τὸ φεῦ φεῦ ἰώ : ταῦτα γὰρ μονόμετρά ἐστιν ἀκατάληκτα διὰ τὸ ἀπηρτισμένους ἔχειν τοὺς πόδας καὶ
6078293 παιωνικην
τοῖς κώλοις περιτιθέναι τοὺς παίωνας ἔνθεν καὶ ἔνθεν ἀμφοτέρους , παιωνικήν γε πάντως ποιησόμεθα τὴν σύνθεσιν , οἷον ἐκ μακρῶν
ἑξάσημον ἢ ἑπτάσημον , τὴν δὲ δευτέραν ἰωνικὴν ἢ δευτέραν παιωνικήν , τὴν δὲ τρίτην τροχαϊκὴν ἑξάσημον ἢ ἑπτάσημον ,
6077385 μονομετρον
ἑφθημιμερῆ ζʹ † : . , † : . , μονόμετρον † : . , † : . , ἰαμβικὸν
. τὸ Ϛʹ ἀντισπαστικὸν τρίμετρον καταληκτικόν . τὸ ζʹ ἰωνικὸν μονόμετρον καταληκτικὸν δύο συλλαβῶν . τὸ ηʹ δακτυλικὸν τετράμετρον παρὰ
6077104 ἀναπαιστος
ἐν ἐκθέσει ἐστὶ τὸ ἔθιμον , 〚 διπλῆ 〛 δίστιχος ἀνάπαιστος τετράμετρος καταληκτικός : ὑφ ' ὃ διπλῆ καὶ ἑξῆς
μόνον βακχεῖος ἐν τῷ διμέτρῳ χοριαμβικῷ κώλῳ , ἀλλὰ καὶ ἀνάπαιστος , πλὴν ἴστωσαν ὡς ἐπειδὴ οὐ μόνον θεμιτὸς εὕρηται
6071579 διεσιν
δὲ ἡμιτονίου , ὡς ἐλάχιστον μελῳδητὸν διάστημα , τῶν Πυθαγορείων δίεσιν καλούντων τὸ νῦν λεγόμενον ἡμιτόνιον . καλεῖσθαι δέ φησιν
τὸ δὲ ἡμιόλιον κατὰ δίεσιν ἡμιόλιον τῆς ἐναρμονίου διέσεως καὶ δίεσιν τὴν ἴσην καὶ ἑπτὰ τεταρτημορίων διέσεων ἀσύνθετον διάστημα .

Back