ἔστιν ἀριθμός , τῶν ἀριθμῶν πεφυκότων πολλαπλασιαζομένων πλέον συνάγειν ἢ συντιθεμένων : τρὶς μὲν γὰρ τρεῖς θ , τρεῖς δὲ | ||
τίνα ὀνόματα φύσει καλά [ παραδείγματος ἕνεκα ] , ὧν συντιθεμένων καλὴν οἴεται καὶ μεγαλοπρεπῆ γενήσεσθαι τὴν φράσιν , καὶ |
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους , | ||
δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα |
τὸν κζ λόγον , ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμὸν τετραγώνων ἀμφοτέρων ὄντων καὶ τοῦ λϚ καὶ τοῦ κζ ; | ||
τῆς ΑΓ ἔλαττόν ἐστι τῶν ἀπὸ τῶν ΓΒ , ΒΑ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΒ , ΒΔ περιεχομένῳ ὀρθογωνίῳ |
γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν | ||
τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον |
μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
. τὰ δ ' αὐτὰ νοεῖν δεῖ καὶ ἐπὶ τῶν συνθέτων λόγων οἷον πολλαπλασιεπιμορίων καὶ πολλαπλασιεπιμερῶν . εἰ γὰρ ἔσται | ||
τῶν οὕτως λαμβανομένων συλλαβῶν καὶ ἐπὶ πάντων δὲ τῶν ἄλλων συνθέτων ἀφωρισμένας ἀριθμῷ τὰς ἀρχὰς ἔστι λαβεῖν , ἀλλ ' |
βραχεῖαι : ἡμίβραχυ γὰρ λαμβάνεται ἕκαστον τῶν συμφώνων πλὴν τῶν διπλῶν : ἤγουν τοῦ Ζ . Ξ . Ψ . | ||
, καὶ τότε τοῖς τῆς σκυτάλης ἄκροις ἢ τοῦ καυτηρίου διπλῶν καιριῶν μεσότητες ἢ βρόχων ἀνισοτόνων ἀγκύλαι περιτιθέσθωσαν ἀγόμεναι κάτω |
φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται | ||
καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν |
γίνεται μονάδων ιβ καὶ λεπτῶν μδ καὶ δευτέρων με καὶ τρίτων νδ καὶ τετάρτων ιϚ , συντιθέμενα δὲ ὁμοῦ γίνεται | ||
ὅλη γῆ , σφαιροειδὴς λογιζομένη , στερεῶν σταδίων ἔχει μυριάδας τρίτων μὲν ἀριθμῶν σξθʹ , δευτέρων δὲ ͵θυιʹ , πρώτων |
μείζονες ἡγεμονίαι πρὸς αὑτάς . Νῦν δὲ καὶ περὶ τῶν διαστημάτων , ὧν ἀπ ' ἀλλήλων ἀφεστᾶσιν οἱ ὁπλῖται κατά | ||
' ἀμφοτέρας τὰς διαιρέσεις φαίνεται , τὰ δὲ μεγέθη τῶν διαστημάτων δῆλον ὅτι οὐ ταὐτὰ ἐν ἑκατέρᾳ τῶν διαιρέσεων . |
λόγον , ἡμιόλιον τυχὸν ἢ ἐπίτριτον ἢ ἄλλον τινὰ τῶν ἐπιμορίων ἢ τῶν ἐπιμερῶν , τὰ μὲν ἀπ ' αὐτῶν | ||
. ἐκ τούτων πάλιν κατὰ ἀναστροφὴν γίνονται τὰ εἴδη τῶν ἐπιμορίων : οἷόν ἐστι πρῶτον εἶδος τῶν πολλαπλασίων τὸ διπλάσιον |
Ἐπιφανίου . Τῶν μὲν ἄλλων διαφέρουσιν οἱ συνεζευγμένοι , τῶν ἁπλῶν λέγω καὶ διπλῶν , ὅτι ἐν ἐκείνοις μὲν ἓν | ||
Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ ἐκλογῆϲ τῶν καλλιϲτευόντων ἁπλῶν φαρμάκων ρϘζ Ἐκ τῶν Ὀριβαϲίου . Ὅϲα μέϲα ἐϲτὶ |
ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
ἐξαιρέτως συνάρθρους καὶ ἀσυνάρθρους ἐκάλεσαν . ὡς οὐ δυναμένων τῶν προκατειλεγμένων ὀνομάτων ἀσυνάρθρων καλεῖσθαι . καὶ ἴσως ἂν εἴη μᾶλλον | ||
Τρύφων ἤρξατο τὴν ἐν τοῖς ἄρθροις σύνταξιν παραδιδόναι , τῶν προκατειλεγμένων τρόπων οὐδὲ ἔννοιαν παραθέμενος . . . . : |
Γίνεται δὲ καὶ σχήματα τοῦ αὐτοῦ μεγέθους ἐκ τῶν αὐτῶν ἀσυνθέτων συγκείμενα καὶ ἀριθμοῦ , εἰ ἡ τάξις αὐτῶν ἀλλοίωσιν | ||
καὶ διὰ τί οὐχ ἁπλῶς δείκνυται , ὅτι ἐκ τοσούτων ἀσυνθέτων ἕκαστον τῶν γενῶν συνέστηκεν ὅσα ἐστὶν ἐν τῷ διὰ |
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
εἰς τρίβραχυν . ἐμπίπτουσι δὲ καὶ οἱ μολοττοὶ ἐπὶ τῶν περιττῶν χωρῶν ἐν τοῖς ἀπ ' ἐλάττονος ἰωνικοῖς , ὥσπερ | ||
τοῦτο δεύτερός ἐστιν ἕκαστος τοῦ μετροῦντος αὐτόν . τῶν δὲ περιττῶν πάντως εἰς ἄνισα διαιρουμένων κατὰ τὴν εἰς δύο τὰ |
πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ | ||
οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν |
τῶν δυσκόλων . ἢ οὐ ταῦτα ποιεῖτε νέων τῶν μὲν προστιθεμένων , τῶν δὲ ἑτέρωσε πλεόντων ; διὰ ταῦτ ' | ||
αἰσθητηρίων προστιθεμένου τοῦ αἰσθητοῦ γίνεται ἀντίληψις , τῇ σαρκὶ δὲ προστιθεμένων τῶν αἰσθητῶν : οὐκ ἄρα ἡ σὰρξ αἰσθητήριον . |
ἑκάτερον τῶν λίθων ἓξ ὀνόματα ἐγγλύφεται , διότι καὶ τῶν ἡμισφαιρίων ἑκάτερον δίχα τέμνον τὸν ζῳοφόρον ἓξ ἐναπολαμβάνει ζῴδια . | ||
οὐδὲν γὰρ τούτων περιφορὰ τοῦ παντὸς οὐρανοῦ , ἀλλὰ τῶν ἡμισφαιρίων καὶ μέρος τῆς ὅλης περιφορᾶς . πρὸς τούτοις δὲ |
ὄργανα ἀνομοιομερῆ . τί ἐστιν ὑγεῖα ; ἡ εὐκρασία τῶν ὁμοιομερῶν καὶ ἡ συμμετρία τῶν ὀργάνων : σύνθεσις καὶ διάπλασις | ||
οὖς ἢ ἡ ῥίς . ἀλλά φαμεν ὡς ἐπὶ τῶν ὁμοιομερῶν οὐδὲν κωλύει τῷ τοῦ ὅλου ὀνόματι καὶ τὰ μέρη |
ὡς ὑφηγητοῦ τινος πύλαις διπλαῖς ἐνήλατ ' , ἐκ δὲ πυθμένων ἔκλινε κοῖλα κλῇθρα κἀμπίπτει στέγῃ . Οὗ δὴ κρεμαστὴν | ||
τὸν Κ ] , ὁ δὲ ὑπὸ τῶν Ζ Η πυθμένων καὶ τῶν Γ Δ Ε ἐστιν μονάδων ρμδʹ [ |
μὲν ταῖς αὑτῶν χερσί , τὴν δὲ αὑτῶν ταῖς τῶν εἰλημμένων . αἱ δ ' αὖ διαφυγοῦσαι τὴν ἅλωσιν ἰσχύι | ||
. δεῖ γὰρ καθόλου τὸ συμπέρασμα ἐκ τῶν ἄκρων τῶν εἰλημμένων ἐν ταῖς προτάσεσι ταῖς δύο συγκεῖσθαι . ἄκροι δέ |
ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
ἐξ ἀρχῆς μετρούντων . Ἐλάχιστος γὰρ ἀριθμὸς ὁ Α ὑπὸ πρώτων ἀριθμῶν τῶν Β , Γ , Δ μετρείσθω : | ||
στρατιωτικῇ πέφυκε γίνεσθαι . ὅταν δὲ ὑπάρξηται ἡ ἐκ τῶν πρώτων κίνησις , ἐνταῦθα οἱ λοιποὶ ἕπονται . λέγουσι δὲ |
, λαβὼν ὑμῖν ἀναγνώσομαι . οὗτος ὁ νόμος ἐστὶν ὁ συνέχων τὴν πόλιν , οὗτος ὁ πλείστους αὐτῇ προξενῶν εὐεργέτας | ||
Ποσειδῶν , ὁ μεγάλην ἔχων ἰσχύν , ὁ τὴν γῆν συνέχων : ἐπεὶ γὰρ ἐπ ' αὐτῷ ἐστι τὸ κινεῖν |
οἱ καταλαμβάνοντες Ὠρεόν , οὗτοί εἰσιν οἱ κατασκάψαντες Πορθμόν . γενῶν δέ , ἂν ποτὲ μὲν ἀρσενικὸν ὄνομα προθῇς , | ||
ἐν γὰρ τῷ λέγειν αἱ διαι - ρέσεις γίνονται τῶν γενῶν εἰς τὰ εἴδη δηλοῖ τὰς διαιρετικάς , ἐν δὲ |
ἀσφαλείας ἐνδιῃτᾶτο φόβου μὲν ἐκτὸς ὤν , ἅτε τῆς τῶν περιγείων ἡγεμονίας ἀξιωθεὶς καὶ πάντων ὅσα θνητὰ κατεπτηχότων καὶ ὑπακούειν | ||
πτεροφυΐα δὲ αὐτοῦ ἀρίστη ἡ κατὰ μικρὸν μελέτη τῆς τῶν περιγείων ἀποστάσεως καὶ ὁ πρὸς τὴν ἀϋλίαν ἐθισμὸς καὶ ἡ |
καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ , | ||
τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β |
χρόνους ἧκόν τινες ἀπὸ Σικελίας ἀπόστασιν ἀγγέλλοντες οἰκετῶν εἰς πολλὰς ἀριθμουμένων μυριάδας . οὗ προσαγγελθέντος , ἐν πολλῇ περιστάσει τὸ | ||
: ὅ ἐστιν : οὐκ εἰς τὸ ἀκριβὲς ἦλθεν ὥστε ἀριθμουμένων τῶν ψήφων εἰς τὸ βραχὺ ἐλθεῖν καὶ εἰς ἰσοψηφίαν |
ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
ἀρκεῖ τὰς σημειώδεις καὶ ἁπλουστέρας ἐκθέσθαι τῶν ὑπ ' αὐτοῦ λεχθεισῶν , ὑποθεμένοις , ὥσπερ ἐκεῖνος , εἶναι τὸ μέγεθος | ||
δύο συλλαβῶν γενομένων ἰὴ παιάν ἡρῷον γίνεται , βραχέως δὲ λεχθεισῶν ἰαμβεῖον : δῆλον οὖν ὅτι καὶ τὸν ἴαμβον ἀναθετέον |
ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται , | ||
: ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ |
αὐτοῦ τὴν ἐπιστροφήν . περισπασμὸς δέ ἐστιν ἡ ἐκ δυεῖν ἐπιστροφῶν τοῦ τάγματος κίνησις , ὥστε μεταλαμβάνειν τὸν ὀπίσω τόπον | ||
τὸν ὀπίσω τόπον . ἐκπερισπασμὸς δέ ἐστιν ἡ ἐκ τριῶν ἐπιστροφῶν συνεχῶν τοῦ τάγματος κίνησις , ὥστε μεταλαμβάνειν , ἐὰν |
, καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν , | ||
ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ |
χωρίζεται ταῦτα ; ὥστ ' εἴπερ ἀδύνατον ἐξ ἁφῶν ἢ στιγμῶν εἶναι τὰ μεγέθη , ἀνάγκη εἶναι σώματα ἀδιαίρετα καὶ | ||
καὶ ἐξ ὧν τὸ σῶμα μονάδες τῶν ψυχικῶν μονάδων καὶ στιγμῶν , ἑνοῦται δὲ ψυχὴ σώματι , ἀνάγκη καὶ ταύτας |
, μάλιστα δὲ τῶν τῆς σελήνης , ἀπὸ τῶν αὐτῶν λαμβανομένων , τὰς κατὰ μῆκος αὐτῶν ἀκριβεῖς ἐποχὰς διακρινοῦμεν ἀπό | ||
δύο προτάσεων δείκνυταί τι , λέγειν καὶ διὰ πλειόνων προσεχῶν λαμβανομένων καὶ μηδὲν ἄλλο ἀλλ ' ἢ τὸ προκείμενον συμπέρασμα |
. ὅτι πᾶς σύνθετος κατηγορικὸς ὑφ ' ἓν τῶν τριῶν σχημάτων ἀνάγεται : δύο γὰρ αὐτοῦ αἱ κύριαι προτάσεις : | ||
αὐτοῖς οὐκ ἀπὸ τιμημάτων ποιεῖσθαι τὴν ἐγγραφὴν οὐδ ' ἀπὸ σχημάτων ἢ μεγέθους ἢ κάλλους οὐδ ' ἀπὸ γένους τοῦ |
ἐφ ' ἑκάστης πλάσεως τῶν τε ἐπιμερῶν σχέσεων καὶ τῶν πολλαπλασιεπιμορίων πῶς καὶ ἀντιπεπόνθησίς τις γλαφυρὰ ὑποφύεται . αἱ μὲν | ||
τῶν ἐπιμερῶν , καὶ τῶν μὴ ἐξ ἀναστροφῆς , τουτέστι πολλαπλασιεπιμορίων , πάλιν τῷ αὐτῷ τρόπῳ διὰ τῶν αὐτῶν προσταγμάτων |
ἐλεύθερος , ὡς ὑπηρέτης σός , ὡς ᾐσθημένος σου τῶν προσταγμάτων καὶ ἀπαγορευμάτων . μέχρι δ ' ἂν οὗ διατρίβω | ||
τε τὸ ἔθνος καὶ διαιτᾶι κρίσεις καὶ συμβολαίων ἐπιμελεῖται καὶ προσταγμάτων , ὡς ἂν πολιτείας ἄρχων αὐτοτελοῦς . ἐν Αἰγύπτωι |
, τριχῶς δὲ τὸ ἄλογον : τὸ γὰρ ὑπὸ δύο ῥητῶν εὐθειῶν μήκει συμμέτρων περιεχόμενον ῥητόν ἐστι , καὶ τὸ | ||
ῥητὸν ἄρα ἐστὶ καὶ τὸ ΑΓ . Τὸ ἄρα ὑπὸ ῥητῶν μήκει συμμέτρων , καὶ τὰ ἑξῆς . Ἐὰν ῥητὸν |
τις ἀκριβῶς ταῦτα γνοίη , ῥᾳδίως καὶ τὰ διαπεπτωκότα τῶν ὡρισμένων τούτων χρωμάτων δι ' οἱονδήτινα καταγνοίη λόγον . Οὐκοῦν | ||
εἴς τε μετοχὴν ἀναλυομένου καὶ θάτερον τούτων , τῶν μὲν ὡρισμένων εἰς τὸ ἔστι , τῶν δὲ ἀορίστων εἰς τὸ |
ἡ διπλασία : ἐκ ταύτης γὰρ γεγόνασι . τῶν δὲ ἐπιμερῶν ἡ ἡμιολία , καὶ ἐπὶ τῶν λοιπῶν ὁμοίως . | ||
τοῦ ἐπιμεροῦς γίνεται πολλαπλασιεπιμερής . ἰστέον δὲ κἀκεῖνο ὅτι τῶν ἐπιμερῶν τε καὶ τῶν ἐπιμορίων πάντων οἱ πυθμένες πρῶτοι πρὸς |
Χαῖρις οὐ βούλεται συνθέτως ἀναγινώσκειν Πελιαοφόνον : ἐκ γὰρ δυοῖν τελείων ἐστὶ τοῦ Πελίαο καὶ τοῦ φόνου . γίνεται δὲ | ||
δὲ τῇ ἀποτέξει καὶ πλεῖστον προσανευρύνεται μέχρι τοῦ καὶ χεῖρας τελείων παραδέχεσθαι . κατὰ μέντοι τὴν φύσιν τρυφερόν ἐστι καὶ |
ἐναιωρημάτων , ὥσπερ καὶ ἕτερον μὲν ἐπὶ τῷ πέρατι τῶν ἐναιωρημάτων , ἀρχῇ δὲ τῶν νεφελῶν : τρεῖς δ ' | ||
ὥσπερ πειρώμεναι τὸν ὡρισθέντα τόπον ταῖς ὑποστάσεσι . Τῶν δὲ ἐναιωρημάτων ὅσα μὲν τὸν ἀκριβῶς μέσον τοῦ παντὸς ἀπείληφε διαστήματος |
” καὶ τὰ ἑξῆς . ὁ δὲ Σωκράτης νῦν , συμφωνῶν ἑαυτῷ ἐν τῇ Πολιτείᾳ , πραότερον ἐπιρραπίζει τὸν τοῦ | ||
ἐπικρατήσεως πολυμερῶς λαμβανόμενος . ἔστι δ ' ὁ μάλιστά τε συμφωνῶν ἡμῖν καὶ ἄλλως ἐχόμενος φύσεως τρόπος τοιοῦτος . ἤρτηται |
ὅρων ἕκαστος ἴδιον ἔχει τὸ αἴτιον , ἐπὶ δὲ τῶν τόνων ἕπονταί πως τῷ πρώτῳ τῶν ὅρων οἱ λοιποὶ δύο | ||
ἀμεταβόλῳ συστήματι ἕξ : ἐλάχιστον μὲν τὸ διὰ τεσσάρων , τόνων δύο ἡμίσεος , οἷόν ἐστι τὸ ἀπὸ ὑπάτης ὑπάτων |
τοῦ καθόλου . Τούτων οὕτω διωρισμένων σκεπτέον καὶ περὶ τῶν ἀτελῶν , τί τὸ κινοῦν αὐτὰ τυγχάνει , πότερον ἐνδέχεται | ||
αἴτησιν δωρεᾶς : κατὰ μὲν νόμου εἰσφοράν , οἷον πολλῶν ἀτελῶν γιγνομένων καὶ τῶν πολυτελευομένων ἐκλειπόντων τίθησι νόμον Λεπτίνης μηδένα |
τὴν στροφήν . ἐπεὶ οὖν οὐκ ἔνι ἔξω τόπων καὶ θέσεων ταῦτα κατανοῆσαι , ἀγνοεῖται ἡ φύσις αὐτῶν . Ὄγδοος | ||
, οὐ θέσις ἔσται ἀλλ ' ὑπόθεσις . Τῶν δὲ θέσεων αἳ μὲν πολιτικαί , αἳ δὲ οὔ : καὶ |
κοινῆς θεωρίας τὸ ζητούμενον δείκνυσιν . διττῶν δὲ ὄντων τῶν ὀρθογωνίων τριγώνων , τῶν μὲν ἰσοσκελῶν , τῶν δὲ σκαληνῶν | ||
ἀποφαίνεται : τὸ μὲν πῦρ ὑπὸ τεσσάρων καὶ εἴκοσι τριγώνων ὀρθογωνίων συμπληροῦται τέσσαρσιν ἰσοπλεύροις περιεχόμενον . ἕκαστον δὲ ἰσόπλευρον σύγκειται |
ΓΖΝ ἐστιν ἴση διὰ τὴν ὁμοιότητα τῶν ΑΒ , ΓΔ στερεῶν , ἴσον ἄρα ἐστὶ [ καὶ ὅμοιον ] τὸ | ||
πόδα δακτύλους ιϚʹ : γίνονται ιθʹ : τοσούτων ἔσται ποδῶν στερεῶν τὸ μάρμαρον . Μάρμαρον μῆκος ποδῶν Ϛʹ , πλάτος |
πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος | ||
. Καὶ μὴν εἰς δύο διαιρουμένων ἴσα , τοῦ μὲν περισσοῦ μονὰς ἐν μέσῳ περίεστι , τοῦ δὲ ἀρτίου κενὴ |
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
πολλῷ δὲ ὑπόξανθοι μὲν τὸ πρῶτον , εἶτα μελαίνονται : προιόντων δὲ ταῖϲ ἡλικίαιϲ φαλακροῦνται . περιττώματα δὲ καθ ' | ||
: ῥίζα δ ' οὗτοι τῶν ἐφ ' ἑκάτερα ἀπείρως προιόντων λόγων , ὥστε καὶ τῇ τῶν πολλαπλασίων τε καὶ |
Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ , | ||
γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι |
τῶν ἀπλανῶν παρόδους τετηρήκαμεν πέντε που καὶ ἑξήκοντα καὶ διακοσίων συναγομένων , ὡς ἐκ τούτων τὴν τῆς μιᾶς μοίρας εἰς | ||
ἐπουσίας συναγομένων μοιρῶν εἰς τὸ πλῆθος τῶν ἐκ τοῦ χρόνου συναγομένων ἡμερῶν . Καὶ ἐνθάδε οὖν πάλιν , ἐπεὶ ὁ |
ἑκάστους ἕκαστον μηκύνῃ ἢ ὑπὸ ἑκάστου μηκύνοιτο , ὁμοίως γενήσονται εὔτακτοι κύβοι . ἔτι οἱ περισσοὶ ἐπειδὴ ἔτι ὁμοποιοί εἰσι | ||
τῶν ἀπὸ μονάδος ἑαυτὸν πολλαπλασιάσαντος καὶ τὸν ἐξ αὐτοῦ γίνονται εὔτακτοι κύβοι . καὶ εἰ τάξει οἱ ἀπὸ τετράδος τετράγωνοι |
γοῦν ἐπὶ τῶν τεχνητῶν , οὕτω καὶ ἐπὶ τῶν φύσει συνεστώτων ἔχει . ἡ μὲν γὰρ ἔφεσις ἁπλῶς τοῦ θείου | ||
ὀργανικοῦ σώματος . τῶν γὰρ πραγμάτων ἐξ ὕλης καὶ εἴδους συνεστώτων ἢ ἀνάλογόν γε εἴδει καὶ ὕλῃ τὴν σύστασιν ἐχόντων |
, δῆλον ὅτι ἐκ τούτων καὶ μετὰ τούτων προστιθεμένων καὶ συνδυαζομένων καὶ ἅμα γινομένων . Ἀλλὰ ἅμα γινόμενα τοῦτο δὴ | ||
φύσιν συμπεπλεγμένα . ἀλλὰ ἡμῖν ὁ λόγος νῦν οὐ περὶ συνδυαζομένων φάναι πρόκειται , ἀλλὰ περὶ ἁπλῶν . Ἐκεῖνο μὲν |
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
ἔξωθεν , ὧν ἓν μέν τι γένος αἱ ὑπὸ τῶν ὁμογενῶν , ἃς ὀλίγῳ πρότερον εἴπομεν , ἄλλαι δὲ ὑπὸ | ||
τὰ δὲ ἄλλα διαφοραὶ χωρίζουσαι αὐτὴν τῶν τε ἑτερογενῶν καὶ ὁμογενῶν , ἑτερογενῶν μὲν πολιτικοῦ πράγματος τῶν ἐπὶ μέρους : |
δὲ κατὰ τὴν ὕλην : τῶν γὰρ γινομένων ἐκ δυεῖν ἀνομοίων τοὐλάχιστον γεννωμένων τὸν μὲν ῥυθμὸν ἐν ἄρσει καὶ θέσει | ||
βίος συντέτακται , οὐ μόνον ἀπῳδὰ φθεγγομένων , ἀλλὰ καὶ ἀνομοίων τὰ σχήματα καὶ τἀναντία κινουμένων καὶ ταὐτὸν οὐδὲν ἐπινοούντων |
, τὸ ἀξίωμα ἀνύπαρκτον εὑρίσκεται , συνεστηκὸς ἐκ λεκτῶν μὴ συνυπαρχόντων ἀλλήλοις . οἷον γοῦν ἐπὶ τοῦ εἰ ἡμέρα ἔστι | ||
εἰ οὖν τὰ μὲν συγκείμενα ἔκ τινων ἀδύνατον ὑπάρχειν μὴ συνυπαρχόντων ἀλλήλοις τῶν μερῶν αὐτῶν , τὰ δὲ ἐξ ὧν |
[ τοῦτο ] δυνατόν ἐστιν : δειχθήσεται γὰρ ἐπί τινων ὁριζόντων παρθένος μὲν λέοντος ὀρθοτέρα ἀναφερομένη , ἀνάπαλιν δὲ ὁ | ||
αὐτοῦ ὑπὲρ γῆς ὁρᾶται , τῶν μὲν ἐκ τῶν χθαμαλῶν ὁριζόντων ἐπιπέδων ὄντων , τῶν δὲ ἐξ ὕψους ὁρωμένων κωνοειδῶν |
πονηρὸς ἔδοξεν , ὥστε μηδ ' ἐκεῖ ⌈ ⌉ τῶν ἴσων ἀξιοῦσθαι τοῖς ἄλλοις , ἀλλὰ κλέπτην ὥς φασι ληφθέντα | ||
δυσὶ πλευραῖς ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ καὶ τὰς ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένας γωνίας ἴσας : καὶ τὴν βάσιν ἄρα |
συνέστηκεν , ἀλλ ' ἐκ τῶν ὑπ ' αὐτῆς ἀεὶ παραλαμβανομένων . ταῦτα δέ ἐστι πρόσθεσις καὶ ἀφαίρεσις . ὥσθ | ||
' αὐτῷ τίμιον . ὁ αὐτὸς λόγος καὶ ἐπὶ τῶν παραλαμβανομένων ἐκ προϋπηργμένης ἀδικίας , δεῖ ἐμοῦ ὁρῶντος ἐκεῖνον αἰκίζεσθαι |
μο θ , ἤτοι τῶν φοϚ ξδων , καταλείπονται ιϚ ξδα ἅτινά εἰσι τετράγωνος . Αἱ δὲ κα μονάδες συνάγουσιν | ||
ἀπὸ τῶν κα καὶ ποιῶν τοὺς λοιποὺς τετραγώνους , φξ ξδα , καὶ φανερὰ ἡ ἀπόδειξις . . Εἰς τὸ |
ἀσιτίαις : εἰ δὲ μηδέτερον εἴη τούτων , ἐπὶ τῶν τοπικῶν ἴασιν εὐθὺς ἀφικνούμεθα , κατ ' ἀρχὰς μὲν ἀναστέλλοντες | ||
κωνικῶν γραμμῶν . λέγομεν , ὅτι καὶ τῶν πρὸς γραμμαῖς τοπικῶν τὰ μὲν ἐπίπεδον ἔχει τόπον , τὰ δὲ στερεόν |
μάλιστα τοὺς προτέρους δεσπότας οἱ οἰκέται ποθοῦσιν , ὅταν τῶν δευτέρων λάβωσι πεῖραν . ὄνος ἅλας γέμων ποταμὸν διέβαινεν . | ||
ὑποκειμένου τινὸς λέγεται οὔτε ἐν ὑποκειμένῳ ἐστί : τῶν δὲ δευτέρων οὐσιῶν φανερὸν μὲν καὶ οὕτως ὅτι οὔκ εἰσιν ἐν |
, τρίτον τὴν διαίρεσιν αὐτῆς , τέταρτον τὴν τάξιν τῶν διαιρεθέντων εἰδῶν , ὧν ἡ παροῦσα πρᾶξις δύο τὰ πρῶτα | ||
ποιωδῶν εἰπεῖν : τοῦτο γάρ ἐστι λοιπὸν τῶν ἐξ ἀρχῆς διαιρεθέντων γενῶν , ἐν ᾧ συμπεριλαμβάνονταί πως τὸ λαχανηρὸν καὶ |
φέρεται . τῇ δὲ αὐτῇ θεωρίᾳ ὑπ ' ἀμφοτέρων τῶν ἑξαγώνων τοῦ Ἡλίου ἡ Σελήνη παρατυχοῦσα ὑπὸ σύνδεσμον φέρεται . | ||
μὲν γὰρ πρῶτον ὀκτάεδρόν ἐστιν περιεχόμενον ὑπὸ τριγώνων δʹ καὶ ἑξαγώνων δʹ . τρία δὲ μετὰ τοῦτο τεσσαρεσκαιδεκάεδρα , ὧν |
ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
θαλάσσῃ σκύλλονται καὶ σύρονται καὶ ἐσθίονται πρὸς τῶν ἀναύδων καὶ ἀφώνων παίδων τῆς ἀμιάντου , δηλαδὴ θαλάσσης . οὐ γὰρ | ||
κατὰ μίαν συλλαβὴν συνεκφερόμενα : ἡμιφώνων τε πρὸς ἡμίφωνα καὶ ἀφώνων καὶ φωνηέντων πρὸς ἄλληλα συμπτώσεις , αἳ διασαλεύουσι τοὺς |
κῶνοι πρὸς ἀλλήλους διπλασίονα λόγον ἔχωσιν ἤπερ τὰ διὰ τῶν ἀξόνων τρίγωνα , ἰσοϋψεῖς ἔσονται οἱ κῶνοι . καταγεγράφθωσαν οἱ | ||
καὶ ἐπεὶ τῶν ΚΗΓΔ , ΒΘΕΖ κώνων τὰ διὰ τῶν ἀξόνων τρίγωνα τὰ ΚΓΔ , ΒΕΖ ἴσα ἀλλήλοις ἐστίν , |
, φυλάρχους δὲ αὖ τούτοις πᾶν τὸ ἱππικὸν αἱρείσθω , ψιλῶν δὲ ἢ τοξοτῶν ἤ τινος ἄλλου τῶν ἐμπολεμίων ἡγεμόνας | ||
Σ . : γυμνητεία , τὰ τῶν γυμνῶν καὶ οἱονεὶ ψιλῶν παρόσον γυμνοὶ ὅπλων τυγχάνουσιν . οἱ δέ : οἱ |
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ | ||
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος |
, ὅταν ὁ μὲν ἑνός , ὁ δὲ δυεῖν μετέχῃ συστημάτων , τετάρτη ἡ κατὰ τὸν τῆς φωνῆς τόπον , | ||
, ἔτι δὲ ἁρμονίαι καὶ συμφωνίαι καὶ τῶν γενῶν καὶ συστημάτων αἱ μεταβολαὶ καὶ πάνθ ' ὅσα κατὰ μουσικὴν ἐπικρίνεται |
θ μο , μο θ ↑ δυ μιᾶς , ἤτοι φξ ξδʹ καταλειφθήσονται , ἀπὸ δὲ τῶν κα μο , | ||
δὲ τῶν κα μο , ἤτοι ͵ατμδ ξδʹ , τῶν φξ ξδʹ . καταλειφθήσονται ψπδ ξδʹ , ὅλος τετράγωνος . |
καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
τῶν ἐντὸς δεκάδος τινὰ τῶν ἐν αὐτῇ γεννᾷ , οὔτε μιγέντων τινῶν τῶν μέχρι δεκάδος γεννᾶται , λόγον δὲ ἴδιον | ||
ὑποτίθενται καὶ Πόθον καὶ Ὀμίχλην , Πόθου δὲ καὶ Ὀμίχλης μιγέντων ὡς δυεῖν ἀρχῶν Ἀέρα γενέσθαι καὶ Αὔραν , Ἀέρα |
Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
τοῦτο εἶπε καὶ νῦν ὑπ ' ἀμφοτέρων , εἰς δύο μερισθέντα τὰ τῶν πόλεων βουλόμενος πασῶν ἐνδείξασθαι . τὸ εὔηθες | ||
πρὸς μίαν ταύτην πόλιν , ἀλλὰ πολλαῖς πόλεσιν ἀντιρρόποις αὐτῇ μερισθέντα ἤρκεσεν ἂν καταγωνίσασθαι πάσας . ἔτι τε τῆς καθ |
ἵππους . ὁ δὲ ῥόμβος ὧδε ἔχει . ὁ μὲν εἰλάρχης πρῶτος τάτ - τεται , οἱ δ ' ἐφ | ||
ἐπιθήραρχος καὶ τὸ σύστημα ἐπιθηραρχία , ὁ δὲ τῶν ὀκτὼ εἰλάρχης καὶ τὸ σύστημα εἰλαρχία , ὁ δὲ τῶν ιϚ |
καὶ βραχείαϲ ˘ ἑπτάχρονοϲ , οἷον Καλλίξεινοϲ : διϲπόνδειοϲ ἐκ τεϲϲάρων μακρῶν = = ὀκτάχρονοϲ , οἷον Ἡρακλείδηϲ . Τὸ | ||
δὲ ἀπὸ τοῦ πρώτου λουτροῦ πρὸϲ τὸ δεύτερον ὡρῶν ἰϲημερινῶν τεϲϲάρων ἢ πέντε χρόνοϲ , εἰ τὸ τρίτον ἔτι μέλλοιϲ |
στάσεώς ἐστιν . . τάξις τῆς περιηγήσεως , ἢ περὶ ὁρισμῶν , περὶ ὠκεανοῦ , περὶ Εὐρώπης , περὶ κόλπων | ||
ἐστι καλὸν ὃ τούτων ἀπολειφθὲν τῶν εἰρημένων , ἀληθείας καὶ ὁρισμῶν καὶ διαιρέσεως , δύναται τέχνῃ λαμβάνεσθαι ; Ἤγουν ἐν |
٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη ٢ ٢١ ٥٥ ٤١ | ||
μονάδων τʹ καὶ τοῦ Β μονάδων γʹ καὶ τοῦ Γ μονάδων δʹ καὶ τοῦ Δ μονάδων εʹ : ὁ μὲν |
δὲ βρόχοι τὰς ἐνέδρας ἁπλᾶς οὔσας ἰῶνται καί τινας τῶν πολυσχιδῶν . ὁπόσαι μὲν οὖν τῶν συρίγγων ἁπλαῖ τέ εἰσι | ||
δηλουμένην ὁδὸν ἀνύωμεν , φεύγειν μὲν τὴν τῶν σωματικῶν καὶ πολυσχιδῶν ἐπιβολὴν καὶ ἀποδοχήν , προσοικειοῦσθαι δὲ τῇ τῶν ἀσωμάτων |
: οὐδὲν γὰρ ἰδιαίτερον περὶ αὐτῶν εἰπεῖν ἔχομεν . Τῶν ϲπονδύλων αἱ περιοχαὶ θλάϲιν μὲν ἐνίοτε , ϲπανίωϲ δὲ καὶ | ||
ἀφαιρέϲειϲ ἐπὶ τούτων ἀπὸ τοῦ ἰνίου καὶ τῶν πρώτων δύο ϲπονδύλων ποιητέον , ἐμβρέχονταϲ τὴν κεφαλὴν ἀνηθίνῳ ἐλαίῳ θερμῷ . |
καὶ ἐπ ' ἄλλων ἀπείρων ἀμφιβόλων διακρίσεις παρέπονται ἐκ τῶν ἐπακολουθούντων τοῖς λόγοις , οὐκ ἐξ ἐγκλίσεων οὐδὲ ἐξ ὀρθῶν | ||
θεωρεῖ ἐν μνήμῃ τίθεσθαι , οὔτε τῶν πάντη κατὰ συμβεβηκὸς ἐπακολουθούντων ἐν φαντασίᾳ γίγνεσθαι , ὧν τε ἡ νόησις καὶ |
χρόνων ἁπάντων γένεσις , οὕτως ἔχει καὶ ἐπὶ τῶν ἄλλων συζυγιῶν . Ἡ πέμπτη συζυγία τῶν βαρυτόνων ἐκφέρεται μὲν διὰ | ||
τῶν παρεπομένων τῷ ῥήματι , ἐγκλίσεων λέγω καὶ διαθέσεων καὶ συζυγιῶν καὶ χρόνων ἀρκούντως εἴπομεν , φέρε καὶ ἑκάστην τῶν |
τριπλασίων καὶ τετραπλασίων καὶ ἐπιμορίων καὶ ἐπιμερῶν καὶ πολλαπλασιεπιμορίων καὶ πολλαπλασιεπιμερῶν . καὶ ὅτι ἐν πάσαις ταύταις ταῖς σχέσεσιν ἡ | ||
καὶ τῶν ἐπιμερῶν καὶ τῶν μικτῶν ἀντὶ τοῦ τῶν τε πολλαπλασιεπιμερῶν καὶ τῶν πολλαπλασιεπιμορίων . ἔστι δὲ καὶ ἄλλο ἰδίωμα |
ἤτοι τετρ . σχ . τῶν ἐπιτάκτων : τῶν ὄπισθεν ἐπιτεταγμένων παρὰ ταῖς εὐναῖς αὐτοῖς : τοῖς Συρακουσίοις . πολλῇ | ||
δὲ ὀνομάζουσιν , ἐπειδὰν προτεταγμένων τινῶν κατὰ διαστήματα ἐκ τῶν ἐπιτεταγμένων ἐγκαθιστῶνται αὐτοῖς ἄλλοι ἐπ ' εὐθείας , ὡς ἀναπληρῶσαι |
τῆς ἀντιφάσεως , ὡς οὐ κατὰ τὸ ποσὸν μόνον τῶν περιεχομένων ὑπ ' αὐτῆς πραγμάτων ἀλλὰ καὶ κατὰ τὸ σφοδρὸν | ||
ὅπερ ὠνόμασται μὲν οὕτως ἀπὸ τοῦ δύο τινῶν ἐν αὐτῷ περιεχομένων ζητημάτων ἀπὸ τῶν πρός τι τοῦ πρώτου ζητήματος ἀνακύπτειν |
γὰρ καταπίνουσιν τοὺς ἀσθενεστέρους ἑαυτῶν . Ἡ μὲν οὖν τῶν ἐνύδρων καὶ ἑρπετῶν γονή , μετεσχηκυῖα τῆς εὐλογίας τοῦ θεοῦ | ||
οὐ γεύεται τῶν τε χερσαίων καὶ τῶν πτηνῶν καὶ τῶν ἐνύδρων ζῴων . καὶ δὴ σκευασίας παντοδαπὰς περὶ ταῦτα μεμηχανῆσθαι |
ὅπερ ἔδει δεῖξαι . Ἐὰν ἀριθμὸς μήτε τῶν ἀπὸ δυάδος διπλασιαζομένων ᾖ μήτε τὸν ἥμισυν ἔχῃ περισσόν , ἀρτιάκις τε | ||
τέτταρες ἔσονται ἢ ἄλλο τι πλῆθος τῶν ἀφ ' ἑνὸς διπλασιαζομένων : τοσαῦτα δὲ καὶ τὰ εἴδη . ἔστι δ |
τῆς θαλάττης δὶς δὲ ἀναχωρούσης , τεταγμένως δὲ καὶ τῶν ἡμερησίων χρόνων καὶ τῶν νυκτερινῶν , πῶς οἷόν τε πολλάκις | ||
ὡριαίων χρόνων , εἰ μὲν ὑπὲρ γῆν εἴη , τῶν ἡμερησίων , εἰ δὲ ὑπὸ γῆν , τῶν τῆς νυκτός |
, τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ | ||
τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ |
λέξις τὸ πάντοτε . Σύγκειται δὲ ὁ λόγος ἀπὸ λέξεων διαφόρων , ἢ δυοῖν ἢ τριῶν ἢ πλειόνων οὕτω ἑκάστη | ||
τῶν τοιούτων ὑπάρχει : εἰ δέ γε γύροθεν ἅλως σχημάτων διαφόρων , εἰ μὲν γὰρ μία πέφυκε καθαρά τε ἠρέμα |