δὲ , ὅτι τὰς λεγομένας στάσεις φησὶν , οὐ γὰρ συντίθεται Μινουκιανῷ τὴν στάσιν ἀπὸ τούτου εἰρῆσθαι ἐτυμολογοῦντι , ἀπὸ | ||
μὲν ἔξωθεν ἀκροβολισμοὺς τῶν ἐραστῶν εἰς πεῖραν φέρει καὶ ἄφνω συντίθεται τοῖς νεύμασιν : ἐὰν δὲ αἰτήσῃς τὸ ἔργον προσελθών |
ἀκατάληκτος . τὸ δʹ περίοδος καταληκτικὴ ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς : εἰ δὲ βούλει , χοριαμβικὸν δίμετρον καταληκτικὸν | ||
Σαπφικοῦ ἑνδεκασύλλαβον , ἤτοι τρίμετρον καταληκτικόν . σύγκειται δὲ ἐκ τροχαϊκῆς συζυγίας , χοριάμβου καὶ Ἰωνικῆς καταληκτικῆς , ἤτοι ἀναπαίστου |
τὴν βάσιν : οἷον εἰ ἐκκειμένου μὲν ἑνὸς δακτύλου , διμέτρου δὲ ἀναπαιστικοῦ κατὰ μέσον πέσοι σπονδεῖος , ἄδηλον πότερα | ||
δέ ἐστι παρὰ Ἀρχιλόχῳ ἀσυνάρτητον ἐκ δακτυλικοῦ πενθημιμεροῦς καὶ ἰαμβικοῦ διμέτρου ἀκαταλήκτου ἀλλά μ ' ὁ λυσιμελής , ὠταῖρε , |
δύο : ὧν τὸ μὲν ἐπιωνικὸν καλεῖται , ὅτε διποδίας ἰαμβικῆς προκειμένης ἰωνικὴν ἐπιφέρεσθαι συμβαίνει , ἥτις οἰκειότητα πρὸς τροχαϊκόν | ||
τὸν δεύτερον ἔχων πόδα πεντασύλλαβον . τὸ τρίτον περίοδος ἐξ ἰαμβικῆς καὶ τροχαϊκῆς βάσεως . τὸ δʹ ἀσυνάρτητον ἐξ ἀναπαιστικῆς |
, ἀπὸ μὲν τριμέτρου καταληκτικόν . ἀτακτότερον δὲ ἔχει τὴν τροχαϊκὴν βάσιν ἑπτάσημον . τὸ δὲ δεύτερον πενθημιμερὲς κοινὸν δακτυλικὸν | ||
ἀναπαιστικὸν μονόμετρον ὑπερκατάληκτον . τὸ βʹ ἰωνικὸν δίμετρον καταληκτικὸν εἰς τροχαϊκὴν συζυγίαν . τὸ γʹ Φαλαίκειον ἀντισπαστικόν . τὸ δʹ |
ὅσα πρὸς τῷ τελείῳ προσέλαβε μέρος ποδός , οἷον ἐπὶ ἰαμβικοῦ εἶμ ' ὧτε πυσσάκω λυθεῖσα : τοῦτο μὲν οὖν | ||
μιᾶς λειπούσης συλλαβῆς . τὸ γὰρ ἐγκωμιολογικὸν ἐκ δακτυλικοῦ καὶ ἰαμβικοῦ πενθημιμερῶν σύγκειται . Τὸ εʹ ὅμοιον τῷ βʹ , |
εἰκοσίκωλον , ὧν τὰ μὲν βʹ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ ἑφθημιμεροῦς : τὰ δὲ ἑξῆς δύο ἐν ἐκθέσει ἰαμβεῖα | ||
. Ἄλλο ἀσυνάρτητον ὁμοίως κατὰ τὴν πρώτην ἀντιπάθειαν , ἐκ τροχαϊκοῦ διμέτρου ἀκαταλήκτου καὶ ἰαμβικοῦ ἑφθημιμεροῦς , ὅπερ ἐὰν παραλλάξῃ |
δʹ τὸν πρῶτον πόδα ἐπίτριτον τέταρτον , τὸν δὲ βʹ ἀμφίβραχυν . ἐπὶ τῷ τέλει παράγραφος μόνη . διπλάκεσσιν : | ||
ἐστιν , ἐς τὴν ἰαμβικὴν κατακλεῖδα περαιοῦται , τουτέστιν εἰς ἀμφίβραχυν ἢ βακχεῖον διὰ τὴν ἀδιάφορον : περαιοῦται μὲν γὰρ |
καταβολὴ κατὰ τῆς ἀριστερᾶς ὠμοπλάτης , εἶτ ' ἐπὶ τὴν κατακλεῖδα φέρεται , καὶ κατὰ τοῦ στήθους ὑπὸ τὴν δεξιὰν | ||
τῆς ἀδιαφόρου . τὸ ιγʹ χοριαμβικὸν δίμετρον καταληκτικὸν εἰς ἰαμβικὴν κατακλεῖδα περαιούμενον , τουτέστιν εἰς ἀμφίβραχυν ἢ βακχεῖον διὰ τὸ |
καταληκτικόν : τὸ Ϙʹ δίμετρον ἐξ ἀμφιμάκρου , βακχείου , ἰάμβου καὶ ἀμφιμάκρου : τὸ ζʹ ἀναπαιστικὸν δίμετρον ἀκατάληκτον : | ||
, τῶν ἑξῆς χοριάμβου γινομένων . διὰ τοῦτο καὶ ἀπὸ ἰάμβου ἄρχονται ἐν τῷ ἀναπαιστικῷ , ὥσπερ Ἀρχίλοχος ἐν τῷ |
ἕξ : κρητικός , ὃς συνέστηκεν ἐκ τροχαίου θέσεως καὶ τροχαίου ἄρσεως : δάκτυλος κατ ' ἴαμβον , ὃς σύγκειται | ||
προσοδιακὸν τρίμετρον ἀκατάληκτον : ἡ αʹ συζυγία τροχαϊκὴ τοῦ αʹ τροχαίου διαλελυμένου εἰς τρίβραχυν , εἶτα Ἰωνικὸς ἀπὸ μείζονος , |
τε διμέτρου ἀκαταλήκτου καὶ τοῦ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ πενθημιμεροῦς . καὶ ἐν ἐκθέσει τὸ σύνηθες διστίχιον . φροντίζειν | ||
τῷ γʹ τῆς ἐπῳδοῦ . τὸ ηʹ μικτὸν ἐκ τροχαίου πενθημιμεροῦς καὶ δακτυλικοῦ πενθημιμεροῦς . τὸ θʹ ἰαμβέλεγος , ὑπερτιθεμένου |
ἀσυνάρτητον ἐξ ἰαμβικοῦ διμέτρου βραχυκαταλήκτου , τὸν αʹ ἔχοντος πόδα τρίβραχυν ἤγουν χορεῖον , καὶ τροχαϊκοῦ πενθημιμεροῦς . εἴη δ | ||
[ τουτέστι δευτέραν , τετάρτην , ἕκτην ] ἴαμβον καὶ τρίβραχυν καὶ ἀνάπαιστον : τοῦτον δὲ παρὰ τοῖς κωμικοῖς συνεχῶς |
καὶ πρέπον ἥρωσιν , ἡ κωμῳδία δὲ συνέσταλται εἰς τὸ τρίμετρον ἡ νέα . Τὰ πολλὰ οὖν κώλοις † τριμέτροις | ||
, ὅ ἐστι Φερεκράτειον παρὰ συλλαβήν . τὸ ζʹ ἐπιωνικὸν τρίμετρον καταληκτικόν . ἡ αʹ συζυγία ἰωνική : ἡ βʹ |
τὸ χοριαμβικὸν συντίθεται μὲν καὶ καθαρόν , συντίθεται δὲ καὶ ἐπίμικτον πρὸς τὰς ἰαμβικάς : ὡς ἐπίπαν δέ , ὅτε | ||
ὁμιλίας : οὕτω δ ' ἂν καὶ τὸ δαιμόνων γένος ἐπίμικτον νοεῖται καὶ θεοῖς τε καὶ ἀνθρώποις . Τοῦτο γάρ |
κατὰ τὸ ἰαμβικόν . τὸ δὲ δʹ ὅμοιον τοῖς πρώτοις χοριαμβικὸν δίμετρον ἀκατάληκτον , τὸ εʹ χοριαμβικὸν καθαρόν , τὸ | ||
βραχυκατάληκτον . τὸ δʹ ἰαμβικὸν δίμετρον καταληκτικόν . τὸ εʹ χοριαμβικὸν δίμετρον βραχυκατάληκτον . τὸ Ϛʹ ἀναπαιστικὸν δίμετρον ὑπερκατάληκτον . |
τοῖς κώλοις περιτιθέναι τοὺς παίωνας ἔνθεν καὶ ἔνθεν ἀμφοτέρους , παιωνικήν γε πάντως ποιησόμεθα τὴν σύνθεσιν , οἷον ἐκ μακρῶν | ||
ἑξάσημον ἢ ἑπτάσημον , τὴν δὲ δευτέραν ἰωνικὴν ἢ δευτέραν παιωνικήν , τὴν δὲ τρίτην τροχαϊκὴν ἑξάσημον ἢ ἑπτάσημον , |
μὲν καὶ καθαρόν , συντίθεται δὲ καὶ ἐπίμικτον πρὸς τὰς τροχαϊκὰς [ διποδίας ] οὕτως , ὥστε τὴν πρὸ τῆς | ||
συντίθεται μὲν καὶ καθαρόν , συντίθεται δὲ καὶ πρὸς τὰς τροχαϊκὰς ἐπίμικτον : ὅτε μέντοι ἀκατάληκτόν ἐστι , καθόλου σπανίως |
καθαρόν , συντίθεται δὲ καὶ ἐπίμικτον πρὸς τὰς τροχαϊκὰς [ διποδίας ] οὕτως , ὥστε τὴν πρὸ τῆς τροχαϊκῆς ἀεὶ | ||
ἰαμβικῇ λέγοιτο , τὸ δὲ ἐπιχοριαμβικόν , ὅτε τροχαϊκῆς προκειμένης διποδίας ἐπιφέρεται χοριαμβική , οἰκειότητα πρὸς τὴν ἐναντίαν τοῦ τροχαϊκοῦ |
: ἔπειτα τῷ ἡμίσει πλείους εἰσὶν αἱ μακραὶ συλλαβαὶ τῶν βραχειῶν ἐν ἑκατέρῳ τῶν στίχων : ἔπειτα πᾶσαι διαβεβήκασιν αἱ | ||
τοῦ γὰρ ἰωνικοῦ ἀπὸ μείζονος ἐκ μακρῶν δύο καὶ δύο βραχειῶν ὄντος , ἔξεστι μεταθεῖναι καὶ ποιῆσαι διτρόχαιον ἐκ μακρᾶς |
τὸν δρόμον σου . ἐλάω , ἐλῶ κοινόν , ἐλαύω ἰωνικόν , ἐλαύνω ἀττικόν . ἴσθι δέ , ὅτι τὸ | ||
ἐκ δισπονδείου καὶ ἰωνικοῦ ἀπ ' ἐλάττονος , καὶ ἔστιν ἰωνικόν : τὸ ιεʹ “ σιν καί μ ' ἀπολοῦσιν |
ὃ τὴν μὲν πρώτην ἔχει ἰαμβικήν , ἤτοι ἑξάσημον ἢ ἑπτάσημον , τὴν δὲ δευτέραν ἰωνικὴν ἢ δευτέραν παιωνικήν , | ||
καὶ τὴν τροχαϊκήν , ὁπόταν προτάττοιτο τῆς ἰωνικῆς , γίνεσθαι ἑπτάσημον [ τροχαϊκήν ] , τὸν καλούμενον δεύτερον ἐπίτριτον : |
τετράδα , ἧς αἱ μὲν ὅμοιαι περίοδοι ἐξ ἰαμβικοῦ τριμέτρου ἀκαταλήκτου ἐν ἐκθέσει καὶ ἰωνικοῦ ἡμιολίου ἐν εἰσθέσει : ἡ | ||
ὡς ἐμοὶ δοκεῖ , ἀσυνάρτητόν ἐστιν ἐκ παιωνικοῦ Κρητικοῦ διμέτρου ἀκαταλήκτου καὶ ἀντισπαστικοῦ διμέτρου βραχυκαταλήκτου , ἢ κατὰ συνίζησιν τῆς |
ἢ δακτυλικὸν ὃ καλεῖται Φαλαίκειον . τὸ βʹ τροχαϊκὸν δίμετρον καταληκτικόν , ἤτοι ἑφθημιμερὲς Εὐριπίδειον . τὸ γʹ ἰαμβικὸν ἑφθημιμερές | ||
ἀκατάληκτον μετρούμενον ὡς οἱ ἡρωϊκοί , τὸ δεύτερον δὲ ἑξάμετρον καταληκτικόν , τὸ τρίτον πεντάμετρον ἀκατάληκτον , τὸ τέταρτον πεντάμετρον |
θʹ ἀναπαιστικὸν ἰσοκατάληκτον . τὸ ιʹ ἀπὸ ἰαμβικῆς βάσεως εἰς χοριαμβικήν . τὸ ιαʹ δακτυλικὸν ἑφθημιμερές . τὸ ιβʹ γλυκώνειον | ||
συζυγίαν ἔχει τροχαϊκὴν ἑξάσημον ἢ ἑπτάσημον , τὴν δὲ δευτέραν χοριαμβικήν , τὴν δὲ κατάκλειδα ἐξ ἰάμβου καὶ τῆς ἀδιαφόρου |
ἔχει ἔκ τε δακτύλου καὶ ϲπονδείου , ἐνίοτε δὲ καὶ παλιμβάκχειον καὶ ἀμφίμακρον δέχεται , καθαροὺϲ μέντοι καὶ ἐν τάξει | ||
πρώτων δύο καὶ σπονδείου : τὸ μέντοι κῶλον τῆς ἀντιστροφῆς παλιμβάκχειον τὸν βʹ ἔχει πόδα : τὸ ζʹ περίοδος καταληκτικὴ |
τὸ ηʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον . τὸ θʹ ἀντισπαστικὸν δίμετρον βραχυκατάληκτον . τὸ ιʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον : ἰδίως δὲ | ||
τὸ βʹ τροχαϊκὸν μονόμετρον ὑπερκατάληκτον . τὸ γʹ Ἰωνικὸν δίμετρον βραχυκατάληκτον . τὸ δʹ χοριαμβικὸν δίμετρον ὑπερκατάληκτον . τὸ εʹ |
, ἐκ δύο χοριάμβων καὶ συλλαβῆς , εἰ δὲ βούλει ἀναπαιστικὸν ἑφθημιμερές : τὸ βʹ ἰωνικὸν ἀπ ' ἐλάττονος δίμετρον | ||
ἀπ ' ἐλάττονος δίμετρα ἀκατάληκτα καθαρά : τὸ δὲ γʹ ἀναπαιστικὸν ἑφθημιμερές . ἐπὶ τῷ τέλει παράγραφος καὶ διπλαῖ . |
ἐν ἐκθέσει ἐστὶ τὸ ἔθιμον , 〚 διπλῆ 〛 δίστιχος ἀνάπαιστος τετράμετρος καταληκτικός : ὑφ ' ὃ διπλῆ καὶ ἑξῆς | ||
μόνον βακχεῖος ἐν τῷ διμέτρῳ χοριαμβικῷ κώλῳ , ἀλλὰ καὶ ἀνάπαιστος , πλὴν ἴστωσαν ὡς ἐπειδὴ οὐ μόνον θεμιτὸς εὕρηται |
ὅτε τὴν μὲν αʹ ἔχει ἀντισπαστικήν , τὰς δὲ λοιπὰς ἰαμβικάς . ἐνταῦθα δὲ ἀντιπαθής ἐστιν ἡ μῖξις αὐτοῦ . | ||
μὲν καὶ καθαρόν , συντίθεται δὲ καὶ ἐπίμικτον πρὸς τὰς ἰαμβικάς : ὡς ἐπίπαν δέ , ὅτε καταληκτικόν ἐστιν , |
ὅμοιον εἴη τῷ τῆς ἀντιστροφῆς ἤτοι δίμετρον : τὸ Ϙʹ ἀντισπαστικὸν ἐξ ἀντισπάστου καὶ κρητικοῦ ἤτοι ἀμφιμάκρου : τὸ ζʹ | ||
καταληκτικόν . τὸ ηʹ ἰαμβικὸν δίμετρον βραχυκατάληκτον . τὸ θʹ ἀντισπαστικὸν δίμετρον βραχυκατάληκτον . τὸ ιʹ τὸ αὐτό . τὸ |
ιʹ χοριαμβικὸν ἑφθημιμερές . αʹ χορίαμβος δίμετρος ἀκατάληκτος . βʹ χορίαμβος δίμετρος καταληκτικός . γʹ ἴαμβος πενθημιμερής . δʹ ἀπὸ | ||
χοριαμβικὸν † δίμετρον . τὸ ιʹ χοριαμβικὸν ἑφθημιμερές . αʹ χορίαμβος δίμετρος ἀκατάληκτος . βʹ χορίαμβος δίμετρος καταληκτικός . γʹ |
ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος | ||
ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς |
δίμετρα ἀκατάληκτα ἃ καλεῖται κρητικὰ δίρρυθμα . τὸ δὲ δʹ τροχαϊκὸν ἑφθημιμερὲς ὃ καλεῖται Εὐριπίδειον ἢ ληκύθιον , ὁ εʹ | ||
ἑξῆς δʹ ἰαμβικὰ δίμετρα ἀκατάληκτα , τὸ δὲ εʹ , τροχαϊκὸν ἑφθημιμερές . ὁ κζʹ ἰαμβικὸς στίχος τρίμετρος ἀκατάληκτος . |
συζυγίας . τὸ εʹ ἰαμβικὸν δίμετρον βραχυκατάληκτον . τὸ Ϛʹ ἀντίσπαστος καὶ συλλαβή . τὸ ζʹ ἰωνικὸν ἀπ ' ἐλάττονος | ||
. ἔστι δ ' ὅτε ἐκ σπονδείου ἄρχεται ὁ αʹ ἀντίσπαστος . πολλάκις δὲ καὶ διτρόχαιος γίνεται . ἐνδέει δὲ |
– , οἷον θεηγορῶ : χορίαμβος ὁ ἐκ μακρᾶς καὶ βραχείας καὶ βραχείας καὶ μακρᾶς , ἡ μακρὰ δὲ καὶ | ||
ἐν δυνάμει [ τῆς ποσότητος ] . Ἀρκτέον δὲ ἀπὸ βραχείας . οὕτω τοίνυν ὁ Ἡφαιστίων αὐτὴν ὁρίζεται : Βραχεῖά |
ιγʹ ἀντισπαστικὸν τρίμετρον βραχυκατάληκτον ἐξ ἐπιτρίτου πρώτου , διιάμβου καὶ πυρριχίου ἢ ἰάμβου διὰ τὴν ἀδιάφορον : τὸ μέντοι τῆς | ||
. τὸ Ϛʹ καὶ Ϛʹ χοριαμβικὰ ἡμιόλια ἐκ χοριάμβου καὶ πυρριχίου , ἢ ἰάμβου διὰ τὴν ἀδιάφορον : εἰ δὲ |
τροχαϊκῆς βάσεως . ὁ δὲ νεʹ ἐξ ἰαμβικοῦ πενθημιμεροῦς καὶ ἀναπαιστικῆς βάσεως . ἐπὶ τῷ τέλει κορωνὶς ἐξιόντων τῶν ὑποκριτῶν | ||
ἐν ἐπεισθέσει , ὧν τὸ πρῶτον ἐκ τροχαϊκῆς βάσεως καὶ ἀναπαιστικῆς , καὶ ἑφθημιμερὲς ἢ Ἰωνικόν , ἀπὸ μὲν τριμέτρου |
, διότι μὴ πεφυκὸς ἡνώθη . τὸ δὲ ἐν κώλοις ἀσυνάρτητον τοῦτο ἀντιπαθές , ἐναντίοις ποσὶν ἡνωμένον . Τὸ βʹ | ||
καὶ εʹ ὅμοια τῷ αʹ καὶ βʹ : τὸ Ϛʹ ἀσυνάρτητον ἐκ δύο τροχαικῶν πενθημιμερῶν συγκείμενον . ἐπὶ τῷ τέλει |
καὶ ἡμιόλιον . Τὸ θʹ ἰαμβικὸν ἑφθημιμερές . Τὸ ιʹ ἐπιωνικὸν τρίμετρον βραχυκατάληκτον : τῆς γὰρ αʹ συζυγίας οὔσης ἰαμβικῆς | ||
καὶ κατ ' ἀντιπάθειαν μέτρα δύο : ὧν τὸ μὲν ἐπιωνικὸν καλεῖται , ὅτε διποδίας ἰαμβικῆς προκειμένης ἰωνικὴν ἐπιφέρεσθαι συμβαίνει |
ἐννέα , καὶ ἡ ἐπῳδὸς κώλων ἐννέα . τὸ αʹ ἐγκωμιολογικὸν δίμετρον καταληκτικόν . τὸ βʹ προσοδιακὸν δίμετρον ἀκατάληκτον ἐκ | ||
ἡ στροφὴ καὶ ἀντίστροφος κώλων ὀκτώ . τὸ αʹ Πινδαρικὸν ἐγκωμιολογικὸν , τὴν τελευταίαν συλλαβὴν μεταθὲν εἰς τὴν πρώτην . |
τὸ αʹ ἀντισπαστικὸν τρίμετρον καταληκτικὸν ἐκ διιάμβου , διτροχαίου καὶ κρητικοῦ . τὸ βʹ ἰωνικὸν δίμετρον καταληκτικὸν ἐκ παίωνος δʹ | ||
καὶ δίδου ἐν ἀνέσει # λειότατον πλῆρες , μετὰ γλυκέως κρητικοῦ . Ἐπικαλεῖται δὲ τὸ φάρμακον θεοῦ χείρ . Τοῦτο |
δίμετρον ἀκατάληκτον παίωνα ἔχον ἀντὶ ἰωνικοῦ : τὸ δʹ δακτυλικὸν πενθημιμερές : τὸ αὐτὸ δὲ καὶ χοριαμβικὸν δύναται εἶναι δίμετρον | ||
τῆς ἀμφήκης . λάμπων πρόβολος ἐμός ] τὸ ηʹ ἀναπαιστικὸν πενθημιμερές . πρόβολος ] τεῖχος , ἀσφαλὴς προστάτης . πρόβολος |
] πενθημιμεροῦς . τὸ ιʹ ἐξ ἀντισπάστου πεντασήμου καὶ τροχαϊκῆς κατακλεῖδος . τὸ ιαʹ ἰωνικὸν ἀπὸ μείζονος ἑφθημιμερές . τὸ | ||
τινὲς δὲ ταῦτα τὰ τρία ἀπὸ ἰαμβικῆς βάσεως καὶ τροχαϊκῆς κατακλεῖδος . τὸ πέμπτον . . . ἐπιτρίτου καὶ . |
τρίτον τοῦ πρώτου ποδὸς πεντασυλλάβου καταληκτικόν . τὸ τέταρτον ἐκ διτροχαίου καὶ ἐπιτρίτου τρίτου ἀκατάληκτον . τὸ εʹ ὅμοιον τῷ | ||
Τὸ αʹ προσοδιακὸν τρίμετρον ἀκατάληκτον ἐξ Ἰωνικοῦ καὶ χοριάμβου καὶ διτροχαίου ἢ ἐπιτρίτου . Τὸ βʹ δακτυλικὸν τρίμετρον ἀκατάληκτον . |
οὗ ἐστιν ἐπισημότατον τὸ μετὰ τέσσαρας πόδας αὐτὸν ἔχον τὸν βακχεῖον : ὧν ὁ πρῶτος γίνεται καὶ σπονδεῖος καὶ ἴαμβος | ||
δή . ὦ τέκνον τέκνον , αἰαῖ , κατάρχομαι νόμον βακχεῖον , ἐξ ἀλάστορος ἀρτιμαθὴς κακῶν . ἔγνως γὰρ ἄτην |
οἰκείοις μέρεσι κατὰ καιροὺς γινομένων ἐπισημασιῶν , κατὰ μὲν τὰς συζυγίας ἡλίου καὶ σελήνης τῶν ἐκλειπτικῶν , κατὰ δὲ τὰς | ||
συζυγίας προηγοῦνται τοῦ β καὶ τοῦ π τῆς πρώτης ὄντα συζυγίας , ὅπερ ἄτοπον . ὡς γὰρ προείρηται τὰ τῆς |
στροφὴ καὶ ἀντίστροφος κώλων δέκα . τὸ αʹ ἰαμβικὸν δίμετρον ἀκατάληκτον , ὡς τὸ τίς σὰς παρήειρε φρένας . τὸ | ||
] διὰ τὸ δριμύ . ἰοὺ ἰού ] ἰαμβικὸν μονόμετρον ἀκατάληκτον . ἰοὺ ἰού : ἔκθεσις κορωνίδος ἐκ στίχων ἰαμβικῶν |
τρίτου καὶ σπονδείου . τὸ μβʹ ὅμοιον δίμετρον ὑπερκατάληκτον ἐξ ἐπιτρίτου πρώτου , διιάμβου καὶ συλλαβῆς . τὸ μγʹ ὅμοιον | ||
: τὸ Ϙʹ δίμετρον [ καταληκτικὸν ] ἤτοι ἑφθημιμερὲς ἐξ ἐπιτρίτου γʹ ἢ δισπονδείου καὶ βακχείου . προυσχόμην ] περιεποιούμην |
ἰαμβέλεγος πλεονάζων συλλαβῇ . τὸ δʹ ἐπιχοριαμβικὸν Πινδαρικὸν , ἢ ἰαμβέλεγος . τὸ εʹ προσοδιακὸν δίμετρον ὑπερκατάληκτον . τὸ Ϛʹ | ||
πενθημιμερές . τὸ Ϛʹ τροχαϊκὸν ἢ ἐπίτριτος . τὸ ζʹ ἰαμβέλεγος . τὸ ηʹ ἰαμβικὸν πενθημιμερές . τὸ θʹ ὅμοιον |
: ὅτε μέντοι ἀκατάληκτόν ἐστι , καθόλου σπανίως εἰς τὴν ἰωνικὴν περαιοῦται διὰ τὸ ἀπρεπῆ εἶναι τὴν ἰωνικὴν ἐπὶ τέλους | ||
ἰαμβικήν , ἤτοι ἑξάσημον ἢ ἑπτάσημον , τὴν δὲ δευτέραν ἰωνικὴν ἀπὸ μείζονος ἢ δευτέραν παιωνικήν , τὴν δὲ κατάκλειδα |
Στησιχόρειον τῷ Πινδαρικῷ ἰδιώματι : ὁ γὰρ τελευταῖος ἀντὶ τροχαίου ἴαμβον ἔχει . τὸ δʹ ἀναπαιστικὸν μονόμετρον ἀκατάληκτον . τὸ | ||
τῶν αὐτῶν σύνταξις . τὸ μὲν οὖν ἰαμβικὸν μέτρον εἰς ἴαμβον ἢ πυρρίχιον καταλήγει πάντως , εἰ μὴ χωλεύοι : |
ὧν τὸ πρῶτον τροχαϊκὸς τετράμετρος βραχυκατάληκτος , τοῦ ἕκτου ποδὸς τριβράχεος . ὁ δεύτερος παιωνικὸς καθαρὸς τετράμετρος καταληκτικός . τὸ | ||
δίμετρον ἀκατάληκτον . τὸ τρίτον ὅμοιον , τοῦ τρίτου ποδὸς τριβράχεος ἢ χορείου . τὸ τέταρτον ὅμοιον καθαρόν : τὸ |
γὰρ αἱ μακραὶ συλλαβαί , ὥσπερ ἐπὶ τῶν ἰάμβων καὶ τροχαίων , ὡς εἴρηται , εἰς δύο βραχείας , οὕτω | ||
ἐπιωνικὸν τρίμετρον ἀκατάληκτον . τὸ δʹ περίοδος ἐξ ἰάμβων καὶ τροχαίων . τὸ εʹ τὸ αὐτό . τὸ Ϛʹ ἰαμβικὸν |
ἐναντίως πως ἔχει πρὸς τὰ ἄλλα : καὶ γὰρ ἡ ἀναλυτικὴ ἐναντίως ἔχει πρὸς τὴν διαιρετικήν , ὅτι ἡ μὲν | ||
ἀποδεικτικὴ ἀπὸ τῶν αἰτιῶν τὰ αἰτιατὰ δείκνυσιν , ἡ δὲ ἀναλυτικὴ ἀπὸ τῶν αἰτιατῶν ἐπὶ τὰ αἴτια μεταβαίνει . πάσαις |
τὸ ἰαμβικὸν μέτρον καὶ ἄριστά γε εἰδέναι τί ἐστι τὸ ἰαμβικόν , οὕτως ἔχει καὶ ἐπὶ τῶν μελῳδουμένωνοὐ γὰρ ἀναγκαῖόν | ||
. Καὶ ἀπορήσεις ἐντεῦθεν , πῶς ἐπεὶ καὶ τὸ Δημοσθένης ἰαμβικόν ἐστιν ὄνομα , ἅτε τὴν παραλήγουσαν βραχεῖαν ἔχων , |
τροχαϊκῆς καταληκτικῆς . τὸ εʹ ἀντισπαστικὸν δίμετρον καταληκτικὸν Φερεκράτειον ἐξ ἀντισπάστου καὶ κρητικοῦ . τὸ Ϛʹ ὅμοιον τῷ γʹ ἰαμβικόν | ||
ἰωνικοῦ καὶ διιάμβου . τὸ καʹ ἀντισπαστικὸν δίμετρον ὑπερκατάληκτον ἐξ ἀντισπάστου ἢ ἐπιτρίτου τετάρτου , διιάμβου καὶ συλλαβῆς . τὸ |
δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον | ||
, ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ |
χοριαμβικοῦ ἐπιμίκτου , τοῦ τὴν δευτέραν ἰαμβικὴν ἔχοντος καὶ τροχαϊκοῦ ἑφθημιμεροῦς : Εὔιε κισσοχαῖτ ' ἄναξ , χαῖρ ' , | ||
ἐστι κώλων ἐννέα . τὸ αʹ σύνθετον ἐκ πενθημιμεροῦς καὶ ἑφθημιμεροῦς ἰαμβικόν . τὸ βʹ τρίμετρον ἐπιωνικὸν ἀκατάληκτον . ἄδηλον |
Ἅ - πας δὲ ὅρος ἐκ γένους διαφόρου καὶ ἰδιότητος σύγκειται : τὸ γεγονὸς μέν ἐστιν , ἀφ ' οὗ | ||
πέρας ἔχει τὴν ἀποδεικτικήν , ἡ ἀποδεικτικὴ δὲ ἐκ συλλογισμῶν σύγκειται , οἱ συλλογισμοὶ δὲ ἐκ προτάσεων , αἱ προτάσεις |
. τὸ γʹ ἰωνικὸν ἀπὸ μείζονος τρίμετρον καταληκτικόν , ἐξ ἰωνικῶν δύο καὶ δακτύλου . τὸ δʹ ὅμοιον ἀπ ' | ||
αʹ ἰωνικὸν ἀπ ' ἐλάττονος τρίμετρον ἀκατάληκτον καθαρόν , ἐξ ἰωνικῶν τριῶν : τὸ βʹ καὶ τρίτον ὅμοια ἰωνικὰ δίμετρα |
μὲν δοχμιακά , ὧν τὸ μὲν συντίθεται ἐξ ἰάμβου καὶ παίωνος διαγυίου , τὸ δὲ δεύτερον ἐξ ἰάμβου καὶ δακτύλου | ||
γʹ ὅμοιον τῷ αʹ : τὸ δʹ ὅμοιον ἡμιόλιον ἐκ παίωνος : τὸ εʹ δίμετρον ἐκ παλιμβακχείων : τὸ Ϛʹ |
. τὸ δʹ ὅμοιον τρίμετρον βραχυκατάληκτον ἐξ ἐπιτρίτου πρώτου , χοριάμβου καὶ ἰάμβου : τὸ μέντοι κῶλον τῆς ἀντιστροφῆς ἀντὶ | ||
βʹ καὶ Κρητικοῦ . Τὸ γʹ χοριαμβικὸν δίμετρον ἀκατάληκτον ἐκ χοριάμβου καὶ ἀντισπάστου . Τὸ δʹ πολυσχημάτιστον τρίμετρον ἀκατάληκτον ἐκ |
, ἐκ κώλων τροχαϊκῶν ἐπιμεμιγμένων χορείοις καὶ ἰάμβοις καὶ ἀναπαίστοις διμέτρων ὀκτωκαίδεκα : ὧν τὰ μὲν αʹ , βʹ , | ||
τοῦ μακροῦ καὶ τῆς ἐκθέσεως τούτου παράγραφος . κώλων δέκα διμέτρων πλὴν τοῦ τελευταίου καταληκτικῶν . ἐπὶ πᾶσι παράγραφος . |
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
ὑπερκατάληκτος εἰς δισύλλαβον , ὑπερκατάληκτος εἰς συλλαβήν , ἀκατάληκτος , καταληκτικὴ εἰς δισύλλαβον , καταληκτικὴ εἰς συλλαβήν , βραχυκατάληκτος . | ||
ὑπερκατάληκτος εἰς συλλαβήν , ἀκατάληκτος , καταληκτικὴ εἰς δισύλλαβον , καταληκτικὴ εἰς συλλαβήν , βραχυκατάληκτος . Ἐπισημότατον δὲ ἐν αὐτῷ |
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
ἰαμβικὰς ἢ εἰς ὄνομα κύριον καταληγούσας , σπανικὸν δὲ εἰς τροχαῖον : οὗτος γὰρ ὁ ποὺς εἰς κατάληξιν κόμματος ἢ | ||
ψύχων . Τὸ τροχαϊκὸν κατὰ μὲν τὰς περιττὰς χώρας δέχεται τροχαῖον , τρίβραχυν καὶ δάκτυλον , κατὰ δὲ τὰς ἀρτίους |
βʹ . τὸ ηʹ καταληκτικὸν ἐκ διτροχαίου καὶ βακχείου ἢ ἀμφιβράχεος . τὸ θʹ ὅμοιον τῷ βʹ . τὸ ιʹ | ||
. τὸ Ϛʹ ὅμοιον τρίμετρον καταληκτικὸν ἐξ ὁμοίων ποδῶν καὶ ἀμφιβράχεος . ἐπὶ τῷ τέλει παράγραφος . δυσδαίμων σφιν ἡ |
συζυγίας τροχαϊκῆς ἤτοι ἐπιτρίτου βʹ , τῆς δὲ βʹ Ἰωνικῆς καταληκτικῆς . Τὸ ιϚʹ , ὡς ἐμοὶ δοκεῖ , ἀναπαιστικόν | ||
τὸ γʹ περίοδος καταληκτική , ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς . τὸ δʹ χοριαμβικὸν καθαρὸν ἡμιόλιον . τὸ εʹ |
ἀνάπαιστος ὡς καὶ ἐνταῦθα τὸ πρύμνῃ πόλεως , ἀλλὰ καὶ χορεῖος . οἴακα νωμῶν : κυβερνήτης ὢν τῶν τῆς πόλεως | ||
ἕκτῃ ἢ τροχαῖος ἢ σπονδεῖος ἢ δάκτυλος ἢ ἀνάπαιστος ἢ χορεῖος , ἐν δὲ τῇ πρώτῃ καὶ τρίτῃ καὶ πέμπτῃ |
. , ὁ τροχαῖος τροχαλὸν ποιεῖ τὸν λόγον , διὸ τροχαῖος καλεῖται ὁ τῶν τρεχόντων ῥυθμός , ὥς φησιν Λογγῖνος | ||
ποὺς ἁπλοῦς . τὸ βʹ προσοδιακὸν τρίμετρον ἀκατάληκτον : αʹ τροχαῖος τοῦ αʹ ποδὸς λελυμένου : εἶτα ἰωνικὸς ἀπὸ μείζονος |
διτροχαίου καὶ κρητικοῦ . τὸ μεʹ παιωνικὸν τρίμετρον καταληκτικὸν ἐκ παιώνων τετάρτων δύο καὶ μολοττοῦ . τὸ μϚʹ ὅμοιον τῷ | ||
κώλων ιηʹ . τὸ αʹ παιωνικὸν τρίμετρον ἀκατάληκτον , ἐκ παιώνων τετάρτων : κατὰ μονοπεδίαν γὰρ μετρεῖται τὰ τοιαῦτα μέτρα |
καλῶς ἐδεσμεύθη . διπλῆ καὶ ἕπεται δυὰς ὁμοία ἐκ στίχων ἑφθημιμερῶν τῇ πρώτῃ . Γ μέλλω γέ τοι θερίδδειν : | ||
ἐξευρήματι καινῷ συμπτύκτοις ἀναπαίστοις . Καὶ τὸ ἐκ τῶν ἰαμβικῶν ἑφθημιμερῶν δικατάληκτον Καλλίμαχος Δήμητρι τῇ πυλαίῃ τῇ τοῦτον οὑκ / |
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως . | ||
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ ' |
συντονωτάτῳ διατόνῳ , δύο ἔσται μεγέθη μόνα ἐξ ὧν τὸ διάτονον συνεστηκὸς ἔσται . ἐὰν δὲ τὰ μὲν δύο ἴσα | ||
καὶ δίεσιν καὶ δίτονον κινοῖτο , ἐναρμόνιον ποιεῖ γένος . διάτονον μὲν οὖν λέγεται , ἐπειδὴ κατὰ τὸ πλεῖον διὰ |
ἄρα πυρός : διπλῆ καὶ ἐν εἰσθέσει περίοδος τοῦ χοροῦ παιωνικὴ ἑπτάκωλος , ἔχουσα τρίρρυθμα πρῶτον , δεύτερον , τρίτον | ||
καὶ μέτριος , καὶ ὁποῖος συγκεκραμένος . ἡ μὲν δὴ παιωνικὴ ἐν τοῖς μεγαλοπρεπέσι σύνθεσις ὧδ ' ἄν πως λαμβάνοιτο |
Δεῖ δὲ τὸ ἐλεγεῖον τέμνεσθαι πάντως καθ ' ἕτερον τῶν πενθημιμερῶν : εἰ δὲ μή , ἔσται πεπλημμελημένον , οἷον | ||
λειπούσης συλλαβῆς . τὸ γὰρ ἐγκωμιολογικὸν ἐκ δακτυλικοῦ καὶ ἰαμβικοῦ πενθημιμερῶν σύγκειται . Τὸ εʹ ὅμοιον τῷ βʹ , δακτυλικὸν |
ἀμφιβραχέος . τὸ ξαʹ ἰωνικὸν δίμετρον ἀκατάληκτον ἐκ διιάμβου καὶ ἰωνικοῦ ἀπ ' ἐλάττονος . τὸ ξβʹ ἰαμβικὸν τρίμετρον βραχυκατάληκτον | ||
ἐν ἀρχῇ , ἢ περίοδος . τὸ δʹ προσοδικὸν ἀπὸ ἰωνικοῦ καὶ χοριαμβικοῦ . τὸ εʹ τὸ αὐτὸ τῷ γʹ |
ἐν τῇ συζυγίᾳ ποδῶν τρισύλλαβος ᾖ , οἷον ἐπ ' ἀναπαιστικοῦ ἅδ ' Ἄρτεμις , ὦ κόραι : τοῦτο γὰρ | ||
καταληκτικοί . ὁ τρίτος ἀσυνάρτητος ἐξ ἀναπαιστικῶν πενθημιμερῶν : ἐξ ἀναπαιστικοῦ πενθημιμεροῦς αἰολικοῦ διὰ τὸ ἔχειν τὸν πρῶτον πόδα ἴαμβον |
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
] νέα γὰρ ἦν . κῶλα ιβʹ . τὰ πρῶτα ἰαμβικὴ βάσις , τὰ δὲ δεύτερα τροχαϊκὰ ἑφθημιμερῆ . + | ||
ξένων βέλτιστε : διπλῆ καὶ ἄλλη περίοδος τοῦ χοροῦ , ἰαμβικὴ καὶ αὕτη , ἐκ τριῶν μὲν διμέτρων ἀκαταλήκτων καὶ |
καταληκτικοῦ , ὃς γίνεται δάκτυλος . Τὸ γʹ ἀντισπαστικὸν διπλοῦν Φερεκράτειον : σύγκειται γὰρ ἐκ βʹ κώλων Φερεκρατείων , ὧν | ||
τὸ ζʹ τροχαικὸν δίμετρον ὅμοιον τῷ εʹ . τὸ ηʹ Φερεκράτειον λεῖπον μιᾷ συλλαβῇ . τὸ θʹ ἰαμβικὸν δίμετρον ὑπερκατάληκτον |
ξύμβο . ] ἐπίτριτος δʹ - λον δίδωσι . ] διτρόχαιος διαρραγείης ] δι - - ρα - μόθων ] | ||
καὶ βραχείας καὶ μακρᾶς καὶ βραχείας , τροχαϊκὴ ταυτοποδία ἢ διτρόχαιος : ἐκ βραχείας καὶ μακρᾶς καὶ βραχείας καὶ μακρᾶς |
τινα κίνησιν τῆς πρώτης λαμβανομένης , οὕτως ἐνταῦθα ὑστέραν τῆς τελευταίας : φθαρείσης γὰρ τῆς κινήσεως ἢ φθείρεται καὶ τὰ | ||
ἔθει : ἐπιλαμβάνονται δὲ αὐτοῦ διὰ τὸ ἀντὶ μιᾶς τῆς τελευταίας συλλαβῆς τοῦ ἰαμβικοῦ ἔχειν βʹ . Τὸ ηʹ χοριαμβικὸν |
τρίτον ἐξ ὑπερκαταλήκτου , ἀντὶ τᾶς ἐγὼ οὐδὲ Λυδίαν καὶ βραχυκαταλήκτου , πᾶσαν οὐδ ' ἐραννάν . Ἀνακρέων δὲ οὐκ | ||
Πελέκεως ἡ ἀνάγνωσις . δύναται καὶ ἀπὸ τοῦ μέτρου τοῦ βραχυκαταλήκτου τις ἄρχεσθαι , εἶτ ' αὐτῷ ἀνταποδιδοὺς τὸ ἴσον |
ἁπασῶν τελευταίας συλλαβὰς εἰς μακρὰν ποιήσει τις , ὁ Ἱππώνακτος ἴαμβος ἔσται . ὅτι ἐν τῷ βυρσηναίων καλουμένῳ χορῷ ἕκαστον | ||
ἔχειν αἱμάτων ἄγος ἐπαίροντα . στροφὴ ἑτέρα κώλων εʹ . ἴαμβος . μάντι ] ὦ . αὐτὸς ἑαυτὸν καλέσας ἐπὶ |
] κατὰ δὲ τὰς βάσεις ἡ δακτυλική βάσις καλεῖται ἡ κατάληξις τῶν κώλων , μεταφορικὴ δέ ἐστιν ἡ λέξις ἀπὸ | ||
σάλπιγξ , σφίγξ . Ἰστέον δέ , ὅτι ἄλλο ἐστὶ κατάληξις καὶ ἄλλο ἐπιφορά . Κατάληξις μέν ἐστιν , ὅταν |
οἶμαί γε τῶν νεωτέρων τὰς καρδίας ” στίχος τρίμετρος ἰαμβικὸς ἀκατάληκτος : τὸ βʹ “ πηδᾶν ὅ τι λέξει ” | ||
δʹ κῶλα . μεθ ' ὃ ἐν εἰσθέσει ἰαμβικὸς τρίμετρος ἀκατάληκτος . τῆς βʹ περιόδου κῶλα Ϛʹ , ὧν ὁ |
καὶ μέχρι πενταμέτρου χωρεῖ τὸ προσοδιακόν . Τὸ δʹ δίμετρον ὑπερκατάληκτον προσοδιακὸν ἀπὸ Ἰωνικοῦ ἀπὸ μείζονος καὶ χοριάμβου . τοῦτο | ||
ἀπ ' ἐλάττονος καὶ συλλαβῆς . Τὸ εʹ ἀντισπαστικὸν δίμετρον ὑπερκατάληκτον : ἔχει δ ' ἐπιτρίτους δʹ ἀντὶ ἀντισπάστων . |
εἰ δὲ βούλει προσοδιακὸν δίμετρον καταληκτικὸν ἐκ χοριάμβου καὶ Ἰωνικοῦ καταληκτικοῦ . Τὸ θʹ προσοδιακὸν τρίμετρον ἀκατάληκτον : ὁ αʹ | ||
τοῦ βʹ χοριάμβου , τοῦ γʹ Ἰωνικοῦ ἀπ ' ἐλάσσονος καταληκτικοῦ . τοῦτο καὶ ἀναπαιστικόν ἐστι δίμετρον ἀκατάληκτον , σπονδείου |
μδʹ ρκαʹ , πάλιν δὲ ἐκ τῆς ἐπιτετραμεροῦς ἢ τετράκις ἐπιπέμπτου τῆς κεʹ μεʹ παʹ γεννᾶται ἡ διπλασιεπιτετραμερὴς πέμπτων ἐν | ||
διπλάσιος , ὡς προδέδεικται , ἐξ ἐπιτρίτου καὶ ἐπιτετάρτου καὶ ἐπιπέμπτου , λαμβάνω πάλιν ἀντὶ μὲν ἐπιτρίτου μονάδα μίαν καὶ |
ἀντισπάστου καὶ ἐπιτρίτου βʹ : τὸ μέντοι τῆς ἀντιστροφῆς κῶλον διτρόχαιον ἔχει ἀντὶ ἐπιτρίτου . ἐπὶ τῷ τέλει τῆς τε | ||
Ἡφαιστίων φησίν : ἔχει δὲ τὸν αʹ πόδα ἀντίσπαστον ἢ διτρόχαιον , τὸν δὲ βʹ διίαμβον : τὸ ιβʹ ὅμοιον |
ἐπὶ τῷ τέλει διπλῆ ἔξω νενευκυῖα . ὡσαύτως καὶ τὸ ἀντεπίρρημα . ὑφ ' ὃ ἡ ἔξω διπλῆ . ἀντεπίρρημα | ||
τῇ στροφῇ . ὡμοίωται δὲ καὶ τὸ ἐπίρρημα καὶ τὸ ἀντεπίρρημα . ἀμφί μοι αὖτε : μιμεῖται τῶν διθυραμβοποιῶν καὶ |
τὸ πρῶτον ἰαμβικὸν δίμετρον ἀκατάληκτον , ἔχον τὸν πρῶτον πόδα ἀνάπαιστον , τὸν δὲ δεύτερον τρίβραχυν . ἑξῆς δύο καὶ | ||
' ἐκφωνῶν * ἠιόνες * : τὸ γὰρ ἰαμβικὸν καὶ ἀνάπαιστον δέχεται πόδα , οἷός ἐστιν οὗτος , καὶ δάκτυλον |
τοῦ αʹ ἰάμβου λελυμένου . ἔστι γὰρ ἐξ ἰαμβικοῦ καὶ δακτυλικοῦ πενθημιμερῶν . Τὸ ιαʹ Ἰωνικὸν δίμετρον καταληκτικὸν ἀπὸ ἐλάσσονος | ||
δὲ καὶ συλλαβὴν μίαν πλείονα . εἴρηται δὲ πλὴν τοῦ δακτυλικοῦ , ὅτι τοῦτο μόνον κατὰ μονοποδίαν μετρεῖται διὰ τὸ |
ἡ δὲ σελήνη ἑβδόμη οὖσα τάξιν ἐπέχει φθόγγου τοῦ λεγομένου ὑπάτης μέσης . τὸ δὲ ἀπὸ γῆς διάστημα μέχρι τῆς | ||
ἔχει λόγον , τὸν δὲ βαρὺν τὸν Κρόνον , εἴπερ ὑπάτης . Οἱ δὲ δὴ πρῶτοι ἀπὸ τῶν πρὸς ἡμᾶς |
τὸ δʹ ἰωνικὸν ἀπὸ μείζονος δίμετρον ἀκατάληκτον . τὸ εʹ προσοδιακὸν δίμετρον ἀπὸ χοριάμβου καὶ ἰωνικοῦ ἀπ ' ἐλάσσονος . | ||
δευτέρῳ . τὸ ιʹ ἰαμβικὸν δίμετρον ἀκατάληκτον . τὸ ιαʹ προσοδιακὸν μιᾷ συλλαβῇ περιττεῦον , ὅμοιον τῷ Ἐρασμονίδη Χαρίλαε . |
ἀρξάμενον δὲ ἀπὸ διμέτρου προχωρεῖ μέχρι τετραμέτρου καὶ βαίνεται κατὰ διποδίαν . ἐπιδέχεται δὲ καὶ τὰ τῶν καταλήξεων εἴδη πάντα | ||
τοίνυν μέτρον καλοῦμεν τὴν συζυγίαν , τουτ - έστι τὴν διποδίαν , ὡς ὅταν τὸ ἰαμβικὸν τὸ ἀπὸ ἓξ ποδῶν |
ἐλάττονος δίμετρον ἀκατάληκτον ἐκ παίωνος τετάρτου ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ | ||
καὶ πάλιν χοριάμβου : τὸ εʹ δίμετρον ἐκ χοριάμβου καὶ διιάμβου : τὸ Ϙʹ δίμετρον ἐκ χοριάμβου καὶ βακχείου : |
ἰαμβικήν . Τὸ δʹ ἀντισπαστικὸν δίμετρον ἀκατάληκτον , ὃ καλεῖται Γλυκώνειον , ἐκ διτροχαίου ἢ ἐπιτρίτου . Τὸ εʹ ἰαμβικὸν | ||
τὸ ιγʹ ἐξ ἀντισπάστου καὶ ἰαμβικοῦ ἑφθημιμεροῦς . τὸ ιδʹ Γλυκώνειον . τὸ ιεʹ ἰαμβικὸν δίμετρον ἀκατάληκτον . τὸ ιϚʹ |