ΓΖΝ ἐστιν ἴση διὰ τὴν ὁμοιότητα τῶν ΑΒ , ΓΔ στερεῶν , ἴσον ἄρα ἐστὶ [ καὶ ὅμοιον ] τὸ | ||
πόδα δακτύλους ιϚʹ : γίνονται ιθʹ : τοσούτων ἔσται ποδῶν στερεῶν τὸ μάρμαρον . Μάρμαρον μῆκος ποδῶν Ϛʹ , πλάτος |
καὶ τὰ φύλλα ὅμοια ἔχει μυρσίνῃ , μείζω δὲ καὶ στερεά , ἐπ ' ἄκρου δ ' ὀξέα καὶ ἀκανθώδη | ||
ΓΦ στερεόν : ἰσοϋψῆ γάρ ἐστι τὰ ΑΒ , ΓΦ στερεά : ὡς δὲ ἡ ΓΜ πρὸς τὴν ΓΤ , |
. ὅτι πᾶς σύνθετος κατηγορικὸς ὑφ ' ἓν τῶν τριῶν σχημάτων ἀνάγεται : δύο γὰρ αὐτοῦ αἱ κύριαι προτάσεις : | ||
αὐτοῖς οὐκ ἀπὸ τιμημάτων ποιεῖσθαι τὴν ἐγγραφὴν οὐδ ' ἀπὸ σχημάτων ἢ μεγέθους ἢ κάλλους οὐδ ' ἀπὸ γένους τοῦ |
ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
παρ ' Εὐκλείδῃ λέγεται στοιχεῖα , τὰ μὲν περὶ τὰ ἐπίπεδα , τὰ δὲ περὶ τὰ στερεὰ τὴν πραγματείαν ἔχοντα | ||
γὰρ ἔχει πλευράς , ηʹ δὲ γωνίας , Ϛʹ δὲ ἐπίπεδα : τούτων δ ' ἐφεξῆς τιθεμένων ιβʹ ηʹ Ϛʹ |
ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται , | ||
: ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ |
γὰρ εἰκοσάεδρον καὶ τὸ ὀκτάεδρον καὶ ἡ πυραμὶς ἐκ τῶν ἰσοπλεύρων σύγκειται τριγώνων , ὁ δὲ κύβος ἐκ τῶν τετραγώνων | ||
ἡ τοῦ ὅλου γένεσις κατὰ Πλάτωνα : ἐκ μὲν γὰρ ἰσοπλεύρων τριγώνων τρία σχήματα συνίσταται , πυραμὶς ὀκτάεδρον εἰκοσάεδρον , |
τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν | ||
ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν |
. ἐς δὲ κίνδυνον βαθὺν ἱέμενοι : ἐς δὲ τὸν ὑψη - λότατον κίνδυνον προθυμίαν ἔχοντες καὶ σπουδὴν τὸν τῶν | ||
ἀναστρεφόμενος . ἢ οἱ περὶ τὰ αἰπά , ὅ ἐστιν ὑψη - λοῖς τόποις , περιπολοῦντες : χαίρουσι γὰρ τοῖς |
. Ἡ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ ὀκτάεδρον ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου κάθετος δυνάμει τρίτον μέρος | ||
ἀριθμητικὴν συνεπιφέρεσθαι : ἅμα γὰρ ταύτῃ τρίγωνον ἢ τετράγωνον ἢ ὀκτάεδρον ἢ εἰκοσάεδρον ἢ διπλάσιον ἢ ὀκταπλάσιον ἢ ἡμιόλιον ἢ |
τό τε αγε καὶ τὸ εδβ ἴσα ὄντα ἐπὶ ἴσων βάσεων βεβήκασι καὶ ἐπ ' εὐθείας ἔχουσιν αὐτὰς καὶ ἐπὶ | ||
σχῆμα ὡς σώματος πυραμὶς φερώνυμος διὰ τοῦτο ὑπὸ τεσσάρων τε βάσεων καὶ ὑπὸ τεσσάρων γωνιῶν μόνη περικλειομένη ἐστί : κἀκεῖθεν |
ἅμα τῷ κλύσματι τὰ ἐν τῇ γαστρὶ καὶ τοῖς ἐντέροις περιεχόμενα πάντα , ὥστε θαυμάσαι , εἴτε κόπρος εἴτε ὑγρὸν | ||
[ ἀπὸ ] τοῦ κέντρου [ καὶ τῆς ΑΒ ] περιεχόμενα . Μέση ἀνάλογον . , ] ὥστε τὸ ὑπὸ |
τῶν ζῳδίων καὶ μοιρῶν ἰδιότητα , ἀλλὰ καὶ παρὰ τὰ μεγέθη τῶν γενέσεων . εἰ μὲν γὰρ ἀθεώρητον ὑπὸ Διὸς | ||
γραμμή , ἐπιφάνεια , στερεόν . Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ |
μείζονες ἡγεμονίαι πρὸς αὑτάς . Νῦν δὲ καὶ περὶ τῶν διαστημάτων , ὧν ἀπ ' ἀλλήλων ἀφεστᾶσιν οἱ ὁπλῖται κατά | ||
' ἀμφοτέρας τὰς διαιρέσεις φαίνεται , τὰ δὲ μεγέθη τῶν διαστημάτων δῆλον ὅτι οὐ ταὐτὰ ἐν ἑκατέρᾳ τῶν διαιρέσεων . |
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
τὰς ἀντιλήψεις τῶν σωμάτων : τὰ μὲν γὰρ αὐτῶν εἶναι σκαληνά , τὰ δὲ ἀγκιστρώδη , τὰ δὲ κοῖλα , | ||
τοῦ δὲ ὀκταέδρου ἐξ ὀκτὼ ὁμοίως διαιρουμένου ἑκάστου εἰς ἓξ σκαληνά , τὰ δὲ εἰκοσαέδρου ἐξ εἴκοσι . Τὸ δὲ |
γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν | ||
τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον |
ἔστιν ἀριθμός , τῶν ἀριθμῶν πεφυκότων πολλαπλασιαζομένων πλέον συνάγειν ἢ συντιθεμένων : τρὶς μὲν γὰρ τρεῖς θ , τρεῖς δὲ | ||
τίνα ὀνόματα φύσει καλά [ παραδείγματος ἕνεκα ] , ὧν συντιθεμένων καλὴν οἴεται καὶ μεγαλοπρεπῆ γενήσεσθαι τὴν φράσιν , καὶ |
Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
χρωμάτων ἁπλᾶ καὶ διὰ τί τὰ μὲν σύνθετα τὰ δὲ ἀσύνθετα : πλείστη γὰρ ἀπορία περὶ τῶν ἀρχῶν . ἀλλὰ | ||
εἴπομεν . Τῶν γὰρ εἰς ηξ ὀνομάτων τὰ μὲν ἁπλᾶ ἀσύνθετα διὰ τοῦ Κ κλίνονται μύρμηκος , νάρθηκος , σκώληκος |
, ἐκεῖνα τὰ τετράπλευρα παραλληλόγραμμά ἐστιν , καὶ ἔτι ὧν τετραπλεύρων αἱ ἐπιζευγνύμεναι διαγώνιοι ἀμφότεραι δίχα τέμνουσιν τὰ τετράπλευρα , | ||
αἱ ἀπεναντίον πλευραὶ ἴσαι ἀλλήλαις εἰσίν , ἢ πάλιν ὧν τετραπλεύρων αἱ ἀπεναντίον γωνίαι ἴσαι ἀλλήλαις εἰσίν , ἐκεῖνα τὰ |
σχήματος συναγωγή τε τῶν μηρῶν καὶ διαπλοκή : καὶ σπόγγων πλατέων καθαρῶν τρυφερῶν , ἐν ψυχρῷ | ὕδατι βραχέντων ἢ | ||
βούγλωττος , ψῆττα , μῦς . Δωρίων : τῶν δὲ πλατέων βούγλωσσον , ψῆτταν , ἔσχαρον ὃν καλοῦσι καὶ κόριν |
ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ | ||
μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου |
τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν | ||
κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν |
ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
εʹ τούτων ἀδύνατόν ἐστιν εὑρεῖν ἄλλα σχήματα ἴσοις καὶ ὁμοίοις ἰσοπλεύροις πολυγώνοις περιλαμβανόμενα , καὶ ὑπὸ τοῦ Εὐκλείδου καὶ ὑπό | ||
τὰ μὲν τῆς ἰσότητος τῶν γωνιῶν ἢ πλευρῶν δεικτικὰ τοῖς ἰσοπλεύροις καὶ ἰσοσκελέσιν ἐφήρμοσται , τὰ δὲ τῆς ἀνισότητος τοῖς |
♊ ♌ ♎ ♐ ♒ : ταῦτα καὶ ἑξάγωνα καὶ ἡμερινὰ καὶ ἀρσενικὰ καλοῦνται : ὁ δὲ ♉ καὶ ♋ | ||
τοῦ μεσημβρινοῦ γένωνται . καὶ τούτου δὲ δύο μέν ἐστιν ἡμερινὰ καὶ μὴ φαινόμενα , ὅταν τοῦ ἡλίου μεσουρανοῦντος ὑπὲρ |
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ | ||
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος |
Γίνεται δὲ καὶ σχήματα τοῦ αὐτοῦ μεγέθους ἐκ τῶν αὐτῶν ἀσυνθέτων συγκείμενα καὶ ἀριθμοῦ , εἰ ἡ τάξις αὐτῶν ἀλλοίωσιν | ||
καὶ διὰ τί οὐχ ἁπλῶς δείκνυται , ὅτι ἐκ τοσούτων ἀσυνθέτων ἕκαστον τῶν γενῶν συνέστηκεν ὅσα ἐστὶν ἐν τῷ διὰ |
. 〚 Καὶ 〛 Ἀναξίμανδρος ὑπὸ τῶν κύκλων καὶ τῶν σφαιρῶν , ἐφ ' ὧν ἕκαστος βέβηκε , φέρεσθαι . | ||
τῶν τοῦ εἰκοσαέδρου , καὶ ἤχθωσαν ἀπὸ τῶν κέντρων τῶν σφαιρῶν τῶν περιεχουσῶν τὰ στερεὰ σχήματα ἐπὶ τὰ ΔΕΖ ΑΒΓ |
. διὰ τοῦτο γραμμὴ μὲν ἄνευ ἐπιπέδου καὶ τοῦτο χωρὶς στερεοῦ θεωρεῖται , ἐν δὲ τῷ τελείῳ μεγέθει πάντα χρὴ | ||
οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . ἀλλ ' ὡς ἡ ΒΜ βάσις πρὸς |
͵δ καὶ τλγʹ . Τῶν δὲ τῆς οἰκουμένης θαλασσῶν τὰ μήκη καὶ πλάτη τόνδε τὸν τρόπον ἔχει . Τῆς μὲν | ||
ἀμβλεῖαν γωνίαν ἔχον πρὸς Σούσοις , τὰ δὲ τῶν πλευρῶν μήκη τὰ ἐκκείμενα : εἶτ ' ἐπιλογίζεται , διότι συμβήσεται |
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ | ||
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ |
, ὅταν ὁ μὲν ἑνός , ὁ δὲ δυεῖν μετέχῃ συστημάτων , τετάρτη ἡ κατὰ τὸν τῆς φωνῆς τόπον , | ||
, ἔτι δὲ ἁρμονίαι καὶ συμφωνίαι καὶ τῶν γενῶν καὶ συστημάτων αἱ μεταβολαὶ καὶ πάνθ ' ὅσα κατὰ μουσικὴν ἐπικρίνεται |
τὸ πεπερατωμένον σῶμα . εἰ οὖν φαμεν τὸ μεταξὺ τῶν πεπερατωμένων σωμάτων τόπον εἶναι , ἔσται σῶμα ὁ τόπος : | ||
τὰ πεπερατωμένα τῶν πεπερατωμένων ἅψεται ἢ καὶ τὰ πεπερατωμένα τῶν πεπερατωμένων καὶ τὰ πέρατα τῶν περάτων , οἷον ἐπὶ τοῦ |
ταῦτα παραλίπῃ τις , πῶς ἄρα καὶ γίνεσθαί φασι τὰ συγκρίματα ἐκ τῶν πρώτων στοιχείων , μήτε θίξεως καὶ ἁφῆς | ||
δ ' ἁπλᾶ † , τὰ δ ' ἐξ ἐκείνων συγκρίματα πάντα βάρος ἔχειν : κινεῖσθαι δὲ τὰ ἄτομα ποτὲ |
τὸ αὐτὸ συμβήσεται συμπροκοπτόντων τοῖς ἑξῆς ἐπὶ τὸ πλάτος λαμβανομένοις πολυγώνοις καὶ τῶν γνωμονικῶν τριγώνων . ὁ μὲν γὰρ ἐφεξῆς | ||
τούτων ἀδύνατόν ἐστιν εὑρεῖν ἄλλα σχήματα ἴσοις καὶ ὁμοίοις ἰσοπλεύροις πολυγώνοις περιεχόμενα μάθοι τις ἂν καὶ οὕτως . Πᾶσαν στερεὰν |
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται | ||
καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν |
λοιπὰ ἡμίφωνα μικτὸν λαμβάνει τὸν ψόφον ἐξ ἑνὸς μὲν τῶν ἡμιφώνων τοῦ σ , τριῶν δὲ ἀφώνων τοῦ τε δ | ||
ἐν τοῖς τοσούτοις ὀνόμασι καὶ ῥήμασι καὶ τοῖς ἄλλοις μορίοις ἡμιφώνων τε καὶ ἀφώνων γραμμάτων συμπλοκὰς τῶν μὴ πεφυκότων ἀλλήλοις |
περὶ τὸ τμῆμα τῆς σφαίρας : ἔσται ἄρα αὕτη ἡ ἐπιφάνεια , καὶ πολὺ μᾶλλον ἡ τοῦ τμήματος τῆς σφαίρας | ||
λοιπὸν ἐνεργείᾳ ἐστίν . οὕτως οὖν , φησί , καὶ ἐπιφάνεια δυνάμει ἐστὶν ἐν τῷ κύβῳ * * * ἡνίκα |
οἱ ἐν τῷ λογιστικῷ . τρίγωνα μὲν γὰρ καὶ τετράγωνα διαστατά , ἀνθρώπου δὲ λόγος καὶ ζώου ἀμερῆ . καὶ | ||
ὀνομαζόμενα : σώματα δὲ τὰ αἰσθήσει ὑποπίπτοντα , τὰ τριχῇ διαστατά : πράγματα δὲ τὰ διανοίᾳ ληπτά : κοινὸν δὲ |
ἰσόρροπόν τι εἶναι χρῆμα ἐν μέσῳ κείμενον , ὁμοίων τῶν περιεχόντων . Ὁ δὲ αἰθὴρ ἐξωτάτω διῃρημένος εἴς τε τὴν | ||
' ἐμοῦ : οὐδὲν παθέων ἀποκουφίζους ' : οὐδὲν τῶν περιεχόντων σε κακῶν θεραπεύουσα καὶ ἀποκουφίζουσα , ἀλλὰ τοὐναντίον ἐπιτιθεῖσα |
Ἐν τούτῳ τῷ λεʹ παραδόξῳ θεωρήματι δείκνυται τὸ ποσὸν τῶν παραλληλογράμμων . ὀρθογωνίων μὲν συναμφοτέρων ὄντων τῶν παραλληλογράμμων δείκνυται τὸ | ||
: λέγω , ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ |
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
, λαβὼν ὑμῖν ἀναγνώσομαι . οὗτος ὁ νόμος ἐστὶν ὁ συνέχων τὴν πόλιν , οὗτος ὁ πλείστους αὐτῇ προξενῶν εὐεργέτας | ||
Ποσειδῶν , ὁ μεγάλην ἔχων ἰσχύν , ὁ τὴν γῆν συνέχων : ἐπεὶ γὰρ ἐπ ' αὐτῷ ἐστι τὸ κινεῖν |
κυρίοις δηλονότι , ] καὶ ὅταν τις πρᾳοτέροις ἀντὶ τῶν τραχέων . Βραχύτης δὲ καὶ συντομία γίνεται κατὰ γνώμην , | ||
ἐπὶ ταὐτοῦ πράγματος τὰ μὲν περὶ Ἄρεα καὶ Ἀφροδίτην διὰ τραχέων ὀνομάτων ἀφηγεῖται [ θ . ] , τὸ ἐμίγησαν |
ἀκοὴν πρὸς τὰ ἐξαρτήματα καὶ βεβαιώσας πρὸς αὐτὰ τὸν τῶν σχέσεων λόγον , μετέθηκεν εὐμηχάνως τὴν μὲν τῶν χορδῶν κοινὴν | ||
ιεʹ , καὶ ἀεὶ ὁμοίως . Ἐπιδειχθείσης ἡμῖν τῆς τῶν σχέσεων πλάσεως ἀπλατῶν καὶ μικτῶν ἀπὸ ἰσότητος τὴν ἀρχὴν ἐσχηκυίας |
καὶ παρθενών καὶ τὰ τοιαῦτα : ἔστι δὲ καὶ ἄλλα περιέχοντά τινα , οὐκ ἐξ αὐτῶν δὲ καλούμενα , ὡς | ||
, οἰκεῖται δ ' ἐν ὁμαλῷ , κύκλῳ δὲ ὄρη περιέχοντά ἐστιν οὐ μεγάλα . Κλειτορίοις δὲ ἱερὰ τὰ ἐπιφανέστατα |
κῶνοι πρὸς ἀλλήλους διπλασίονα λόγον ἔχωσιν ἤπερ τὰ διὰ τῶν ἀξόνων τρίγωνα , ἰσοϋψεῖς ἔσονται οἱ κῶνοι . καταγεγράφθωσαν οἱ | ||
καὶ ἐπεὶ τῶν ΚΗΓΔ , ΒΘΕΖ κώνων τὰ διὰ τῶν ἀξόνων τρίγωνα τὰ ΚΓΔ , ΒΕΖ ἴσα ἀλλήλοις ἐστίν , |
ἔκστασιν ἐπὶ τὸν Ἀδὰμ καὶ ὕπνωσιν καὶ ἔλαβεν μίαν τῶν πλευρῶν αὐτοῦ καὶ ἀνεπλήρωσεν σάρκα ἀντ ' αὐτῆς . καὶ | ||
τοῦ ἀπὸ τῆς γδ . τὰ ἄρα ἀπὸ τῶν τριῶν πλευρῶν τετράγωνα τῆς τε αγ καὶ γδ καὶ δβ ἐλάττονά |
γινώσκειν ὅτι αὐτὸς ἐπεξηγεῖται τί ἐστιν ἄκνηστις διὰ τοῦ εἰπεῖν μέσα νῶτα , ἤτοι ἡ ῥάχις , ἢ τὰ μέσα | ||
ἡ ΓΔ : δεικτέον , ὅτι καὶ ἡ ΓΔ δύο μέσα δυναμένη ἐστίν . Ἐπεὶ γὰρ δύο μέσα δυναμένη ἐστὶν |
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |
ἔστω δέ σοι δώρημα θυμῆρες τόδε , ἑξῆς τριετίας πειράσῃ κούφων πόνων . ὑμεῖς δὲ μιαροὶ καὶ θεοῖς ἐχθίστατοι , | ||
, “ ὡς φατέ , ὦ Πρωταγόρα , λευκῶν βαρέων κούφων , οὐδενὸς ὅτου οὐ τῶν τοιούτων : ἔχων γὰρ |
γὰρ καταπίνουσιν τοὺς ἀσθενεστέρους ἑαυτῶν . Ἡ μὲν οὖν τῶν ἐνύδρων καὶ ἑρπετῶν γονή , μετεσχηκυῖα τῆς εὐλογίας τοῦ θεοῦ | ||
οὐ γεύεται τῶν τε χερσαίων καὶ τῶν πτηνῶν καὶ τῶν ἐνύδρων ζῴων . καὶ δὴ σκευασίας παντοδαπὰς περὶ ταῦτα μεμηχανῆσθαι |
πάσας ἀντεροῦμεν . ἐπεὶ γὰρ ἣν ἄν τις εἴπῃ περὶ στοιχείων στάσιν , ἤτοι ἐπὶ σώματα κατενεχθήσεται ἢ ἐπὶ ἀσώματα | ||
Εἰ δὲ ἄριστον μέν ἐστι τὸ ὕδωρ τῶν ἄλλων δηλονότι στοιχείων , τῶν κτημάτων δὲ ὁ χρυσός ἐστιν αἰδοιέστα - |
φύσιν κειμένων περιέχεται , ἃ δὲ πεντάχορδα , ἃ δὲ ὀκτάχορδα : τὸν δ ' αὐτὸν ὅρον κἀπὶ τούτων νοητέον | ||
, πεντάχορδα δὲ σύμφωνα τρία , μέσων συνημμένων διεζευγμένων , ὀκτάχορδα δὲ δύο , συνημμένων τε καὶ διεζευγμένων . εἴδη |
τὸ ὂν ἀγένητον ἀπολείπει : λέγει δὲ τὴν γῆν τοῦ πυκνοῦ καταρρυέντος [ ἀέρος ] γεγονέναι . . . καὶ | ||
ἄστρα καὶ τὸν ἥλιον ἐκ πυρός φησι καὶ τοῦ πρώτου πυκνοῦ συγκεῖσθαι , τὴν δὲ σελήνην ἐκ τοῦ δευτέρου πυκνοῦ |
: ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου , | ||
τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ |
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
ὅρων ἕκαστος ἴδιον ἔχει τὸ αἴτιον , ἐπὶ δὲ τῶν τόνων ἕπονταί πως τῷ πρώτῳ τῶν ὅρων οἱ λοιποὶ δύο | ||
ἀμεταβόλῳ συστήματι ἕξ : ἐλάχιστον μὲν τὸ διὰ τεσσάρων , τόνων δύο ἡμίσεος , οἷόν ἐστι τὸ ἀπὸ ὑπάτης ὑπάτων |
τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ | ||
σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ |
οἰκεῖα πληρώματα ὁ νοῦς , ἐξ ὧν ὁ σύμπας ὁμοῦ συμπληροῦται , ἐπιδεὴς ἂν εἴη αὐτὸς ἑαυτοῦ , οὐ μόνον | ||
περιττοῦ φύσιν ἔχουσι : μὴν δὲ καθ ' ἑβδομάδας τέσσαρας συμπληροῦται , τῇ μὲν πρώτῃ ἑβδομάδι διχοτόμου τῆς σελήνης ὁρωμένης |
οὐ περατόν . παροιμία ἐστί : τὰ πέρα γαδείρων οὐ περατά . λέγει οὖν ὅτι : οὐκ ἔστι δυνατὸν πάντας | ||
καὶ Ἑκάτη ἓν εἶναι δοκοῦσι . Τὰ γὰρ Γαδείρων οὐ περατά : ἐπὶ τῶν ποῤῥωτάτω καὶ ἀδυνάτων : τὰ δὲ |
ΒΑΔ κοινὴ τομὴ ἡ ΓΔ . καὶ ἐπεὶ δύο ἐπίπεδα παράλληλα τὰ ΕΘΖ , ΓΚΔ ὑπὸ ἐπιπέδου τινὸς τέμνεται τοῦ | ||
κακῶς ἡμᾶς ὑπογράφων τὰ μηδὲν ἐοικότα πρὸς μίμησιν βιαζόμενος καὶ παράλληλα κρίνων τὰ πλεῖστον διεστηκότα . εἰ γάρ με χρὴ |
δὴ Μο α : καὶ γίνεται τὸ σύνθεμα τῶν τριῶν κύβων ΔΥ θ Μο κη # ʂ κζ : ταῦτα | ||
ὑπάρχουσα οὐδ ' ἐπίδοσιν αὐξήσεως ἀπέλιπεν , ἀλλὰ καὶ δύο κύβων ἅμα σύνθεσις , τοῦ αʹ καὶ τοῦ ηʹ , |
παροῦσα θεωρία δύο κεφάλαια ἡμῖν παραδίδωσι , διάκρισιν τῶν παθητικῶν ποιοτήτων ἀπ ' ἀλλήλων ἐν πρώτῳ κεφαλαίῳ , καὶ διάκρισιν | ||
ἄτοπον ἂν εἴη τὸ λεγόμενον : οὐ γὰρ κεχωρισμένων τῶν ποιοτήτων τῶν ἐν ταῖς κράσεσιν ἀντιλαμβανόμεθα , ἀλλ ' ὡς |
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
' εἰ μὲν ὁ ἐλάττων διχῇ διαιροῖτο , ὁ μείζων τριχῇ , εἰ δὲ ὁ ἐλάττων τριχῇ , ὁ μείζων | ||
Τί μήν ; Ὦ Πρώταρχε , πειρῶ δὲ αὐτὸ τοῦτο τριχῇ τέμνειν . Πῇ φῄς ; οὐ γὰρ μὴ δυνατὸς |
καὶ νοητῶν εἰδῶν , πρεσβυτέρας δὲ τῶν περὶ τὰ σώματα μεριστῶν . καὶ εἰ λόγους δέ τις λαμβάνοι , κατὰ | ||
κεχορηγήκασιν : ὡς μήτε μεταξὺ φύσιν εἶναι τῶν ἀμερίστων καὶ μεριστῶν μήτε καθ ' ὑπερβολὴν ἐξῃρημένην οὕτω τῶν ὅλων μήτ |
οὐχὶ δὲ καὶ ταῦτα μέν , οὐχὶ δὲ καὶ τὰ τέσσαρα καὶ οὕτω μέχρι τῶν δέκα : τὰ δὲ δύο | ||
τί ἐστι καὶ διὰ τί ἐστι . καὶ εἰκότως τὰ τέσσαρα ταῦτα ζητοῦμεν : τῶν γὰρ πραγμάτων τὰ μὲν ἀνύπαρκτά |
θαλάσσῃ σκύλλονται καὶ σύρονται καὶ ἐσθίονται πρὸς τῶν ἀναύδων καὶ ἀφώνων παίδων τῆς ἀμιάντου , δηλαδὴ θαλάσσης . οὐ γὰρ | ||
κατὰ μίαν συλλαβὴν συνεκφερόμενα : ἡμιφώνων τε πρὸς ἡμίφωνα καὶ ἀφώνων καὶ φωνηέντων πρὸς ἄλληλα συμπτώσεις , αἳ διασαλεύουσι τοὺς |
παραπλησίως καὶ ἐπὶ τοῦ δωδεκαέδρου ἐκ πενταγώνων ὄντος δώδεκα , διαιρουμένων εἰς πέντε τρίγωνα , ὥστε ἕκαστον δι ' ἓξ | ||
πέμπτη δέ ἐστιν ἡ κατὰ διαίρεσιν ποιάν , ὅτε ποικίλως διαιρουμένων τῶν συνθέτων ποικίλους τοὺς ἁπλοῦς γίνεσθαι συμβαίνει : ἕκτη |
τῶν σνϚ πρὸς τὰ σμγ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους λόγους ἐν πρώτοις ἀριθμοῖς τούτοις : | ||
ἀπὸ προσλαμβανομένου ἐπὶ νήτην συνημμένων . ὑπάρχει δὲ ἐν αὐτῷ τετράχορδα τρία συνημμένα τάδε : ὑπάτων μέσων συνημμένων , καὶ |
, ἐὰν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφῇ δωδεκάεδρόν τε καὶ εἰκοσάεδρον , λόγον ἕξει εὐθείας ἡσδηποτοῦν ἄκρον καὶ μέσον λόγον | ||
, ἐάν τις ἐρεῖ ἡμῖν : πόσας πλευρὰς ἔχει τὸ εἰκοσάεδρον ; φήσομεν οὕτως : φανερόν , ὅτι ὑπὸ εἴκοσι |
ἐπὶ τῆϲ κεφαλῆϲ φύονται . πολλῷ μὲν οὖϲι θερμοτέροιϲ τῶν εὐκράτων μέλαιναί τε καὶ πολλαὶ καὶ οὖλαι καὶ ἰϲχυραί , | ||
ἐκκενοῦϲθαί τι τῶν ἔνδον περιττωμάτων . ἀλλὰ γὰρ ἀπὸ τῶν εὐκράτων ἀρκτέον . διὰ παντὸϲ μὲν οὖν ὑγραίνει τὰ εὔκρατα |
δὲ καὶ κομοτροφοῦσι καὶ ἀναξυρίσι χρῶνται περιτεταμέναις , ἀντὶ δὲ χιτώνων σχιστοὺς χειριδωτοὺς φέρουσι μέχρι αἰδοίων καὶ γλουτῶν . ἡ | ||
φύσιν φέρηται . πρὸς δὲ τὰ ῥήγματα ἐν ὀφθαλμοῖς τῶν χιτώνων γινόμενα καὶ τὰς διαβρώσεις γίνεται διὰ χυλοῦ κολλύριον : |
εἰ ἀκούσειας , ὦ θαυμάσιε , περί τε ἰδεῶν καὶ ἀσωμάτων ἃ διεξέρχονται ἢ τοὺς περὶ τοῦ πέρατός τε καὶ | ||
αὐτῷ μέρει τοῦ ὑποκειμένου ἐν τῷ αὐτῷ χρόνῳ , ἐπὶ ἀσωμάτων μέντοι , οἷα τὰ γένη καὶ τὰ καθόλου , |
ἐκείνοις ὑψηλὰ γίνεται , καὶ ἔμπαλιν , ὡς ἀπὸ τῶν νοτίων ἐπὶ τὰ βόρεια τοῦ κόσμου ἐκείνοις ἐγκεκλιμένου . Ἀπὸ | ||
ἐν τῷ ἑπομένῳ ὤμῳ τοῦ Ὑδροχόου . πάλιν τῶν δύο νοτίων Ἰχθύων οἱ ἐν τοῖς στόμασι καὶ τοῦ ἐν τῷ |
ὡς Εὐκλείδης φησί : τὰ δὲ περὶ ταῦτα πάντα τετράπλευρα τραπέζια καλείσθω . Ἄλλως . Ἐπὶ τὴν ἀνατολὴν πρὸς τῷ | ||
, ἐξ οὗ καὶ τὰ ἀγάλματα καὶ τὰ κλινία καὶ τραπέζια καὶ τἆλλα τὰ τοιαῦτα ποιοῦσιν . Ἡ δὲ βάλανος |
, ἀλλὰ περὶ ὧν ἀπορήσειεν ἄν τις καὶ βουλεύσαιτο . Αἴτιαι μὲν δὴ αἱ κατὰ τὰς ἀρετὰς ἕξεις τῶν ἐξ | ||
, ἀλλὰ περὶ ὧν ἀπορήσειεν ἄν τις καὶ βουλεύσαιτο . Αἴτιαι μὲν δὴ αἱ κατὰ τὰς ἀρετὰς ἕξεις τῶν ἐξ |
πυραμίς , τοῦ δὲ ΕΘΠΟ παραλληλεπιπέδου ἕκτον μέρος ἡ ΔΕΖΘ πυραμίς : ἴση ἄρα ἡ ΑΒΓΗ πυραμὶς τῇ ΔΕΖΘ πυραμίδι | ||
γραμμή , τὰ δὲ γ τρίγωνον , τὰ δὲ δ πυραμίς : ταῦτα δὲ πάντα ἐστὶ πρῶτα καὶ ἀρχαὶ τῶν |
μέχρι τετάρτου συμφώνου : πρῶτον γὰρ ἐν αὐτῷ τὸ διὰ τεσσάρων , δεύτερον τὸ διὰ πέντε , τρίτον τὸ διὰ | ||
πασῶν σύστημα ἠλέγχετο , ἤτοι τῆς διὰ πέντε καὶ διὰ τεσσάρων ἐν συναφῇ , ὡς ὁ διπλάσιος λόγος ἡμιολίου τε |
χωρίζεται ταῦτα ; ὥστ ' εἴπερ ἀδύνατον ἐξ ἁφῶν ἢ στιγμῶν εἶναι τὰ μεγέθη , ἀνάγκη εἶναι σώματα ἀδιαίρετα καὶ | ||
καὶ ἐξ ὧν τὸ σῶμα μονάδες τῶν ψυχικῶν μονάδων καὶ στιγμῶν , ἑνοῦται δὲ ψυχὴ σώματι , ἀνάγκη καὶ ταύτας |
ἀρχαῖς τῶν δωδεκατημορίων ἐκτεθειμένων . Οἱ δὲ μετὰ τὰ εἰρημένα κανόνια συνημμένοι κανόνες περιέχουσι τὰς γινομένας τῆς σελήνης παραλλάξεις ἐν | ||
ἑξάγωνον , ἧς κατὰ τὰς πλευρὰς ἐν ἴσοις διαστήμασιν ἦν κανόνια γ προσπεπηγότα , ἐφ ' ὧν ἐφεστήκει ἡ στυλὶς |
πᾶσαν τῆς μελῳδίας τάξιν , ἐν οἷς περὶ συστημάτων ὀκταχόρδων ἐναρμονίων μόνον ἔλεγον : περὶ δὲ τῶν ἄλλων μεγεθῶν τε | ||
ἡμιτονιαῖόν ἐστι , τὸ δὲ παρυπάτης καὶ λιχανοῦ τριῶν διέσεων ἐναρμονίων , τὸ δὲ λιχανοῦ καὶ μέσης πέντε διέσεων : |
μη ∠ ʹ . Καὶ ὡς τῶν περιλαμβανομένων ὑπὸ τῶν κώνων κύκλων ἡλίου τε καὶ σελήνης καὶ γῆς ἀδιαφόρῳ ἐλασσόνων | ||
μέρος τοῦ ἡμικυκλίου . τὸ αὐτὸ ἄρα μέρος καὶ τῶν κώνων θεωρηθήσεται τὸ ἔλαττον . Τοῦ ὄμματος τεθέντος ἔγγιον τοῦ |
ἔχει . ὑπόκειται δὲ καὶ ἡ παρὰ τοῖς ἀρχαίοις κατὰ διέσεις ἁρμονία , ἕως κδ διέσεων τὸ πρότερον διάγουσα διὰ | ||
τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου |
, στερεοῖς καὶ μεγάλοις ὀκτὼ τροχοῖς ὑπειλημμένον : τὰ γὰρ πάχη τῶν ἀψίδων ὑπῆρχε πηχῶν δυεῖν , σεσιδηρωμένα λεπίσιν ἰσχυραῖς | ||
: ἔχει δὲ καὶ διαπήγματα τέσσαρα καὶ περιπήγματα δύο ἕκαστα πάχη ἔχοντα δεκαδάκτυλα , τὰ δὲ πλάτη τριπάλαιστα . Διάπηγμα |
τῆς ἐν ἡμῖν σοφῆς δημιουργίας οὐδέτερον , τοῖς αἰσθητοῖς ἀεὶ ἀνάλογα προβαλλομένης τὰ αἰσθητήρια : τῷ μὲν γὰρ ῥᾳδίως αἰσθάνεσθαι | ||
' ὕπνον φαντάσματα τῶν ἐν ταῖς ἐγρηγόρσεσι παθῶν ἢ ἐνεργειῶν ἀνάλογα . δόξειε δ ' ἂν Ἀριστοτέλης τῇ φυτικῇ τὸν |
γῆς μὲν τὰ ξύλα , ὕδατος δὲ τὰ ἐπιθυμιώμεναπρότερον γὰρ τηκόμενα εἰς λιβάδας αὖθις ἀναλύεται , τὸν δὲ ἀτμὸν ἀέρος | ||
τὸ συναγαγεῖν καὶ συναθροῖσαι τὸ θερμόν , σημεῖον καὶ τὰ τηκόμενα καὶ τὰ ῥηγνύμενα τῶν ἐλατῶν καὶ χυτῶν καὶ ἡ |
αἰτήματα αἰτήσασα καὶ συγχωρηθῆναι αὐτῇ ἀξιώσασα οὐδὲ συστῆναι δυνάμενασημεῖά τινα ἀμερῆ καὶ γραμμὰς ἀπλατεῖς καὶ τὰ τοιαῦτα , ἐπὶ σαθροῖς | ||
στοιχεῖα : ἀεὶ γὰρ ἀπὸ ψεύδους ἀρχόμενον τοῦ οὐκ ἔστιν ἀμερῆ τῶν ὄντων στοιχεῖα εἰς ἀληθὲς καταλήξει κατ ' αὐτὸν |
. Τοῦτο μὲν οὖν καὶ ἀπόδειξίς ἐστι τοῦ πρεσβύτερα καὶ ἀρχικώτερα τὰ δύο ταῦτα μέρη τοῦ λόγου εἶναι , τὸ | ||
πάντων ἐστὶν ἁπλούστερα τὰ ἐν τοῖς μαθήμασιν , ἔσται καὶ ἀρχικώτερα πάντων . ὥστε περὶ τὰ ἀμείνονα καὶ ἀρχηγικώτερα ἔσονται |
, τὸ ἀξίωμα ἀνύπαρκτον εὑρίσκεται , συνεστηκὸς ἐκ λεκτῶν μὴ συνυπαρχόντων ἀλλήλοις . οἷον γοῦν ἐπὶ τοῦ εἰ ἡμέρα ἔστι | ||
εἰ οὖν τὰ μὲν συγκείμενα ἔκ τινων ἀδύνατον ὑπάρχειν μὴ συνυπαρχόντων ἀλλήλοις τῶν μερῶν αὐτῶν , τὰ δὲ ἐξ ὧν |
ζῳδιακός , ἰσημερινά , τὰ δὲ τεταρτημόριον αὐτῶν ἑκατέρωθεν ἀπέχοντα τροπικά , καὶ τούτων τὸ μὲν πρὸς ἄρκτους ἐγκεκλιμένον σημεῖον | ||
σημεῖα , τουτέστι τά τε δύο ἰσημερινὰ καὶ τὰ δύο τροπικά . ἐνταῦθα μέντοι τις ἀπορήσειεν ἂν ἤδη , τίνι |
. τὰ δ ' αὐτὰ νοεῖν δεῖ καὶ ἐπὶ τῶν συνθέτων λόγων οἷον πολλαπλασιεπιμορίων καὶ πολλαπλασιεπιμερῶν . εἰ γὰρ ἔσται | ||
τῶν οὕτως λαμβανομένων συλλαβῶν καὶ ἐπὶ πάντων δὲ τῶν ἄλλων συνθέτων ἀφωρισμένας ἀριθμῷ τὰς ἀρχὰς ἔστι λαβεῖν , ἀλλ ' |
τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
. Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
πάντες οἵ τε μιμηταί , πολλοὶ μὲν οἱ περὶ τὰ σχήματά τε καὶ χρώματα , πολλοὶ δὲ οἱ περὶ μουσικήν | ||
τῇ εὑρέσει τῶν τριῶν σχημάτων καὶ τῷ κατανοῆσαι ὅτι τρία σχήματά ἐστιν καὶ οὔτε πλέον οὔτε ἧττον , ὑφ ' |