βραχεῖαι : ἡμίβραχυ γὰρ λαμβάνεται ἕκαστον τῶν συμφώνων πλὴν τῶν διπλῶν : ἤγουν τοῦ Ζ . Ξ . Ψ . | ||
, καὶ τότε τοῖς τῆς σκυτάλης ἄκροις ἢ τοῦ καυτηρίου διπλῶν καιριῶν μεσότητες ἢ βρόχων ἀνισοτόνων ἀγκύλαι περιτιθέσθωσαν ἀγόμεναι κάτω |
” καὶ τὰ ἑξῆς . ὁ δὲ Σωκράτης νῦν , συμφωνῶν ἑαυτῷ ἐν τῇ Πολιτείᾳ , πραότερον ἐπιρραπίζει τὸν τοῦ | ||
ἐπικρατήσεως πολυμερῶς λαμβανόμενος . ἔστι δ ' ὁ μάλιστά τε συμφωνῶν ἡμῖν καὶ ἄλλως ἐχόμενος φύσεως τρόπος τοιοῦτος . ἤρτηται |
Ἐπιφανίου . Τῶν μὲν ἄλλων διαφέρουσιν οἱ συνεζευγμένοι , τῶν ἁπλῶν λέγω καὶ διπλῶν , ὅτι ἐν ἐκείνοις μὲν ἓν | ||
Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ ἐκλογῆϲ τῶν καλλιϲτευόντων ἁπλῶν φαρμάκων ρϘζ Ἐκ τῶν Ὀριβαϲίου . Ὅϲα μέϲα ἐϲτὶ |
ἔστιν ἀριθμός , τῶν ἀριθμῶν πεφυκότων πολλαπλασιαζομένων πλέον συνάγειν ἢ συντιθεμένων : τρὶς μὲν γὰρ τρεῖς θ , τρεῖς δὲ | ||
τίνα ὀνόματα φύσει καλά [ παραδείγματος ἕνεκα ] , ὧν συντιθεμένων καλὴν οἴεται καὶ μεγαλοπρεπῆ γενήσεσθαι τὴν φράσιν , καὶ |
εἰς τὸν ἀριθμὸν τῶν ἀφώνων πάντων [ δὲ ] τῶν φωνηέντων προτάσσεται , οὐδενὶ ὑποτάσσεται εἰ μὴ συμφώνοις , ὡς | ||
: καὶ ὥσπερ ἀπὸ τοῦ ἁρμοστός ὁρμαστός κατὰ μετάθεσιν τῶν φωνηέντων , ἐκ δὲ τοῦ ὁρμαστός γίνεται ὁρμαθός κατὰ ἀποβολὴν |
θαλάσσῃ σκύλλονται καὶ σύρονται καὶ ἐσθίονται πρὸς τῶν ἀναύδων καὶ ἀφώνων παίδων τῆς ἀμιάντου , δηλαδὴ θαλάσσης . οὐ γὰρ | ||
κατὰ μίαν συλλαβὴν συνεκφερόμενα : ἡμιφώνων τε πρὸς ἡμίφωνα καὶ ἀφώνων καὶ φωνηέντων πρὸς ἄλληλα συμπτώσεις , αἳ διασαλεύουσι τοὺς |
πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ | ||
οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν |
τῶν σνϚ πρὸς τὰ σμγ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους λόγους ἐν πρώτοις ἀριθμοῖς τούτοις : | ||
ἀπὸ προσλαμβανομένου ἐπὶ νήτην συνημμένων . ὑπάρχει δὲ ἐν αὐτῷ τετράχορδα τρία συνημμένα τάδε : ὑπάτων μέσων συνημμένων , καὶ |
ὅρων ἕκαστος ἴδιον ἔχει τὸ αἴτιον , ἐπὶ δὲ τῶν τόνων ἕπονταί πως τῷ πρώτῳ τῶν ὅρων οἱ λοιποὶ δύο | ||
ἀμεταβόλῳ συστήματι ἕξ : ἐλάχιστον μὲν τὸ διὰ τεσσάρων , τόνων δύο ἡμίσεος , οἷόν ἐστι τὸ ἀπὸ ὑπάτης ὑπάτων |
λοιπὰ ἡμίφωνα μικτὸν λαμβάνει τὸν ψόφον ἐξ ἑνὸς μὲν τῶν ἡμιφώνων τοῦ σ , τριῶν δὲ ἀφώνων τοῦ τε δ | ||
ἐν τοῖς τοσούτοις ὀνόμασι καὶ ῥήμασι καὶ τοῖς ἄλλοις μορίοις ἡμιφώνων τε καὶ ἀφώνων γραμμάτων συμπλοκὰς τῶν μὴ πεφυκότων ἀλλήλοις |
ὅπερ ἔδει δεῖξαι . Ἐὰν ἀριθμὸς μήτε τῶν ἀπὸ δυάδος διπλασιαζομένων ᾖ μήτε τὸν ἥμισυν ἔχῃ περισσόν , ἀρτιάκις τε | ||
τέτταρες ἔσονται ἢ ἄλλο τι πλῆθος τῶν ἀφ ' ἑνὸς διπλασιαζομένων : τοσαῦτα δὲ καὶ τὰ εἴδη . ἔστι δ |
Γίνεται δὲ καὶ σχήματα τοῦ αὐτοῦ μεγέθους ἐκ τῶν αὐτῶν ἀσυνθέτων συγκείμενα καὶ ἀριθμοῦ , εἰ ἡ τάξις αὐτῶν ἀλλοίωσιν | ||
καὶ διὰ τί οὐχ ἁπλῶς δείκνυται , ὅτι ἐκ τοσούτων ἀσυνθέτων ἕκαστον τῶν γενῶν συνέστηκεν ὅσα ἐστὶν ἐν τῷ διὰ |
μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
. τὰ δ ' αὐτὰ νοεῖν δεῖ καὶ ἐπὶ τῶν συνθέτων λόγων οἷον πολλαπλασιεπιμορίων καὶ πολλαπλασιεπιμερῶν . εἰ γὰρ ἔσται | ||
τῶν οὕτως λαμβανομένων συλλαβῶν καὶ ἐπὶ πάντων δὲ τῶν ἄλλων συνθέτων ἀφωρισμένας ἀριθμῷ τὰς ἀρχὰς ἔστι λαβεῖν , ἀλλ ' |
βραχέσι συστελλόμενα : ἀπὸ δ ' αὐτῶν τῶν τριῶν τούτων διχρόνων οὐκ ἔδει προτάξαι τὸ Ι : ἀλλ ' οὐδὲ | ||
ι δὲ λήγει τὸ οὐδέτερον , καθότι τὰ συστελλόμενα τῶν διχρόνων ἀποβολῇ τοῦ ς τὸ οὐδέτερον ποιοῦσι , ταχύς ταχύ |
οὐ γὰρ , ὡς τινὲς , ὦ ἐμοὶ , καὶ συναλοιφῇ ὤμοι . πῶς γὰρ τῇ δοτικῇ ἐπεφέρετο εὐθεῖα , | ||
φρῶ ἡ φρήν . παρὰ τὸ ἴω καὶ προΐω , συναλοιφῇ φρῶ . καὶ φρὴν , ἐφ ' ἧς προΐεται |
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
γὰρ αἱ μακραὶ συλλαβαί , ὥσπερ ἐπὶ τῶν ἰάμβων καὶ τροχαίων , ὡς εἴρηται , εἰς δύο βραχείας , οὕτω | ||
ἐπιωνικὸν τρίμετρον ἀκατάληκτον . τὸ δʹ περίοδος ἐξ ἰάμβων καὶ τροχαίων . τὸ εʹ τὸ αὐτό . τὸ Ϛʹ ἰαμβικὸν |
ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
τῶν δυσκόλων . ἢ οὐ ταῦτα ποιεῖτε νέων τῶν μὲν προστιθεμένων , τῶν δὲ ἑτέρωσε πλεόντων ; διὰ ταῦτ ' | ||
αἰσθητηρίων προστιθεμένου τοῦ αἰσθητοῦ γίνεται ἀντίληψις , τῇ σαρκὶ δὲ προστιθεμένων τῶν αἰσθητῶν : οὐκ ἄρα ἡ σὰρξ αἰσθητήριον . |
Νέστορα γενναιότερον , τῇ ἡλικίᾳ προβεβηκότα . τούτων τοίνυν οὕτως κατηγορουμένων τῇ ἀναστροφῇ χρησάμενοι ἀπολύομεν τὸν ποιητήν . ἀπὸ γὰρ | ||
, ἠθροισμένον ἐκ τῶν ἐπὶ πλέον ἐν τῷ τί ἐστι κατηγορουμένων τοῦ εἴδους , ὑφ ' ὃ τὰ ἄτομα , |
καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους , | ||
δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα |
, ὅταν ὁ μὲν ἑνός , ὁ δὲ δυεῖν μετέχῃ συστημάτων , τετάρτη ἡ κατὰ τὸν τῆς φωνῆς τόπον , | ||
, ἔτι δὲ ἁρμονίαι καὶ συμφωνίαι καὶ τῶν γενῶν καὶ συστημάτων αἱ μεταβολαὶ καὶ πάνθ ' ὅσα κατὰ μουσικὴν ἐπικρίνεται |
τρίτα τῆς δευτέρας καὶ τρίτης συζυγίας τῶν δευτέρων καὶ τρίτων ὁριστικῶν τῶν αὐτῶν συζυγιῶν , καθάπερ διεφώνησαν τὰ ἄλλα ὑποτακτικά | ||
τῇ παραληγούσῃ : γίνονται δὲ τὰ παθητικὰ εὐκτικὰ ἀπὸ τῶν ὁριστικῶν παθητικῶν τροπῇ τῆς μαι εἰς μην : ἐὰν οὖν |
, τίς νομιμωτέρα αἴτησις , τίς δικαιοτέρα . Ἡ μέντοι ἀμφιβολία καὶ ἀπ ' αὐτοῦ τοῦ ὀνόματός ἐστι φανερά : | ||
μὴ ἓν ἀλλὰ πλείονα σημαίνῃ , ἔστι καὶ παρὰ προσῳδίαν ἀμφιβολία , ὡς ἐφ ' οὗ παρέθετο τῆς ἑταίρας ὑποδείγματος |
ἂν ἔχοι , εἰ δὲ αὐτοὶ , οὐ κυρίως εἰσὶν διπλοῖ , ἀλλ ' οἱ ἐπὶ δύο ἐγκλήμασιν ἔχοντες ἓν | ||
ὁ τὸν ἄπολιν μελετῶν διαιρήσει . Καθόλου δὲ οἱ μὲν διπλοῖ τῶν ἁπλῶν διαφέρουσι τῷ ἔχειν ἁπλᾶ τὰ κεφάλαια , |
ζητεῖται , εἰ τὸν τρισαριστέα φονεύειν ἐχρῆν ἢ μή . Εἴδη δὲ τῆς ἀντιλήψεώς ἐστι τέσσαρα : ἡ μὲν γάρ | ||
δοκεῖ , ἀλλ ' ἐφ ' ὃ βούλονται μετάγουσιν . Εἴδη δὲ ἡ ἀντίστασις οὐκ ἐπιδέχεται , διότι οὐδὲ τὰ |
ἐγγυητὰς παράσχωσιν . Ἐπιφανίου . Τῶν μὲν ἄλλων διαφέρουσιν οἱ συνεζευγμένοι , τῶν ἁπλῶν λέγω καὶ διπλῶν , ὅτι ἐν | ||
δὲ αὐτοῦ εὔτακτα ληφθήσεται ἡμῖν οἱ ἀπὸ τετράδος συνεχεῖς τετραπλάσιοι συνεζευγμένοι τοῖς ἀπὸ τριάδος τριπλασίοις ὁμοταγεῖς ὁμοταγέσιν , οἷον ὁ |
λήγοντα ἀρσενικὰ ὀξύτονα πρὸ τοῦ ω ἔχοντα ἕν τι τῶν δασέων μὴ ὄντα ἐθνικὰ διὰ τοῦ ω κλίνονται , πιθών | ||
καὶ ἐκ τοῦ φθείρω δὲ ἀπελθόντων τῶν ἐν ἀρχῇ κειμένων δασέων τὸ ἔρρω φησὶ γίνεσθαι καθ ' ὁμοιότητα τοῦ κείρω |
μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου | ||
μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος : |
μὲν ἔχειν δύο μὴ κρινομένους δὲ , ὥσπερ ἐπὶ τῶν συνεζευγμένων ἐστὶν ὁ ἐμπίπτων : ὁ γὰρ δεύτερος ὅρος εἰς | ||
τὸ καθ ' αὑτὸν ἀπολογήσεται . Σωπάτρου . Δεύτερος τῶν συνεζευγμένων ἐστὶν ὁ προκατασκευαζόμενος : ὃς ὠνόμασται μὲν οὕτως ἀπὸ |
ἡ διπλασία : ἐκ ταύτης γὰρ γεγόνασι . τῶν δὲ ἐπιμερῶν ἡ ἡμιολία , καὶ ἐπὶ τῶν λοιπῶν ὁμοίως . | ||
τοῦ ἐπιμεροῦς γίνεται πολλαπλασιεπιμερής . ἰστέον δὲ κἀκεῖνο ὅτι τῶν ἐπιμερῶν τε καὶ τῶν ἐπιμορίων πάντων οἱ πυθμένες πρῶτοι πρὸς |
, τριχῶς δὲ τὸ ἄλογον : τὸ γὰρ ὑπὸ δύο ῥητῶν εὐθειῶν μήκει συμμέτρων περιεχόμενον ῥητόν ἐστι , καὶ τὸ | ||
ῥητὸν ἄρα ἐστὶ καὶ τὸ ΑΓ . Τὸ ἄρα ὑπὸ ῥητῶν μήκει συμμέτρων , καὶ τὰ ἑξῆς . Ἐὰν ῥητὸν |
κράσεων ἐννέα διαφοροὶ , τέσσαρες μὲν ἁπλαῖ , τέσσαρες δὲ σύνθετοι , καὶ πρὸς τούτοις ἡ εὔκρατος . καὶ τῶν | ||
σῴζειν τὰς ἀναλογίας . Τῶν ῥυθμῶν τοίνυν οἱ μέν εἰσι σύνθετοι , οἱ δὲ ἀσύνθετοι , οἱ δὲ μικτοί , |
. Ὅλως δὲ εἰπεῖν , εἰ ἐπὶ τῶν ὁμοταγῶν καὶ ἀντιδιῃρημένων ἕνωσιν ὁμοῦ καὶ διάκρισιν λέγομεν , ταυτότητά τε καὶ | ||
τὰ ἀντιδιῃρημένα ἀνάγκην ἐπάγει τινὰ διὰ τῆς ἐκθέσεως ἑνὶ τῶν ἀντιδιῃρημένων ὑπάγεσθαι τὸ προκείμενον . Τὸ μὴ χρῆναι τὸ συμπέρασμα |
καὶ καθ ' ὑπερβολὴν τῶν ἀγώνων ὁ καιρὸς τῶν τοιούτων ἐννοημάτων , οὐχ ὅταν βλάβης ἢ ἄλλου τινὸς τῶν φαυλοτάτων | ||
διαφοραὶ τοῦ πολιτικοῦ λόγου πρὸς τὸν ἀφελῆ εἰσὶν ἀπὸ τῶν ἐννοημάτων πρῶτον λαμβανόμεναι . ἔστι γὰρ τὰ μὲν πολιτικὰ νοήματα |
. ἰστέον δὲ ὅτι ἐπὶ τῶν τριῶν ὁρισμῶν τρεῖς σχέσεις νοοῦνται : οἱ μὲν γὰρ δύο πρῶτοι τὴν ἀπὸ τοῦ | ||
ἔχει καὶ αὐτὸ λόγον , πλὴν ὡς συνεχῶν ποσῶν τμημάτων νοοῦνται καὶ οὐχ ὡς διῃρημέναι μονάδες . Τοῦτο ἴδιον τῶν |
οἱ προστιθέντες ἐνταῦθα τὸ Ἐτεόκλεις ἀρχηγέτα ἀμαθεῖς εἰσι καὶ τῶν μέτρων καὶ τῆς ὀρθῆς τοῦ λόγου συντάξεως : τὸ γὰρ | ||
. Εἰ δὲ βούλοιο καὶ τὸν ϲταθμὸν τῶν ὑγρῶν εἰδέναι μέτρων , πάμπολλοι μὲν αἱ τῶν ὑγρῶν οὐϲιῶν εἰϲιν κατὰ |
τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς , καὶ ἐφεξῆς . οἷόν εἰσιν ἡμιόλιοι δ , Ϛ , θ . λαβὲ ἀπὸ τῶν | ||
πρὸς τὸ δεύτερον καὶ τὸ τρίτον πρὸς τὸ τέταρτον : ἡμιόλιοι γὰρ ἀμφότεροι ἀμφοτέρων . καὶ τὰ ἰσάκις τοίνυν πολλαπλάσια |
ἀληθεύειν : ἡ μὲν γὰρ καθόλου ἀπόφασις διάκρισιν παντελῆ τῶν σημαινομένων ὑπ ' αὐτῆς πραγμάτων δηλοῦσα δι ' αὐτὸ τοῦτο | ||
πολλὰ σημαινόμενα , εἶθ ' οὕτως εἰπεῖν περὶ ποίου τῶν σημαινομένων τὴν διδασκαλίαν ποιεῖται : ἡ γὰρ ὁμωνυμία εἴωθεν ἀσάφειαν |
ἐξαιρέτως συνάρθρους καὶ ἀσυνάρθρους ἐκάλεσαν . ὡς οὐ δυναμένων τῶν προκατειλεγμένων ὀνομάτων ἀσυνάρθρων καλεῖσθαι . καὶ ἴσως ἂν εἴη μᾶλλον | ||
Τρύφων ἤρξατο τὴν ἐν τοῖς ἄρθροις σύνταξιν παραδιδόναι , τῶν προκατειλεγμένων τρόπων οὐδὲ ἔννοιαν παραθέμενος . . . . : |
: περὶ κοινῶν μὲν ὡς ἐν τοῖς Φιλιππικοῖς , περὶ ἰδικῶν δὲ ὡς ἐν τοῖς ἐπιτροπικοῖς , περὶ μικτῶν δὲ | ||
ἀμφότερα καταγίνεται : καὶ γὰρ ὁ ῥήτωρ ποτὲ μὲν περὶ ἰδικῶν διαλαμβάνει , ὅταν τῷδέ τινι συνηγορήσῃ τῶν πολιτῶν ἢ |
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
κατὰ πλάτος τριπλάσιοι , οἱ δὲ ὑποκάτω τῶν ἐπάνω ὁμοταγῶν ἐπίτριτοι , ὁμοταγεῖς ὁμοταγῶν : ἐκ γὰρ τῶν τριπλασίων οἱ | ||
κἀνταῦθα ἡ ἀναλογία κατὰ τάξιν . πάλιν γὰρ οἱ ἐφεξῆς ἐπίτριτοι ἔσονται καὶ ἐπιτέταρτοι καὶ ἐφεξῆς : λαβὲ γὰρ θ |
τις ἀκριβῶς ταῦτα γνοίη , ῥᾳδίως καὶ τὰ διαπεπτωκότα τῶν ὡρισμένων τούτων χρωμάτων δι ' οἱονδήτινα καταγνοίη λόγον . Οὐκοῦν | ||
εἴς τε μετοχὴν ἀναλυομένου καὶ θάτερον τούτων , τῶν μὲν ὡρισμένων εἰς τὸ ἔστι , τῶν δὲ ἀορίστων εἰς τὸ |
: ὁ ι πάλιν πρὸς τὸν Ϛ ἐπιμερής ἐστι καὶ ἐπιδίτριτος : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ τρίτα . | ||
πρὸς τὸ τμῆμα τὸ πρὸς αὐτῇ πέμπτων θ ὂν ὡσαύτως ἐπιδίτριτος , πρὸς μέντοι τὴν ἑτέραν πλευρὰν εἴκοσι πέμπτων οὖσαν |
, τῶν μὲν ὡρισμένων εἰς τὸ ἔστι , τῶν δὲ ἀορίστων εἰς τὸ οὐκ ἔστιν , οἷον τρέχειτρέχων ἐστίν , | ||
παντελῶς ἀκατάσκευα καταλέλοιπεν ἡ τέχνη , ἀλλὰ τῆς μὲν τῶν ἀορίστων ἐξετάσεως τρεῖς ἡμῖν παραδέδωκε μεθόδους : ἢ γὰρ κατασκευαστικοὺς |
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ | ||
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις |
τὸν κζ λόγον , ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμὸν τετραγώνων ἀμφοτέρων ὄντων καὶ τοῦ λϚ καὶ τοῦ κζ ; | ||
τῆς ΑΓ ἔλαττόν ἐστι τῶν ἀπὸ τῶν ΓΒ , ΒΑ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΒ , ΒΔ περιεχομένῳ ὀρθογωνίῳ |
οἱ καταλαμβάνοντες Ὠρεόν , οὗτοί εἰσιν οἱ κατασκάψαντες Πορθμόν . γενῶν δέ , ἂν ποτὲ μὲν ἀρσενικὸν ὄνομα προθῇς , | ||
ἐν γὰρ τῷ λέγειν αἱ διαι - ρέσεις γίνονται τῶν γενῶν εἰς τὰ εἴδη δηλοῖ τὰς διαιρετικάς , ἐν δὲ |
γεννικόν , ὀπτὰ δελφάκια ἁλίπαστα τρία . Ἕτεροι δὲ θεοῖσι συμπεπλεγμένοι μετὰ Καράβου σύνεισιν , ὃς μόνος βροτῶν δύναται καταπιεῖν | ||
Σωπάτρου . Ἰστέον ὥς εἰσι καὶ ἕτεροι στοχασμοὶ , οἳ συμπεπλεγμένοι καλοῦνται καὶ αὐτοὶ , διὰ τὸ ἑτέραις στάσεσιν ἐπιπλέκεσθαι |
συνέστηκεν , ἀλλ ' ἐκ τῶν ὑπ ' αὐτῆς ἀεὶ παραλαμβανομένων . ταῦτα δέ ἐστι πρόσθεσις καὶ ἀφαίρεσις . ὥσθ | ||
' αὐτῷ τίμιον . ὁ αὐτὸς λόγος καὶ ἐπὶ τῶν παραλαμβανομένων ἐκ προϋπηργμένης ἀδικίας , δεῖ ἐμοῦ ὁρῶντος ἐκεῖνον αἰκίζεσθαι |
χρόνων ἁπάντων γένεσις , οὕτως ἔχει καὶ ἐπὶ τῶν ἄλλων συζυγιῶν . Ἡ πέμπτη συζυγία τῶν βαρυτόνων ἐκφέρεται μὲν διὰ | ||
τῶν παρεπομένων τῷ ῥήματι , ἐγκλίσεων λέγω καὶ διαθέσεων καὶ συζυγιῶν καὶ χρόνων ἀρκούντως εἴπομεν , φέρε καὶ ἑκάστην τῶν |
λόγον , ἡμιόλιον τυχὸν ἢ ἐπίτριτον ἢ ἄλλον τινὰ τῶν ἐπιμορίων ἢ τῶν ἐπιμερῶν , τὰ μὲν ἀπ ' αὐτῶν | ||
. ἐκ τούτων πάλιν κατὰ ἀναστροφὴν γίνονται τὰ εἴδη τῶν ἐπιμορίων : οἷόν ἐστι πρῶτον εἶδος τῶν πολλαπλασίων τὸ διπλάσιον |
ἐφ ' ἑκάστης πλάσεως τῶν τε ἐπιμερῶν σχέσεων καὶ τῶν πολλαπλασιεπιμορίων πῶς καὶ ἀντιπεπόνθησίς τις γλαφυρὰ ὑποφύεται . αἱ μὲν | ||
τῶν ἐπιμερῶν , καὶ τῶν μὴ ἐξ ἀναστροφῆς , τουτέστι πολλαπλασιεπιμορίων , πάλιν τῷ αὐτῷ τρόπῳ διὰ τῶν αὐτῶν προσταγμάτων |
νέμεσις οὐ διαφέρουσιν . φθόνος ἡ νέμεσις , νέμεσις ὁ μερισμός . ἀφθόνητος οὖν ὁ μὴ φθόνον καὶ μερισμὸν καὶ | ||
εὐμαθέστεροι γενήσονται . εὐμάθειαν δὲ ποιεῖ προέκθεσις , ἀνανέωσις , μερισμός . προέκθεσις μέν ἐστιν , ὅταν ἃ μέλλει τις |
ἀφαίρεσιν ὑπολείπηταί τι : τούτῳ γὰρ διαφέρειν δοκεῖ τῆς παντελοῦς ἄρσεως ἡ ἀφαίρεσις : οὔτε τὸ μεῖζον ἐν τῷ μικροτέρῳ | ||
σύστημά τι συγκείμενον ἐκ τῶν ποδικῶν χρόνων ὧν ὁ μὲν ἄρσεως , ὁ δὲ βάσεως , ὁ δὲ ὅλου ποδός |
καταλαβεῖν , μήτε τὸ ἀσυνύπαρκτον αὐτῶν διαβεβαιοῦσθαι πρὸ τῆς τῶν συλλογισμῶν διὰ τῶν τροπικῶν συνερωτήσεως . διόπερ οὐκ ἔχοντες , | ||
προειρημένα σχήματα : λοιπὸν γάρ ἐστι τοῦτο κεφάλαιον τῆς περὶ συλλογισμῶν πραγματείας . εἰ γὰρ τήν τε γένεσιν τῶν συλλογισμῶν |
: ἔπειτα τῷ ἡμίσει πλείους εἰσὶν αἱ μακραὶ συλλαβαὶ τῶν βραχειῶν ἐν ἑκατέρῳ τῶν στίχων : ἔπειτα πᾶσαι διαβεβήκασιν αἱ | ||
τοῦ γὰρ ἰωνικοῦ ἀπὸ μείζονος ἐκ μακρῶν δύο καὶ δύο βραχειῶν ὄντος , ἔξεστι μεταθεῖναι καὶ ποιῆσαι διτρόχαιον ἐκ μακρᾶς |
τί ποτέ ἐστι μονογενῆ , καὶ ὅτι πρὸς ἀντιδιαστολὴν τῶν τριγενῶν πρόσκειται : ταῦτα οὖν φυλάττει τὸ υ , πλὴν | ||
τὰ ὅμοια : τὰ δὲ εἰς ως περατούμενα πάντως ἀπὸ τριγενῶν πτωτικῶν , κούφως , φίλως , μέσως , ταχέως |
δὲ καὶ τοῦτο παρένταξις , δι ' ὅτι ἀνομοίων ἐστὶ παρένθεσις , οἷον ψιλῶν παρ ' ὁπλίτας : τὴν γοῦν | ||
εἰσὶν ὀκτώ , ὄνομα ἀντωνυμία ῥῆμα μετοχὴ ἐπίρρημα πρόθεσις σύνδεσμος παρένθεσις : τισὶν δὲ δοκεῖ καὶ προσηγορία . , . |
, ἀλλὰ Ἀθηναῖοι πόλεώς φασι καὶ τὰ τούτοις ὅμοια . κτητικῶν τῶν εἰς κος ληγόντων ἡ παρεδρεύουσα βραχεῖά ἐστιν , | ||
ἀπολλυμένους σάως , Ἀλκαῖος δευτέρῳ . Ἐχομένως καὶ ὑπὲρ τῶν κτητικῶν ῥητέον , ὧν καὶ διαφορὰς ἐξεθέμεθα ὡς πρὸς τὰς |
, ὅτι μηδ ' ἡ αὐτὴ ἐπὶ πάντων ὕλη τῶν προβλημάτων : ὅτι ἂν μὲν οὖν σαφὲς καὶ ῥᾴδιον ἐπιδεικνύειν | ||
τοὺς ἴσους παρεῖχον . ὁ τοίνυν Αἴσωπος τὰ πεμπόμενα τῶν προβλημάτων Λυκήρῳ συνὼν ἐπέλυε , καὶ εὐδοκιμεῖν ἐποίει τὸν βασιλέα |
: εἶδος βοτάνης * λειήναιο : σύντριψον * ἰσορρεπές : ἰσόζυγον * ἀμφοῖν : ἐκ τῶν δυοῖν τοῖς δυσί κλώθοντος | ||
ὁ ἔρινος . ἄλλως : ἀμφοῖν κλώθοντος : φέρε γὰρ ἰσόζυγον βάρος ἐξ ἠρύγγου καὶ ἀκάνθου ἐν τοῖς τοῦ ἐρίου |
τοῦ διὰ μέσων ἐπὶ τοῦ αὐτοῦ κύκλου μοίρας ἀπὸ τῶν συνδέσμων ιε ιβ , καὶ ἑκατέρα τῶν ἀνεκλείπτων περιφερειῶν συνάγεται | ||
σχῆμα οἱονδήποτε . Ἐπικάμπια δὲ λέγει τὰ τετράγωνα τῶν ἐκλειπτικῶν συνδέσμων . οὕτω καὶ παρὰ τῷ Δωροθέῳ ἔχεις εἰρημένον : |
διτροχαίου καὶ κρητικοῦ . τὸ μεʹ παιωνικὸν τρίμετρον καταληκτικὸν ἐκ παιώνων τετάρτων δύο καὶ μολοττοῦ . τὸ μϚʹ ὅμοιον τῷ | ||
κώλων ιηʹ . τὸ αʹ παιωνικὸν τρίμετρον ἀκατάληκτον , ἐκ παιώνων τετάρτων : κατὰ μονοπεδίαν γὰρ μετρεῖται τὰ τοιαῦτα μέτρα |
ἀπὸ οὐσίας καὶ ἰδιότητος . οὐσία δὲ τὸ κοινῶς καὶ γενικῶς θεωρούμενον , οἷον τί φόνος ; τί ἱεροσυλία ; | ||
, ὥστε ἐκεῖνο τὸ μέρος μέτωπον γίνεσθαι . Πᾶσι δὲ γενικῶς παραγγεῖλαι τὴν δευτέραν τάξιν μηδένα θαρσῆσαι παρελθεῖν , κἂν |
ἐστι τόπος εὐφυέστατος καὶ δημοσιώτατος καὶ κοινὸς ὁ διὰ τῶν ὁμωνύμων , εἰ βούλει δέ , καὶ τῶν ἀμφιβολιῶν : | ||
, ἐπειδὴ δοκεῖ ὁμώνυμον εἶναι τὸ ὄν , τῶν δὲ ὁμωνύμων οὔτε μία φύσις οὔτε μία τέχνη οὔτε δὲ μία |
μὲν ἔχοντες πρόσωπον , δύο δὲ πράγματα , ὥσπερ ὁ συγκατασκευαζόμενος . Μαρκελλίνου . Τῶν στοχασμῶν οἱ μὲν ἁπλοῖ , | ||
τοῦ τεθνεῶτος κινήσει . Τρίτος δὲ τῶν συνεζευγμένων ἐστὶν ὁ συγκατασκευαζόμενος , ὃς ὠνόμασται μὲν οὕτως ἀπὸ τοῦ δύο ἐγκλήματα |
ἐναιωρημάτων , ὥσπερ καὶ ἕτερον μὲν ἐπὶ τῷ πέρατι τῶν ἐναιωρημάτων , ἀρχῇ δὲ τῶν νεφελῶν : τρεῖς δ ' | ||
ὥσπερ πειρώμεναι τὸν ὡρισθέντα τόπον ταῖς ὑποστάσεσι . Τῶν δὲ ἐναιωρημάτων ὅσα μὲν τὸν ἀκριβῶς μέσον τοῦ παντὸς ἀπείληφε διαστήματος |
ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου | ||
: ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον |
ποιεῖ τὰ ἀσύ - στατα : εἴπομεν οὖν ἕκαστον τῶν ἀσυστάτων ἐν κεφαλαίῳ παρὰ τὸ τί γίνεται : ἐροῦμεν οὖν | ||
, ] παρὰ δὲ ταῦτα εἴδη ἐστὶν ἕτερα ἐγγὺς μὲν ἀσυστάτων μελετώμενα δὲ ὅμως διεξελθὼν τὰ πάντῃ ἀσύστατα οὐκ ἀθρόως |
γοῦν ἐπὶ τῶν τεχνητῶν , οὕτω καὶ ἐπὶ τῶν φύσει συνεστώτων ἔχει . ἡ μὲν γὰρ ἔφεσις ἁπλῶς τοῦ θείου | ||
ὀργανικοῦ σώματος . τῶν γὰρ πραγμάτων ἐξ ὕλης καὶ εἴδους συνεστώτων ἢ ἀνάλογόν γε εἴδει καὶ ὕλῃ τὴν σύστασιν ἐχόντων |
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ | ||
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος |
Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
καί φαμεν , ὅτι τὸ διαφόρως χρῆσθαι τῇ ποικιλίᾳ τῶν λέξεων ποικίλον καὶ τὸ κάλλος τοῦ λόγου ποιεῖ . τὰ | ||
ταῖς τότε γινομέναις νίκαις . . Πρωταίνιον ] ἐκ δύο λέξεων ταυτοσημάντων συνετέθη τὸ πρωταίνιον , ἐκ τοῦ πρῶτος καὶ |
. ιαʹ Ὅπως χρὴ διαγινώσκειν ἐκ τῶν φλεγμονῶν καὶ τῶν παρεπομένων συμπτωμάτων τὸν λυποῦντα χυμόν . ιβʹ Αἱματικοῦ χυμοῦ ὄντος | ||
διὰ τῶν ποδῶν . Ἐν πτεροῖσιν ] Συνεκδοχικῶς ἀπὸ τῶν παρεπομένων τὴν πρᾶξιν παριστῶσα : ἀπὸ γὰρ τῶν πτερῶν , |
τό , δῆλον ὡς καὶ ὅ . Ἐδείχθη ὡς ἀπὸ ἐγκλινομένων οὐ παράγονται αἱ κτητικαί . καὶ οἱ ἀξιοῦντες οὖν | ||
φωνῆς ἡ τοῦ ἄρθρου πρόσθεσις γίνεται , σαφὲς κἀκ τῶν ἐγκλινομένων καὶ κατὰ τὴν φωνήν , Δίωνος ἡ ἐκφώνησις μεγίστη |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
πελειάδες ἀμφὶς ἕκαστον χρύσειαι νεμέθοντο , δύω δ ' ὑπὸ πυθμένες ἦσαν , ἀκουστέον οὐ πυθμένας δύο , ἀλλ ' | ||
γὰρ διπλασιεπιδιμεροῦς τρίτων ἐν πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ |
' , ἢ τοῦ κ , ἢ ἑνὸς τῶν λοιπῶν ἀμεταβόλων , ἢ τοῦ ξ , διὰ τοῦ ι γράφεται | ||
, εἴτε κατὰ τὸ μέσον , εἰς ἕν τι τῶν ἀμεταβόλων λήγουσα , συμφώνου ἢ συμφώνων ἐκ τῆς ἑξῆς συλλαβῆς |
μέσον κοινός , διάζευξις δ ' ὅταν δύο τετραχόρδων ἑξῆς μελῳδουμένων ὁμοίων κατὰ σχῆμα τόνος ᾖ ἀνὰ μέσον . ὅτι | ||
τὸν δὲ τόνον ἐπόγδοον . τῶν δὴ παρὰ τοῖς κιθαρῳδοῖς μελῳδουμένων τετραχόρδων πεποιήσθω πρῶτον τὸ ἀπὸ νήτης μέχρι παραμέσης διὰ |
ἐς τὴν παρεξειρεσίαν καὶ ἀπέβαλε τὴν ἀσπίδα . † Καὶ ἀναδίπλωσις δέ που εἰργάσατο μέγεθος , ὡς Ἡρόδοτος δράκοντες δέ | ||
τινὸς λόγου , ἢ πλειόνων λέξεων ἐπαναλαμβανομένων , ὃ καὶ ἀναδίπλωσις καλεῖται , οἷόν ἐστι τοῦ δ ' ἐγὼ ἀντίος |
ἐξοχώτατον πάντων . Ὁ Πηλεύς τε καὶ Κάδμος συγκαταλέγονται καὶ συναριθμοῦνται τούτοις τοῖς τὰς τῶν Μακάρων νήσους λαχοῦσιν οἰκεῖν . | ||
ἀκούειν τοῦ μισουμένου ἢ ὅλως ὁπωσοῦν ἐντυγχάνειν τῷ μισουμένῳ . συναριθμοῦνται δ ' ἐν τοῖς πάθεσι καὶ χάρις καὶ ὀργή |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
. οὐδὲ γὰρ ἡ σύνθεσις αὐτῶν , τῶν δὲ προεκκειμένων πτωτικῶν , οἷς παρείπετο ἀναβιβάζειν μὲν τὸν τόνον , εἰ | ||
θεματικώτερον ἐκλίθησαν , οὐ δυναμένης τῆς ἐγώ κατὰ λόγον τῶν πτωτικῶν τὴν ἐμοῦ γενικὴν παραδέξασθαι , οὐδὲ μὴν τῆς ἐμοῦ |
περιττοῖς κζʹ . ἐν τούτοις τοῖς ἀριθμοῖς οἱ τελειότεροι τῶν συμφωνιῶν εὑρίσκονται λόγοι : συμπεριείληπται δὲ αὐτοῖς καὶ ὁ τόνος | ||
διὰ πασῶν συγκεῖσθαι συμβέβηκεν ἐκ δύο τῶν ἐφεξῆς καὶ πρώτων συμφωνιῶν , τῆς τε διὰ πέντε καὶ τῆς διὰ τεσσάρων |
, κατὰ ῥήματοϲ λεγόμενον ἢ ἐπιλεγόμενον ῥήματι . Τῶν δὲ ἐπιρρημάτων τὰ μέν ἐϲτιν ἁπλᾶ , τὰ δὲ ϲύνθετα : | ||
τὴν ευ ἐβάρυναν τὸ ἐπίρρημα . [ Τὰ τοπικὰ τῶν ἐπιρρημάτων τρεῖς ἔχει διαστάσεις , τὴν ἐν τόπῳ , τὴν |
τρία : ἀντεγκληματικὸς διπλοῦς τέλειος ἐκ προσώπων καὶ πραγμάτων , ἀντεγκληματικὸς διπλοῦς ἀτελὴς ἐκ προσώπων , ἀντεγκληματικὸς διπλοῦς ἀτελὴς ἐκ | ||
ἃ καὶ κατὰ ἀμφισβήτησιν καλεῖται , συνεζευγμένα δὲ τρία : ἀντεγκληματικὸς διπλοῦς τέλειος ἐκ προσώπων καὶ πραγμάτων , ἀντεγκληματικὸς διπλοῦς |
ὑπερέχοντες , παράλληλοι δὲ δύο τόνον , οἱ δὲ τρίτοι τριημιτόνιον : ἀναλόγως δὲ ἕξει καὶ ἐπὶ τῆς τῶν λοιπῶν | ||
παρενθέσεως τῆς ἐν ὀκταχόρδῳ . ἀπεῖχε γὰρ αὕτη τῆς παρανεάτης τριημιτόνιον ἀσύνθετον , ἀφ ' οὗ διαστήματος ἡ μὲν παρεντεθεῖσα |
ἀξιόλογον ταῖς αἰσθήσεσιν ἐμποιεῖν παραλλαγήν , ἐνδεῖν δὲ ἐπὶ τοῦ διατονικοῦ , πλειόνων φαινομένων σαφῶς τῶν μελῳδουμένων , ὡς ἐκ | ||
μικρὸν γὰρ παρέτρεψεν , ἓν μόνον ἡμιτόνιον , ἀπὸ τοῦ διατονικοῦ . ἔνθεν καὶ χρῶμα ἔχειν λέγομεν τοὺς εὐτρέπτους ἀνθρώπους |
χρόνους ἧκόν τινες ἀπὸ Σικελίας ἀπόστασιν ἀγγέλλοντες οἰκετῶν εἰς πολλὰς ἀριθμουμένων μυριάδας . οὗ προσαγγελθέντος , ἐν πολλῇ περιστάσει τὸ | ||
: ὅ ἐστιν : οὐκ εἰς τὸ ἀκριβὲς ἦλθεν ὥστε ἀριθμουμένων τῶν ψήφων εἰς τὸ βραχὺ ἐλθεῖν καὶ εἰς ἰσοψηφίαν |
γίνεται μονάδων ιβ καὶ λεπτῶν μδ καὶ δευτέρων με καὶ τρίτων νδ καὶ τετάρτων ιϚ , συντιθέμενα δὲ ὁμοῦ γίνεται | ||
ὅλη γῆ , σφαιροειδὴς λογιζομένη , στερεῶν σταδίων ἔχει μυριάδας τρίτων μὲν ἀριθμῶν σξθʹ , δευτέρων δὲ ͵θυιʹ , πρώτων |
, καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
δὲ τοιαύτη τῶν ἐνεργειῶν ποικιλία καὶ τῶν πολλῶν ὑλικῶν δυνάμεων σύνθεσις οὐχ ὅπως θείας δημιουργίας τῷ παντὶ κεχώρισται , ἀλλὰ | ||
καὶ ἐπὶ τοῦ ἀριθμοῦ ἕξει , εἴπερ ἐστὶν ὁ ἀριθμὸς σύνθεσις μονάδων , ὥσπερ λέγουσί τινες : οὕτως γὰρ ἔσται |
, μάλιστα δὲ τῶν τῆς σελήνης , ἀπὸ τῶν αὐτῶν λαμβανομένων , τὰς κατὰ μῆκος αὐτῶν ἀκριβεῖς ἐποχὰς διακρινοῦμεν ἀπό | ||
δύο προτάσεων δείκνυταί τι , λέγειν καὶ διὰ πλειόνων προσεχῶν λαμβανομένων καὶ μηδὲν ἄλλο ἀλλ ' ἢ τὸ προκείμενον συμπέρασμα |
τὸν αὐτὸν ἔλθῃ δεύτερον φθόγγον , εἶτα πάλιν ἀπὸ τοῦδε ἡμιτόνιον διαστήσασα τρίτον ὁρίσῃ φθόγγον ἄλλον , ἀπὸ τούτου κατὰ | ||
νήτην διεζευγμένων τόνος , ἀπὸ νήτης διεζευγμένων ἐπὶ τρίτην ὑπερβολαίων ἡμιτόνιον , ἀπὸ τρίτης ὑπερβολαίων ἐπὶ ὑπερβολαίων διάτονον τόνος , |
ἔστιν γὰρ ἃ μὲν ἡμίφωνα , ἃ δὲ ἄφωνα . ἡμίφωνά ἐστιν , ἃ καθ ' ἑαυτὰ μὲν ἐκφωνεῖται , | ||
ἐκ Διὸς ὗεν ὕδωρ . τῶν δὲ συμφώνων τὰ μὲν ἡμίφωνά ἐστι κατ ' αὐτοὺς τὰ δὲ ἄφωνα , καὶ |