λεῖψιν τῶν ἐναντίων , τὴν συμπλοκὴν εἰ μὴ τὰς χρίσεις ἀναλόγως γίνεσθαι . Δεῖ πάντα τοίνυν φυλαττόμενον τὸν μὲν τῆς | ||
δέκα , δευτέραν ἐπὶ δέκα , τρίτην ἐπὶ δέκα καὶ ἀναλόγως μέχρι τῆς δεκάτης , ἣν ἐνίοτε μὲν ὁμοίως τοῖς |
δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
ἔχει . ὑπόκειται δὲ καὶ ἡ παρὰ τοῖς ἀρχαίοις κατὰ διέσεις ἁρμονία , ἕως κδ διέσεων τὸ πρότερον διάγουσα διὰ | ||
τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου |
. ὅταν οὖν μάλιστα ἡ ☾ τῷ φωτὶ καὶ τοῖς ἀριθμοῖς ἀφαιρεῖ , ἔσονται διπλαῖ σημασίαι . καὶ οἱ πυρετοὶ | ||
☾ οὔσης ♑ κατακλιθῇ τις ἀφαιρούσης τῆς ☾ καὶ τοῖς ἀριθμοῖς καὶ τῷ φωτὶ ♄ συνόντος αὐτῇ , ἢ ☍ |
δὲ ἡμιτονίου , ὡς ἐλάχιστον μελῳδητὸν διάστημα , τῶν Πυθαγορείων δίεσιν καλούντων τὸ νῦν λεγόμενον ἡμιτόνιον . καλεῖσθαι δέ φησιν | ||
τὸ δὲ ἡμιόλιον κατὰ δίεσιν ἡμιόλιον τῆς ἐναρμονίου διέσεως καὶ δίεσιν τὴν ἴσην καὶ ἑπτὰ τεταρτημορίων διέσεων ἀσύνθετον διάστημα . |
κινήσεως τάξις τε καὶ ἀλόγων συμμετρία ἥ τε ἐν ἀριθμοῖς συμφώνοις ἢ συμφωνίαν περιέχουσιν εὐμετρία ἀπὸ τῆς κατ ' οὐσίαν | ||
συγκε - χυμένη μὲν ἐγέννησεν ἁρμονίαν , λόγοις δὲ τοῖς συμφώνοις τεταγμένη ῥυθμόν . ἀλλ ' ἐπεὶ παθῶν ψυχικῶν ἡ |
ἀνεγερθείη τρόπον κίονος ἑνός , μυρίοις τῆς αἰθερίου σφαίρας ἀπολειφθήσεται διαστήμασι , καὶ μάλιστα κατὰ τοὺς ζητητικοὺς τῶν φιλοσόφων , | ||
τοῦ μονοχόρδου κανόνος . Ὅτι οὐ δεόντως οἱ Ἀριστοξένειοι τοῖς διαστήμασι καὶ οὐ τοῖς φθόγγοις παραμετροῦσι τὰς συμφωνίας . Ὅτι |
αἱρετὸν οὐχ αἱρούμεθα , μᾶλλον δὲ ἔχειν αὐτὸ αἱρούμεθα . Ὁμοίως δὲ καὶ τὰ μὲν ἀγαθὰ πάντα ἐστὶν ὑπομενετὰ καὶ | ||
μὲν ὀλίγον δὲ καὶ καλλικαρπεῖ καὶ γλυκυκαρπεῖ ἐκεῖ μόνον . Ὁμοίως δὲ καὶ ὁ φοῖνιξ καὶ ἔτι μᾶλλον ἐν τοῖς |
τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
ταῖς τοῦ τελευτήσαντος τύχαις . οἱ δὲ ὕστερον πρὸς ἅπαντας διαφόρως . οὕτω Δίδυμος ἐν τῷ περὶ Ποιητῶν . Ἐπιστάτης | ||
μάχην οὐ τοῦ λόγου καὶ τῆς αἰσθήσεως ὑποληπτέον ἀλλὰ τῶν διαφόρως ὑποτιθεμένων ἁμαρτίαν , ἤδη τῶν νεωτέρων παρ ' ἀμφότερα |
: διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί | ||
μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν |
τὸν αὐτὸν ἔλθῃ δεύτερον φθόγγον , εἶτα πάλιν ἀπὸ τοῦδε ἡμιτόνιον διαστήσασα τρίτον ὁρίσῃ φθόγγον ἄλλον , ἀπὸ τούτου κατὰ | ||
νήτην διεζευγμένων τόνος , ἀπὸ νήτης διεζευγμένων ἐπὶ τρίτην ὑπερβολαίων ἡμιτόνιον , ἀπὸ τρίτης ὑπερβολαίων ἐπὶ ὑπερβολαίων διάτονον τόνος , |
τῷ τριπλασιασμῷ τῆς ἡμιτονιαίας διαστάσεως ἐπιδεικνύον : τὸ δ ' ἐναρμόνιον κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον τοῖς μὲν διεσιαίοις | ||
τίθεται , ἣν ὡς κατὰ τοὺς Πυθαγορικοὺς κύβον οὖσαν καὶ ἐναρμόνιον ἐπίηρον κατωνόμασεν . ὁ κύβος δὲ ἐναρμόνιον διὰ τοὺς |
διδείσκω : καὶ ἐπεὶ πρὸ τοῦ σκ ἐν ἁπλῇ καὶ ἀκινήτῳ λέξει ἡ ει δίφθογγος οὐκ ἔστιν , ὑπέρθεσις γίνεται | ||
' ἐνέργειαν ἡ ἐπιστήμη , ἀλλ ' οὖν ἐν τῷ ἀκινήτῳ αἰτίῳ ἦν ἡ τῶν πραγμάτων ἐπιστήμη καὶ πρὸ τοῦ |
τῆς ΓΘ μοιρῶν ρξ μθ λϚ . ταύταις δ ' ἀκολούθως καὶ ἡ μὲν ὑπὸ ΖΑΘ γωνία τοιούτων κδ κθ | ||
τῆς ΘΓ μοιρῶν ρμα κη ιδ . ταύταις δ ' ἀκολούθως καὶ ἡ μὲν ὑπὸ ΘΑΖ γωνία τοιούτων λε ιγ |
ποτὲ μὲν κατὰ μείωσιν ἢ ἀφαίρεσιν , ποτὲ δὲ κατὰ πρόσθεσιν ἢ αὔξησιν . οἱ οὖν τοιοῦτοι οἰκείως καλοῦνται μυουρίζοντες | ||
, ταῖς τε προτάσεσι λέγω καὶ συμπεράσματι , τήν τε πρόσθεσιν καὶ τὴν ὑφαίρεσιν γίνεσθαι . οὐδὲν δὲ διαφέρει , |
λέγῃ ἡ ἡδονὴ σπουδαία ἐστιν , εἰ μὲν πρὸς τὴν γεωμετρικὴν ἡδονὴν ἀποβλέψας φησίν , οὐ τὸ προκείμενον συνάγεται : | ||
. διὰ τοῦτο τὸν Βρύσωνος τετραγωνισμὸν οὐκ ἄν τις εἴποι γεωμετρικὴν ἀπόδειξιν : χρῆται γὰρ ἀξιώματι ἀληθεῖ μὲν κοινῷ δέ |
λοιπὰ ἡμίφωνα μικτὸν λαμβάνει τὸν ψόφον ἐξ ἑνὸς μὲν τῶν ἡμιφώνων τοῦ σ , τριῶν δὲ ἀφώνων τοῦ τε δ | ||
ἐν τοῖς τοσούτοις ὀνόμασι καὶ ῥήμασι καὶ τοῖς ἄλλοις μορίοις ἡμιφώνων τε καὶ ἀφώνων γραμμάτων συμπλοκὰς τῶν μὴ πεφυκότων ἀλλήλοις |
τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ | ||
σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ |
] μήτε [ σάρκινον ] εἶναι [ κατ ] ' ἀναλογίαν [ ἔχον ] τι [ σῶμ ' ὅπερ ] | ||
. Ἐξ εὐχεροῦς δὲ καὶ διὰ μνήμης ἔχων ποιήσεις τὴν ἀναλογίαν τοῦ ἐπιμερισμοῦ οὕτως . ἐπὶ μὲν Κρόνου τοὺς λ |
ὑπερέχοντες , παράλληλοι δὲ δύο τόνον , οἱ δὲ τρίτοι τριημιτόνιον : ἀναλόγως δὲ ἕξει καὶ ἐπὶ τῆς τῶν λοιπῶν | ||
παρενθέσεως τῆς ἐν ὀκταχόρδῳ . ἀπεῖχε γὰρ αὕτη τῆς παρανεάτης τριημιτόνιον ἀσύνθετον , ἀφ ' οὗ διαστήματος ἡ μὲν παρεντεθεῖσα |
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
τοῦ μεσημβρινοῦ δὲ καύματος ἀκμάζει τῇ ψυχρότητι : πάλιν δὲ ἀνάλογον ἀπολήγει πρὸς τὴν ἑσπέραν καὶ τῆς νυκτὸς ἐπιλαβούσης ἀναθερμαίνεται | ||
αὐτὸν πρὸς αὐτήν . μαθηματικὰ δὲ εὗρεν τὴν μέσην καλουμένην ἀνάλογον , περὶ ἧς ἐν τῇ Ἀποδεικτικῇ λόγον ἐποιησάμεθα . |
χρόνων ἁπάντων γένεσις , οὕτως ἔχει καὶ ἐπὶ τῶν ἄλλων συζυγιῶν . Ἡ πέμπτη συζυγία τῶν βαρυτόνων ἐκφέρεται μὲν διὰ | ||
τῶν παρεπομένων τῷ ῥήματι , ἐγκλίσεων λέγω καὶ διαθέσεων καὶ συζυγιῶν καὶ χρόνων ἀρκούντως εἴπομεν , φέρε καὶ ἑκάστην τῶν |
Εἴωθεν ὁ γεωμέτρης ἐν τοῖς τῶν σχέσεων λόγοις δεικνύναι τὴν ταυτότητα διήκουσαν ἐν ἅπασι τοῖς πρὸς τὸ αὐτὸ τὴν αὐτὴν | ||
τρῆμα , μηδετέρου μετέχουσαν . ἀλλ ' ἰσότητα μόνον καὶ ταυτότητα . κατὰ βραχὺ δὲ τὰ γειτνιῶντα αὐτῇ καὶ ἐγγυτέρω |
εἰς τὸν ἀριθμὸν τῶν ἀφώνων πάντων [ δὲ ] τῶν φωνηέντων προτάσσεται , οὐδενὶ ὑποτάσσεται εἰ μὴ συμφώνοις , ὡς | ||
: καὶ ὥσπερ ἀπὸ τοῦ ἁρμοστός ὁρμαστός κατὰ μετάθεσιν τῶν φωνηέντων , ἐκ δὲ τοῦ ὁρμαστός γίνεται ὁρμαθός κατὰ ἀποβολὴν |
τῆς ἐν ἡμῖν σοφῆς δημιουργίας οὐδέτερον , τοῖς αἰσθητοῖς ἀεὶ ἀνάλογα προβαλλομένης τὰ αἰσθητήρια : τῷ μὲν γὰρ ῥᾳδίως αἰσθάνεσθαι | ||
' ὕπνον φαντάσματα τῶν ἐν ταῖς ἐγρηγόρσεσι παθῶν ἢ ἐνεργειῶν ἀνάλογα . δόξειε δ ' ἂν Ἀριστοτέλης τῇ φυτικῇ τὸν |
ὡς οὗτος [ ὁ ποιητής ] , ἤγουν στροφῇ , ἀντιστρόφῳ καὶ ἐπῳδῷ , ἢ στροφῇ μόνῃ καὶ ἀντιστρόφῳ : | ||
ὁ Ὅμηρος τὰ ἀνατολικά , ἀριστερὰ δὲ τὰ δυτικά : ἀντιστρόφῳ δὲ , ὅτι ἐκινοῦντο ἀπὸ τῶν ἀριστερῶν ἐπὶ τὰ |
διπλασιασμός , ὅτ ' ἂν τὴν προειρημένην κατὰ βάθος πύκνωσιν μανότητι μετατάττομεν ἢ οἱ παρεντεθέντες ἐξελίξωσι κατὰ βάθος . Ἀποκαταστῆσαι | ||
ἀλλὰ πάντες γε τὸ ἓν τοῖς ἐναντίοις σχηματίζουσιν οἷον πυκνότητι μανότητι καὶ τῷ μᾶλλον καὶ τῷ ἧττον , ταῦτα δέ |
Ἀλκαῖος Γανυμήδῃ ἔοικεν αἰγίθαλλος διακωλύειν τὸ πρᾶγμα . τῷ δὲ τόνῳ ὡς ἀρύβαλλος . , . . , . ᾄδεις | ||
, πάθος κινοῦσα , σχεδὸν τῇ πικρίᾳ μόνον καὶ τῷ τόνῳ τοῦ Δημοσθενικοῦ χαρακτῆρος λειπομένη , τοῦ δὲ πιθανοῦ καὶ |
τῶν σνϚ πρὸς τὰ σμγ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους λόγους ἐν πρώτοις ἀριθμοῖς τούτοις : | ||
ἀπὸ προσλαμβανομένου ἐπὶ νήτην συνημμένων . ὑπάρχει δὲ ἐν αὐτῷ τετράχορδα τρία συνημμένα τάδε : ὑπάτων μέσων συνημμένων , καὶ |
͵δ καὶ τλγʹ . Τῶν δὲ τῆς οἰκουμένης θαλασσῶν τὰ μήκη καὶ πλάτη τόνδε τὸν τρόπον ἔχει . Τῆς μὲν | ||
ἀμβλεῖαν γωνίαν ἔχον πρὸς Σούσοις , τὰ δὲ τῶν πλευρῶν μήκη τὰ ἐκκείμενα : εἶτ ' ἐπιλογίζεται , διότι συμβήσεται |
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
εἴδη , ἐξ ὧν αἱ βάσεις πλέκονται ὥσπερ ἐν τοῖς φθόγγοις τέτταρα ὅθεν αἱ πᾶσαι ἁρμονίαι , τεθεαμένος ἂν εἴποιμι | ||
τὸ κατασταλτικώτερον , ὅτι καὶ τὸ μὲν ὀξύτερον ἐν τοῖς φθόγγοις συντατικώτερον , τὸ δὲ βαρύτερον χαλαστικώτερον , ὥστε εἰκότως |
τῷ κανόνι καταμετρήσεως ἐπιλογιζόμενοι τὸ τοιοῦτον , ἀλλὰ διά τινων σεληνιακῶν ἐκλείψεων . τὸ μὲν γὰρ πότε ἴσην ὑποτείνει γωνίαν | ||
οὐδὲν διημάρτηται ἐν τῷ τὰς ἀποδείξεις τὰς διὰ τῶν Ϛ σεληνιακῶν ἐκλείψεων , τουτέστιν περί τε τὸν λόγον τῶν ξ |
λόγον εἶναί φησιν : αὕτη δὲ ἐν Συρακούσαις κρήνη , ὑποτέτακται δὲ ἡ Καμάρινα ταῖς Συρακούσαις . Ἔχει δὲ ἡ | ||
ἐστιν : ἐκθοῦ σύστημα μονάδων ἢ ἄρτιον ἢ περιττὸν ὡς ὑποτέτακται : α , β , δ , η , |
κατὰ μέγεθος , ἤτοι ὡς τά τε σύμφωνα καὶ ὁ τόνος ἢ ὡς τὰ τούτοις σύμμετρα , τὸ δὲ κατὰ | ||
. δεύτερον τὸ ὑπὸ μεσοπύκνων περιεχόμενον , οὗ δεύτερος ὁ τόνος ἐπὶ τὸ ὀξύ : ἔστι δὲ ἀπὸ παρυπάτης ὑπάτων |
διὰ ποιότητα καὶ διὰ μὲν τὴν περιουσίαν τῆς ὕλης ἢ ποσότητι ἢ ποιότητι ἢ τῷ συναμφοτέρῳ : ποσότητι μὲν ὡς | ||
τὰ αὑτοῦ μέρη συντεθέντα πλείονα ἀποδίδωσιν αὐτοῦ καὶ ὑπερπαίοντα τῇ ποσότητι : διὰ τοῦτο γὰρ καὶ οὕτως ὠνόμασται , ὡς |
ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
ἀσύνθετον οὔτε πλείω ἑνὸς ἡμιτόνια κατὰ τὸ ἑξῆς ἐν τούτῳ μελῳδεῖται τῷ γένει : οὔτε μὴν κατὰ χρῶμα : πάλιν | ||
δὲ παρυπάτης καὶ λιχανοῦ τῷ λιχανοῦ καὶ μέσης καὶ ἴσον μελῳδεῖται καὶ ἄνισον ἀμφοτέρως : ἴσον μὲν ἐν τῷ συντονωτέρῳ |
ἡ τῶν πλανήτων κίνησις ἡ ἀπὸ δύσεως εἰς ἀνατολάς : ἐπῳδῷ δέ , ὅτι ἵσταντο ἐν ἑνὶ τόπῳ καὶ ἔλεγον | ||
[ ὁ ποιητής ] , ἤγουν στροφῇ , ἀντιστρόφῳ καὶ ἐπῳδῷ , ἢ στροφῇ μόνῃ καὶ ἀντιστρόφῳ : οἱ δ |
κατὰ μὲν ἑβδομάδα τασσομένου , τοῦ δὲ ψυχικοῦ καθ ' ἑξάδα , τὸ φυτικὸν ἀναγκαίως κατὰ τὴν πεντάδα πίπτει , | ||
τὴν ὁλότητα . ὅτι ἑπτὰ τῶν σφαιρῶν οὐσῶν κατὰ τὴν ἑξάδα τὰ διαστήματά ἐστι : μονάδι γὰρ ἀεὶ ἐλάττονα . |
ΓΖΝ ἐστιν ἴση διὰ τὴν ὁμοιότητα τῶν ΑΒ , ΓΔ στερεῶν , ἴσον ἄρα ἐστὶ [ καὶ ὅμοιον ] τὸ | ||
πόδα δακτύλους ιϚʹ : γίνονται ιθʹ : τοσούτων ἔσται ποδῶν στερεῶν τὸ μάρμαρον . Μάρμαρον μῆκος ποδῶν Ϛʹ , πλάτος |
, μάλιστα δὲ τῶν τῆς σελήνης , ἀπὸ τῶν αὐτῶν λαμβανομένων , τὰς κατὰ μῆκος αὐτῶν ἀκριβεῖς ἐποχὰς διακρινοῦμεν ἀπό | ||
δύο προτάσεων δείκνυταί τι , λέγειν καὶ διὰ πλειόνων προσεχῶν λαμβανομένων καὶ μηδὲν ἄλλο ἀλλ ' ἢ τὸ προκείμενον συμπέρασμα |
δὲ οὕτως ὥστε ἵστασθαι μέχρι τοῦ γένους . οἷον τῇ τριάδι ὑπάρχει μὲν [ ἀριθμὸς καὶ ] τὸ ὄν , | ||
ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ ἐπιμόριοι ἀφ ' ἡμιολίου ἀρχόμενοι |
πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ | ||
οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν |
ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν | ||
θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται |
οἳ ἐδόκουν λέγειν ἀριθμοὺς ἐκ τοῦ ἀνάλογον , οἷον δικαιοσύνην τετράδα καὶ ἄλλον ἄλλως : ἐκείνως δὲ μᾶλλον τῷ πλήθει | ||
δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς εὑρήσεις τοῦτο . μετέχει |
' οὐδ ' ὅτε ἄρθρα εἰς σύνταξιν ἀντωνυμίας παραλαμβάνεται , ἔγκλισιν ἀναδέχεται , οὐ καθὸ γένους ἐστὶ παρεμφατικά , ἀλλὰ | ||
τὴν αὐτὴν πανταχῇ , συμμεταβάλλειν δὲ τῇ καθ ' ἑκάστην ἔγκλισιν τῆς σφαίρας ὑπεροχῇ τῶν μεγίστων ἢ ἐλαχίστων ἡμερῶν , |
δὲ καὶ τοῦτο παρένταξις , δι ' ὅτι ἀνομοίων ἐστὶ παρένθεσις , οἷον ψιλῶν παρ ' ὁπλίτας : τὴν γοῦν | ||
εἰσὶν ὀκτώ , ὄνομα ἀντωνυμία ῥῆμα μετοχὴ ἐπίρρημα πρόθεσις σύνδεσμος παρένθεσις : τισὶν δὲ δοκεῖ καὶ προσηγορία . , . |
τὴν κρίσιν . τῇ δὲ τάξει τῶν ἐνθυμημάτων καὶ τοῖς μερισμοῖς τῶν ἐπιχειρημάτων καὶ τῇ καθ ' ἕκαστον εἶδος ἐξεργασίᾳ | ||
προθέσεως ἐν παραθέσει . δι ' ὃ καὶ ἐν τοῖς μερισμοῖς χρὴ νοεῖν τὴν μὲν προτέραν πρόθεσιν ἐπὶ τὸ ἐγκείμενον |
τὴν τῶν Ε Ζ ὑπεροχήν , ὅπερ ἐστὶ κατὰ τὴν μεσότητα τὴν τῇ ἁρμονικῇ ὑπεναντίαν . δῆλον δ ' ὅτι | ||
τὸν ἠδικημένον , καὶ προστεθὲν τῷ ἠδικημένῳ , ἰσότητα καὶ μεσότητα ἐποίησε . καὶ διὰ τοῦτο καὶ δίκαιον καλεῖται , |
. τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας | ||
ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι |
' ὃ κλίμα τις βούλεται . Περὶ μὲν οὖν τῶν ἀναφορῶν καὶ ἐν τῇ αʹ βίβλῳ ἐδηλώσαμεν , νυνὶ δὲ | ||
ταῖς μεταξὺ διαστάσεσιν , οὐκέτι οἱ τῶν προκειμέ - νων ἀναφορῶν ἢ καταφορῶν ἢ μεσουρανήσεων χρόνοι τοὺς ἑπομένους τόπους οἴσουσιν |
ἐν τῇ χώρᾳ τὰ δένδρα τὰ τοιαῦτα μεγάλα καὶ τοῖς μήκεσι καὶ τοῖς πάχεσιν : ἐν γοῦν Μέμφιδι τηλικοῦτο δένδρον | ||
κομιδῇ νήπιος , ἐπιβαίνων δ ' αὖθις ἐνιαυτῶν περιόδοις καὶ μήκεσι χρόνων ὀψὲ καὶ μόλις ἐτελειώθη : τοῦ γὰρ μακροβιωτάτου |
τὸ μὲν γὰρ ἡμιτόνιον εἰς ἓξ δωδεκατημόρια , ἡ δὲ δίεσις , ἡ μὲν τεταρτημόριος εἰς τρία , ἡ δὲ | ||
διάστημα τόνου ἢ διέσεως : ὁ γὰρ τόνος καὶ ἡ δίεσις ἀρχὴ μὲν συμφωνίας , οὔπω δὲ συμφωνία . ὁ |
πάντες οἵ τε μιμηταί , πολλοὶ μὲν οἱ περὶ τὰ σχήματά τε καὶ χρώματα , πολλοὶ δὲ οἱ περὶ μουσικήν | ||
τῇ εὑρέσει τῶν τριῶν σχημάτων καὶ τῷ κατανοῆσαι ὅτι τρία σχήματά ἐστιν καὶ οὔτε πλέον οὔτε ἧττον , ὑφ ' |
ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον . | ||
ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν |
διάγνωσιν . Σύμμετρα δὲ εἰ τῷ ποσῷ τυγχάνει καὶ ὑπόστασιν ἀναλογοῦσαν ἔχει , ψυχράν τινα δυσκρασίαν σημανεῖ τοῦ ἥπατος : | ||
πηγάνῳ ὅμοιον , κλῶνας μικρούς . δύναμιν δ ' ἔχει ἀναλογοῦσαν τῷ τῆς μήκωνος ὀπῷ . Ὕσσωπος πόα γνώριμος δισσή |
τοῦ πίνειν αἱ παροινίαι . τὰ τοιαῦτα δὲ τοῖς προειρημένοις ὁμοιοτρόπως μετιὼν ἐγκωμίων καὶ ψόγων πολλῶν εὐπορήσεις . Αὐξήσεις δὲ | ||
κατέχοι τὰ οὖρα , εἴτε καὶ ἀπροαιρέτως ἐκκρίνοιτο , μεθοδευέσθω ὁμοιοτρόπως τῶν τε ἐμβροχῶν καὶ καταπλασμάτων , ἔτι δὲ καὶ |
θαλάσσῃ σκύλλονται καὶ σύρονται καὶ ἐσθίονται πρὸς τῶν ἀναύδων καὶ ἀφώνων παίδων τῆς ἀμιάντου , δηλαδὴ θαλάσσης . οὐ γὰρ | ||
κατὰ μίαν συλλαβὴν συνεκφερόμενα : ἡμιφώνων τε πρὸς ἡμίφωνα καὶ ἀφώνων καὶ φωνηέντων πρὸς ἄλληλα συμπτώσεις , αἳ διασαλεύουσι τοὺς |
βραχύ τι τἀληθοῦς διαπεσεῖν οἶμαι . εἰ δὲ ταῖς αὐταῖς ἀναλογίαις κἀπὶ τῶν λοιπῶν χρωμάτων χρήσαιτο καὶ τὰ μὴ ὠχρὰ | ||
δὲ τὰς κινήσεις καὶ χορείας ἐν τάξεσιν ἡρμοσμέναις καὶ ἀριθμῶν ἀναλογίαις καὶ περιόδων συμφωνίαις : ἐν αἷς ἁπάσαις τὴν ἀρχέτυπον |
οἰκεῖον τῇ τετράδι . ἡ γὰρ πρώτη πυραμὶς ἐν τῇ τετράδι θεωρεῖται , τριγώνου μὲν βάσεως ὑποτεθείσης τοῦ τρία , | ||
τὸ ὑπὸ τῶν ἄκρων ἔλαττόν ἐστι τοῦ ἀπὸ τοῦ μέσου τετράδι . διὰ τί τετράδι ; ἐπειδὴ καὶ ἡ ὑπεροχὴ |
. εὐθετεῖ δὲ καὶ καυϲώδει πυρετῷ ἐν καιρῷ διδόμενον , εὐθετεῖ δὲ καὶ τοῖϲ ὀνειρώττουϲι ϲυνεχῶϲ καὶ γονορροικοῖϲ πινόμενον : | ||
δὲ καὶ κολοκυνθίδοϲ κλύϲματα τοῦ ἐντέρου μετὰ Ϲικυωνίου χρήϲιμα : εὐθετεῖ δὲ καὶ τὰ διουρητικὰ πινόμενα καὶ καϲτόριον ὡϲαύτωϲ . |
ΔΓ : ὅπερ ἄτοπον . λοιπαὶ ἄρα . , ] διαιρετέον τὰς ἐννέα γωνίας εἰς ἓξ καὶ τρεῖς , τρεῖς | ||
. τοῦ δὲ περὶ ἑκάστης αἰσθήσεως λόγου πρότερον τὰ αἰσθητὰ διαιρετέον . Τῶν τοίνυν αἰσθητῶν τὰ μὲν καθ ' αὑτά |
παράγραφος καὶ διπλῆ ἔξω νενευκυῖα . ἑξῆς δὲ τριστιχία ἰαμβικὴ παραγράφῳ τερματιζομένη : μεθ ' ἣν ἀντῳδὴ καὶ ἀντιστροφὴ , | ||
ἔξω διπλαῖ τῆς ἀντιστροφῆς : τὰ γὰρ τετράμετρα τῶν ἰαμβείων παραγράφῳ περατοῦται . ἀντιστροφὴ κώλων ζʹ . οὔτε συμπολίτην οὔτε |
συντεθέντων ἀποτελεῖται ἑβδομάς . ἀμήχανον δ ' ἦν τὰ σώματα ἑβδομάδι μετρεῖσθαι κατὰ τὴν ἐκ διαστάσεων τριῶν καὶ περάτων τεττάρων | ||
συντεθέντων ἀποτελεῖται ἑβδομάς : ἀμήχανον δ ' ἦν τὰ σώματα ἑβδομάδι μετρεῖσθαι κατὰ τὴν ἐκ διαστάσεων τριῶν καὶ περάτων τεττάρων |
δάκτυλοι ιβ , ὥσπερ καὶ ἐπ ' αὐτῶν τῶν ἐκλειπτικῶν κανονίων ὡς τοῦ ἑνὸς δακτύλου περιέχοντος τὸ ιβʹ τῆς διαμέτρου | ||
τῆς ἐμπτώσεως καὶ τῶν τῆς ἀνακαθάρσεως χωρὶς ἐξ ἑκατέρου τῶν κανονίων εἰσοίσομεν καὶ τὸν ἀπὸ τοῦ ἀπογείου κατὰ τὴν φαινομένην |
πρὸς παράμεσον : ὑπάτη δὲ ὑπάτων , ὅτι τοῦ πρώτου τετραχόρδου πρώτη τίθεται : τὸ γὰρ πρῶτον ὕπατον ἐκάλουν οἱ | ||
νήτη ὑπερβολαίων . Ὥσπερ οὖν ἐνταῦθα τὰ μὲν τοῦ ὑπατῶν τετραχόρδου κατὰ τρία γένη , τὰ δὲ μέσων , τὰ |
φάσκει αὐτὸν τετυφλῶσθαι „ . συντάσσει γὰρ τοῦτο τοῖς διχογραφουμένοις πρωτοτύποις τῶν ἐθνικῶν . ἐπάγει γοῦν ” οὐ γὰρ ὡς | ||
ὅτι ἐν μόνοις τοῖς εἰρημένοις πυθμενικοῖς ὅροις ὥσπερ ἑστῶσι καὶ πρωτοτύποις φαίνεται : ἐπὶ γὰρ τῆς ἀριθμητικῆς καὶ γεωμετρικῆς ἀπείρους |
κατὰ τὴν μονάδα ἔμπαλιν τὰ ρκηʹ . ἐὰν δὲ ἐν περισσοῖς ὅροις ἡ ἔκθεσις γένηται , οἷον ἐν ἑπτά , | ||
γὰρ βʹ βʹ : διὸ καὶ περισσοειδὴς εἴρηται ταὐτὸ τοῖς περισσοῖς πεπονθυῖα . πρὸς ἀλλήλους δὲ λέγονται πρῶτοι ἀριθμοὶ καὶ |
, τῶν δὲ διὰ θυμὸν θερμότερα , τῶν δὲ διὰ πύκνωσιν ὑπόλευκα . σημεῖον τῶν ἀφημερινῶν λευκότης καὶ λεπτότης οὔρων | ||
αὐτὸ ποιεῖ . τὰς δὲ ἀμβλυωπίας τὰς ἐχούσας παχύτητα καὶ πύκνωσιν περὶ τοὺς ὑμένας ὠφελοῦσι τῶν δριμυτάτων τῶν ἐδεσμάτων προσφοραί |
μεθόδους συνθήκην τε καὶ ἀνάπαυσιν κοινωνεῖ , σχήμασι δὲ καὶ κώλοις πάντῃ διέστηκεν . ὁ τοίνυν ἐναργῆ σφοδρότητα βουλόμενος ἐργάζεσθαι | ||
σοι ] ἀντισπαστικὰ κῶλα δʹ ἰσόμετρα τοῖς ἄνω τοῦ χοροῦ κώλοις . πέφρικα ] οὗτος ὁ χορὸς συνέστηκεν ἐκ κώλων |
ὑποκειμένοις ἐπιβάλλουσα . Ἀλλὰ γὰρ καὶ τὴν τῶν πρώτων στοιχείων πεντάδα τούτοις ἀναλογοῦσαν εὑρήσομεν , τῷ μὲν ὑπάτων γῆν ὡς | ||
καὶ ὀκτασήμου . μερίζω τὴν ὀκτάδα πάλιν εἰς τριάδα καὶ πεντάδα : οὐδ ' οὕτως ἔσται ῥυθμικὸς λόγος . τὸν |
εἰκότως οὖν οὐ βραχέσι χρήσεται προοιμίοις , ἀλλὰ γραμματικῇ , γεωμετρίᾳ , ἀστρονομία , ῥητορικῇ , μουσικῇ , τῇ | | ||
ἄρα ἀιδίων εἶναι καὶ μενόντων , οἷα καὶ τὰ ἐν γεωμετρίᾳ . Εἰ δὲ ἀιδίων καὶ μενόντων , οὐ σωμάτων |
, καὶ τῇ τούτων διαφορᾷ , ἐπογδόῳ . τὴν δὲ πρόβασιν ἀνάγκῃ τινὶ φυσικῇ ἀπὸ τοῦ βαρυτάτου ἐπὶ τὸ ὀξύτατον | ||
τῷ ζῳδίῳ οἱ ἀγαθοποιοὶ ἀστέρες ἐπιπαρόντες κατὰ τὴν τῶν χρόνων πρόβασιν τὰς εὐτυχίας ἀποτελοῦσιν , ὁτὲ δὲ καὶ κληρονόμους ἀλλοτρίων |
διὰ τῶν ἡμικυλίνδρων εὑρηκέναι , Εὔδοξος δὲ διὰ τῶν καλουμένων καμπύλων γραμμῶν . συμβέβηκε δὲ πᾶσιν αὐτοῖς ἀποδεικτικῶς γεγραφέναι , | ||
ὅσα τε ἑλικοειδῆ καὶ ὅσα κατὰ τὰς τομὰς ὑφίσταται εἴδη καμπύλων γραμμῶν . καὶ ἔοικεν τὸ μὲν σημεῖον εἰκόνα φέρειν |
ἀνάγκη ἑαυτοῦ ὁμοιότητα αὐτῷ εἶναι ; Πῶς ; Εἰ ἑνὸς ἀνομοιότης ἔστι τῷ ἑνί , οὐκ ἄν που περὶ τοῦ | ||
οὐδ ' ἀπὸ τοῦ ἀνόμοιος ῥῆμα , πρᾶγμα δὲ ἡ ἀνομοιότης . καὶ ἐπίρρημα δὲ ἀπ ' ἀμφοῖν , ἀνομοίως |
ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος , | ||
δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , |
οὐδετέρῳ δὲ ὅ τε ἐπόγδοος καὶ ὁ τῶν σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ | ||
ὅμοιον τὸν ἐν τῷ διατονικῷ τὸν τῶν σνϚʹ πρὸς τὰ σμγʹ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους |
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ | ||
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος |
ἀκριβέστατα τὰς τέσσαρας ἀντιθέσεις , καὶ τούτων τὴν μὲν καλέσας ὑπεναντίαν , αἵτινες οὐκ ἀεὶ μερίζουσι τὸ ἀληθὲς καὶ τὸ | ||
δὲ τῆς ἁρμονικῆς οὐκ ἴσῳ . ἐπεὶ δὲ βούλονταί τινες ὑπεναντίαν ἀμφοτέραις ἀριθμητικῇ τε καὶ γεωμετρικῇ ταύτην ἐκδέχεσθαι , ἔφαμεν |
λέγειν . εἰ δέ τί ποτε καὶ κατὰ τὰς ἄλλας ἐγκλίσεις ὑποκείμενον γίνεται , καθάπερ τὸ ὑγιαίνω ἐν τῷ τὸ | ||
γράφει κατηγόρημα ἢ σύμβαμα , καὶ ἔτι τὰς ἀπὸ τούτων ἐγκλίσεις . . Διὰ τοῦτο καὶ ὡς ἐπὶ γενικὸν ὄνομα |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
, ὅταν ὁ μὲν ἑνός , ὁ δὲ δυεῖν μετέχῃ συστημάτων , τετάρτη ἡ κατὰ τὸν τῆς φωνῆς τόπον , | ||
, ἔτι δὲ ἁρμονίαι καὶ συμφωνίαι καὶ τῶν γενῶν καὶ συστημάτων αἱ μεταβολαὶ καὶ πάνθ ' ὅσα κατὰ μουσικὴν ἐπικρίνεται |
ὁμωνύμως καὶ ταῦτα λεγόμενα τοῖς ἑαυτῶν πρακτικοῖς , τῇ τε στροφῇ καὶ ἀντιστρόφῳ καὶ ἐπῳδῷ ἤτοι ἐξόδῳ καὶ ἐξελεύσει καὶ | ||
καὶ ὁ ἐμπρόσθιος ἄξων : τῇ δὲ τῶν τριῶν ἀξόνων στροφῇ εἰσάγονται αἱ ἔκθετοι τῶν κάλων ἀρχαί , αἷς ἀποδέδενται |
, διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ | ||
, οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων |
βούλεσθαι . αἱ γὰρ αἰσθήσεις ἄλλως ἀληθεῖς , οὐ κατὰ σύνθεσίν τινα : τοῦτο γὰρ ἴδιον τῆς λογικῆς ψυχῆς . | ||
αὐτὴν ἔχειν τὸ κατὰ πνεῦμα καὶ τόνον καὶ ὁμωνυμίαν , σύνθεσίν τε καὶ διαίρεσιν . ἡμεῖς δὲ συνεστάναι μὲν αὐτὴν |
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
πρὸς ἐκείνην εὐνοίας καὶ τὴν μὲν ἐκ τῆς ἰδέας σιωπῶσα παράθεσιν , ὅτῳ δὲ κρείττων ἐστί , τοῦτο λογιζομένη καὶ | ||
κλίνεται τὸ μετὰ τοῦ δέ ; Ὅτι ἑκάστῃ πτώσει κατὰ παράθεσιν προσιοῦσα ἡ πρόθεσις ἴδιον ἔχει σημαινόμενον . διαφέρει γοῦν |
διαχύσεις ἦσαν καὶ συστολαί , αἳ δὴ κἀν τοῖς φυτοῖς θεωροῦνται ἐκ δίψης τε μαραινομένοις καὶ ἐκ τῆς προσφορᾶς τοῦ | ||
. Τοῦτ ' ἔστιν : αὗται αἱ διαφοραὶ κατὰ συμβεβηκὸς θεωροῦνται . ἀντὶ δὲ τοῦ εἰπεῖν κατὰ συμβεβηκὸς εἶπεν ἐν |
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
: “ τῷ τε ἀξιώματι τῶν συνιόντων ἐθνῶν καὶ τοῖς μεγέθεσι τῶν παρα - σκευῶν ἐπὶ μέγα προβήσεσθαι πολυτρόπων συμφορῶν | ||
. ὧν ταχὺ τὸ προσταχθὲν ποιησάντων ἠριθμήθησαν πυρφόροι μὲν τοῖς μεγέθεσι παντοῖοι πλείους τῶν ὀκτακοσίων , ὀξυβελεῖς δὲ οὐκ ἐλάττους |
: υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - Μʹσμένον , | ||
τυγχάνει κατὰ διαίρεσιν θεωρούμενα πέντε , ὑπάτων μέσων συνημμένων διεζευγμένων ὑπερβολαίων , πεντάχορδα δὲ σύμφωνα τρία , μέσων συνημμένων διεζευγμένων |
τὰς ὑποκειμένας στιγμὰς τῆς γραμμῆς νοεῖν ὑπαναχωρούσας καὶ τόπον καὶ διάστασιν παρεχομένας , τοτὲ μὲν ἐπὶ τόδε τὸ μέρος συστελλομένων | ||
μοίρας τλγ ιβ , τὴν ἀπὸ τοῦ Ζ ἀκριβοῦς ἀπογείου διάστασιν αὐτῆς εὕρωμεν συναγομένην μοιρῶν δηλονότι τμε ιγ , πρὸς |
περὶ ψυχὴν τὸ αὐτὸν ἑαυτῷ εἶναι σπουδαῖον καὶ εὐδαίμονα . ἀνάπαλιν δὲ καὶ τῶν κακῶν τὰ μὲν περὶ ψυχὴν εἶναι | ||
καὶ τὰ ἶσα ἀπὸ ὡροσκόπου , τοῖς δὲ νυκτὸς τὸ ἀνάπαλιν . Ἕκτος κλῆρος τῆς Νίκης , ὃν ἀριθμήσεις τοῖς |
ποιήσας τὸ κῶλον ἐννεασύλλαβον . Ἐφ ' ἑκάστῃ στροφῇ καὶ ἀντιστροφῇ παράγραφος . Αἱ ἐπῳδοὶ κώλων θʹ . Τὸ αʹ | ||
πολλοὶ δὲ καὶ τετράσιν , ἤγουν στροφῇ , ἐπῳδῷ , ἀντιστροφῇ καὶ πάλιν ἀνομοίῳ ἐπῳδῷ . πεντάσι δέ , ἤγουν |
εἴ σε ἐγὼ ἐροίμην εἰ τῇ αὐτῇ τέχνῃ γιγνώσκομεν τῇ ἀριθμητικῇ τὰ αὐτὰ ἐγώ τε καὶ σὺ ἢ ἄλλῃ , | ||
εὑρίσκονται , δείκνυσιν ὁ γεωμέτρης . ὅτι δὲ ἐν τῇ ἀριθμητικῇ οὐ δύναται εὑρεθῆναι , δῆλον ἐκεῖθεν : ἔστωσαν γὰρ |
. καὶ ἐπεὶ ταῖς μὲν πρὸ δύο ὡρῶν τῆς μεσημβρίας παράκειται Λέοντος ἀρχῇ παραλλάξεως μήκους # κδ , πρὸς δὲ | ||
μέσον ἄρα τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΓΔ παράκειται πλάτος ποιοῦν τὴν ΖΜ : ῥητὴ ἄρα ἐστὶν ἡ |