. Ὅλως δὲ εἰπεῖν , εἰ ἐπὶ τῶν ὁμοταγῶν καὶ ἀντιδιῃρημένων ἕνωσιν ὁμοῦ καὶ διάκρισιν λέγομεν , ταυτότητά τε καὶ | ||
τὰ ἀντιδιῃρημένα ἀνάγκην ἐπάγει τινὰ διὰ τῆς ἐκθέσεως ἑνὶ τῶν ἀντιδιῃρημένων ὑπάγεσθαι τὸ προκείμενον . Τὸ μὴ χρῆναι τὸ συμπέρασμα |
, ὡς δηλοῖ τὸ διάγραμμα , κατὰ πᾶσαν σύνθεσιν τῶν συμπληρούντων τὰ ιʹ δυεῖν ἀριθμῶν [ μέσος εὑρεθήσεται ὁ εʹ | ||
τῶν ἐν τῆι γενέσει ἀλλὰ καὶ ἀσωμάτων τῶν τὴν γένεσιν συμπληρούντων σαφῶς παραδέδωκεν ὁ Π . λέγων : αἱ δ |
χρόνους ἧκόν τινες ἀπὸ Σικελίας ἀπόστασιν ἀγγέλλοντες οἰκετῶν εἰς πολλὰς ἀριθμουμένων μυριάδας . οὗ προσαγγελθέντος , ἐν πολλῇ περιστάσει τὸ | ||
: ὅ ἐστιν : οὐκ εἰς τὸ ἀκριβὲς ἦλθεν ὥστε ἀριθμουμένων τῶν ψήφων εἰς τὸ βραχὺ ἐλθεῖν καὶ εἰς ἰσοψηφίαν |
βραχεῖαι : ἡμίβραχυ γὰρ λαμβάνεται ἕκαστον τῶν συμφώνων πλὴν τῶν διπλῶν : ἤγουν τοῦ Ζ . Ξ . Ψ . | ||
, καὶ τότε τοῖς τῆς σκυτάλης ἄκροις ἢ τοῦ καυτηρίου διπλῶν καιριῶν μεσότητες ἢ βρόχων ἀνισοτόνων ἀγκύλαι περιτιθέσθωσαν ἀγόμεναι κάτω |
φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται | ||
καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν |
φυσικώτατα ἔκ τε τῆς ἀπείρου καὶ περαινούσης καὶ ἐκ τῆς ἀρτιοπερίσσου φύσεως καὶ αὐτὴ καὶ τὰ μέρη αὐτῆς πάντα . | ||
' ἡμῶν λεχθεῖσαν ἰδιότητα . ἐπεὶ γὰρ αὕτη οὐ μόνον ἀρτιοπερίσσου τῆς μονάδος ἐναργές ἐστι πρὸ τῶν ἄλλων ὁμοίωμα , |
Γίνεται δὲ καὶ σχήματα τοῦ αὐτοῦ μεγέθους ἐκ τῶν αὐτῶν ἀσυνθέτων συγκείμενα καὶ ἀριθμοῦ , εἰ ἡ τάξις αὐτῶν ἀλλοίωσιν | ||
καὶ διὰ τί οὐχ ἁπλῶς δείκνυται , ὅτι ἐκ τοσούτων ἀσυνθέτων ἕκαστον τῶν γενῶν συνέστηκεν ὅσα ἐστὶν ἐν τῷ διὰ |
μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
τοὺϲ κροταφίταϲ μῦϲ . ἔϲτω δὲ τὸ ϲχῆμα τῶν τριῶν διαιρέϲεων παραπλήϲιον τῷ π γράμματι , τὰϲ κεραίαϲ ἔχοντι ϲεϲιμωμέναϲ | ||
καταλαβοῦ τὰ ῥάμματα περὶ τὴν ὀφρύν : κατὰ δὲ τῶν διαιρέϲεων ϲπληνάρια μικρὰ κολλητικῆϲ καὶ ἀφλεγμάντου δυνάμεωϲ ἐπιτίθει , ἔπειτα |
ὅλης φύσεως ποιεῖσθαι : ὅσοι δὲ μὴ παντελῶς αὐτῶν τῶν ἀποτελουμένων εἰσίν , ἐκ τούτων καὶ κατὰ τὸν ἄνευ φθόγγων | ||
τῶν θανατικῶν συμπτωμάτων ἢ κατὰ τὸ ποῖον ἢ τὸ πόσον ἀποτελουμένων ὅταν ἀμφότεροι λόγον ἔχωσι πρὸς τοὺς ἀναιρετικοὺς τόπους . |
. ἰστέον δὲ ὅτι ἐπὶ τῶν τριῶν ὁρισμῶν τρεῖς σχέσεις νοοῦνται : οἱ μὲν γὰρ δύο πρῶτοι τὴν ἀπὸ τοῦ | ||
ἔχει καὶ αὐτὸ λόγον , πλὴν ὡς συνεχῶν ποσῶν τμημάτων νοοῦνται καὶ οὐχ ὡς διῃρημέναι μονάδες . Τοῦτο ἴδιον τῶν |
Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
τοῦ ἀπλατοῦς μήκους νόησιν ἰσχύσομεν . ὅθεν εἰ ἕκαστον τῶν νοουμένων κατὰ τοὺς ἐκκειμένους νοεῖται τρόπους , δεδίδακται δὲ κατὰ | ||
τὸ θεοὺς εἶναι , καὶ προνοεῖν τούτους . τῶν γὰρ νοουμένων τὰ μὲν κατὰ περίπτωσιν ἐνοήθη , τὰ δὲ καθ |
μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου | ||
μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος : |
, καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν , | ||
ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ |
ἐφ ' ἑκάστης πλάσεως τῶν τε ἐπιμερῶν σχέσεων καὶ τῶν πολλαπλασιεπιμορίων πῶς καὶ ἀντιπεπόνθησίς τις γλαφυρὰ ὑποφύεται . αἱ μὲν | ||
τῶν ἐπιμερῶν , καὶ τῶν μὴ ἐξ ἀναστροφῆς , τουτέστι πολλαπλασιεπιμορίων , πάλιν τῷ αὐτῷ τρόπῳ διὰ τῶν αὐτῶν προσταγμάτων |
τῶν δυσκόλων . ἢ οὐ ταῦτα ποιεῖτε νέων τῶν μὲν προστιθεμένων , τῶν δὲ ἑτέρωσε πλεόντων ; διὰ ταῦτ ' | ||
αἰσθητηρίων προστιθεμένου τοῦ αἰσθητοῦ γίνεται ἀντίληψις , τῇ σαρκὶ δὲ προστιθεμένων τῶν αἰσθητῶν : οὐκ ἄρα ἡ σὰρξ αἰσθητήριον . |
τὸ δεύτερον “ . Ἔτι χρὴ γινώσκειν , ὅτι τῶν ἀναποδείκτων οἱ μέν εἰσιν ἁπλοῖ , οἱ δὲ οὐχ ἁπλοῖ | ||
γὰρ ἡ δι ' ὁρισμῶν θεωρία καὶ ἡ λῆψις τῶν ἀναποδείκτων ἀρχῶν ἐπιστῆμαι καλοῦνται κυρίως : ἀλλ ' ὅτι γε |
τῶν σνϚ πρὸς τὰ σμγ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους λόγους ἐν πρώτοις ἀριθμοῖς τούτοις : | ||
ἀπὸ προσλαμβανομένου ἐπὶ νήτην συνημμένων . ὑπάρχει δὲ ἐν αὐτῷ τετράχορδα τρία συνημμένα τάδε : ὑπάτων μέσων συνημμένων , καὶ |
νυκτερινή , τίς δὲ ἑσπερία , καὶ ποῖα τῶν δ τεταρτημορίων ἀρσενικά , ποῖα δὲ θηλυκά , καὶ τίνα μὲν | ||
ἐπιγράφονται οἱ ἀριθμοὶ διὰ ε ἕως Ϙ ἐπὶ τῶν δ τεταρτημορίων , τουτέστιν ἀπὸ τῶν ἐσομένων κοινῶν τομῶν τουτέστιν τοῦ |
ΑΒΓ ὅλῳ τῷ ΔΕΖ ἐστὶν ὅμοιον . ηʹ . Θέσει δεδομένων τῶν ΑΒ ΑΓ , ἀγαγεῖν παρὰ θέσει τὴν ΔΕ | ||
Ἕρμαρχος ζῇ . “ Ἐκ δὲ τῶν γινομένων προσόδων τῶν δεδομένων ἀφ ' ἡμῶν Ἀμυνομάχῳ καὶ Τιμοκράτει κατὰ τὸ δυνατὸν |
συνέστηκεν , ἀλλ ' ἐκ τῶν ὑπ ' αὐτῆς ἀεὶ παραλαμβανομένων . ταῦτα δέ ἐστι πρόσθεσις καὶ ἀφαίρεσις . ὥσθ | ||
' αὐτῷ τίμιον . ὁ αὐτὸς λόγος καὶ ἐπὶ τῶν παραλαμβανομένων ἐκ προϋπηργμένης ἀδικίας , δεῖ ἐμοῦ ὁρῶντος ἐκεῖνον αἰκίζεσθαι |
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν | ||
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ |
Ἐν τῷ αὐτῷ δὲ γένει τούτῳ δύο ἡμιτονιαῖα ἑξῆς οὐ τεθήσεται . τιθέσθω γὰρ πρῶτον ἐπὶ τὸ βαρὺ τοῦ ὑπάρχοντος | ||
σημεῖον προσαγορεύουσιν . ὅτι δὲ τοῦτο οὕτως ἔχει , παράδειγμα τεθήσεται , ὅ τινες μὲν Ὀρφέως , τινὲς δὲ τῆς |
συντονωτάτῳ διατόνῳ , δύο ἔσται μεγέθη μόνα ἐξ ὧν τὸ διάτονον συνεστηκὸς ἔσται . ἐὰν δὲ τὰ μὲν δύο ἴσα | ||
καὶ δίεσιν καὶ δίτονον κινοῖτο , ἐναρμόνιον ποιεῖ γένος . διάτονον μὲν οὖν λέγεται , ἐπειδὴ κατὰ τὸ πλεῖον διὰ |
, τουτέστιν τριπλῆ , ἐπὶ τὸν Ε , τουτέστιν τὰ ͵βωπʹ , γενομένη ποιεῖ τὸν ἐκ τῶν στερεῶν ἀριθμὸν τῶν | ||
τξʹ , θέρμα φμʹ , κεράτια δὲ ͵απʹ , χαλκοῦς ͵βωπʹ , νομίσματα μεʹ . Τὸ τριβλίον τὸ αὐτὸ μέτρον |
: τούτων γὰρ τὰ μὲν ἀπαραίτητά ἐστι τὰ δὲ παραίτησιν ἐπιδεχόμενα , καὶ ἀπαραίτητα μὲν ὡς ἡ ἀναπνοή , παραίτησιν | ||
σελήνην ἐκ τῶν τεσσάρων δυνάμεων ‖ , γένεσιν καὶ φθορὰν ἐπιδεχόμενα . ‖ ‖ Τὸ ἀμυήτοις ἐκλαλεῖν μυστήρια καταλύοντός ἐστι |
γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν | ||
τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον |
τῶν αὐτῶν ἐπιπέδων τοῦ τείχους καὶ τοῦ πύργου εἰς ἄλληλα συγκειμένων [ τοῦ ] κατὰ τὸν αὐτὸν λόγον , δεῖ | ||
: συνθήκας τε γράψαντες ἐν στήλαις καὶ περὶ φυλακῆς τῶν συγκειμένων ὅρκια τεμόντες διέλυσαν τὸν σύλλογον . Τυχὼν δὲ τῆς |
χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα | ||
ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ |
δεξιῶν ἢ ἐξ εὐωνύμων , διαμενόντων ἑκάστῳ τῶν ἐπιστατῶν καὶ παραστατῶν , ὅπερ πῶς γίνεται δηλώσομεν , ὅταν πρότερον τὰς | ||
αἱ κεραῖαι . τίς δ ' ἐστὶν ἡ τῶν ἀδενοειδῶν παραστατῶν χρεία , σκοπῶμεν , ἐπεὶ μηδὲ σπέρματος , ἀλλ |
σοι καὶ μέγαν . . : Τρύφων ἐν τρίτῳ περὶ ὀνομασιῶν , ἔστι δὲ τὸ σύγγραμμα περὶ αὐλῶν καὶ ὀργάνων | ||
εἰσιν , ὡς καὶ ὁ χελλάρης εἷς ὢν ἰχθὺς πολλῶν ὀνομασιῶν ἔτυχε : καλεῖται γὰρ βάκχος καὶ ὀνίσκος καὶ χελλαρίας |
ἂν αὐτὸς ὢν τυγχάνῃ ἀπὸ μονάδος ἢ τοῦ πρώτου καὶ ἀσυνθέτου . τῷ μὲν γὰρ καθ ' ἕκαστον πρώτῳ πολλαπλασίῳ | ||
παραμέσης καὶ ὑπάτης . ἔστι δέ τινα κοινὰ συνθέτου καὶ ἀσυνθέτου διαστήματα , τὰ ἀπὸ ἡμιτονίου μέχρι διτόνου . τὸ |
μονάδες ὡς ὅλον ταῖς δυσὶ δυάσιν , ἢ ἑκατέρα τῶν δυάδων ταῖς τέσσαρσι μονάσι καθάπαξ οὐκ ἴσαι . καὶ πάλιν | ||
δὲ προστάγμασι τούτοις πάλιν ἀπὸ ἰσότητος πρῶτον ἐκ μονάδων εἶτα δυάδων εἶτα τριάδων καὶ ἐφεξῆς : πρῶτον ἐκ πρώτου καὶ |
τῷ διαιρουμένῳ γένει διαφοραὶ εἰς ἃς πᾶν τὸ ὑπὸ τὸ διαιρούμενον γένος ἐμπίπτει : εἰ γὰρ μὴ αἱ προσεχεῖς αὐτῷ | ||
ἡ ἀπάτη τῷ μηθὲν οἴεσθαι διαφέρειν συντιθέμενον τὸν λόγον ἢ διαιρούμενον καὶ καταφρονεῖν ὡς οὐδὲν πρᾶγμα : τὸ δὲ διαφέρει |
πράγματι , οὗ ἐστιν ἰδέα : ὥστε οὐκ ἔσται ἔτι ἀτόμων ὁρισμός . Ταῦτα εἰρηκὼς ζητεῖ ἐφεξῆς καὶ ἐπιλύεται τὴν | ||
, σῴζουσα τὴν ἐπὶ τοῦ στερεμνίου θέσιν καὶ τάξιν τῶν ἀτόμων ἐπὶ πολὺν χρόνον , εἰ καὶ ἐνίοτε συγχεομένη ὑπάρχει |
καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
δ ' ἡ Θρᾴκη σύμπασα ἐκ δυεῖν καὶ εἴκοσιν ἐθνῶν συνεστῶσα : δύναται δὲ στέλλειν καίπερ οὖσα περισσῶς ἐκπεπονημένη μυρίους | ||
συναλείφουσα τὰ δύο συλλαβή , ἐξ ἀφώνου τε καὶ δυεῖν συνεστῶσα φωνηέντων : εἰ γοῦν τις αὐτῆς ἀφέλοι τὸ τ |
ψυχικοῦ λογικοῦ , καὶ τοῦ μὲν λογικοῦ κατὰ μὲν ἑβδομάδα τασσομένου , τοῦ δὲ ψυχικοῦ καθ ' ἑξάδα , τὸ | ||
τρόπων ὡς τὸ ΑΒΓΔ , τοῦ Α κατὰ τὴν νήτην τασσομένου . λέγω ὅτι περιέχεται ὑπ ' αὐτοῦ τὸ τοῦ |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
γίνονται . Ὁ δὲ χειμερινὸς τροπικὸς κύκλος ὑπὸ τοῦ ὁρίζοντος τέμνεται οὕτως , ὥστε τὸ μὲν ἔλασσον τμῆμα ὑπὲρ γῆν | ||
τε πραγματικὴν καὶ δικαιολογίαν : ἥτις δικαιολογία ὑπάλληλον γένος οὖσα τέμνεται εἰς ἀντίληψιν καὶ ἀντίθεσιν : ὑπάλληλον δὲ καὶ αὕτη |
χωρίζεται ταῦτα ; ὥστ ' εἴπερ ἀδύνατον ἐξ ἁφῶν ἢ στιγμῶν εἶναι τὰ μεγέθη , ἀνάγκη εἶναι σώματα ἀδιαίρετα καὶ | ||
καὶ ἐξ ὧν τὸ σῶμα μονάδες τῶν ψυχικῶν μονάδων καὶ στιγμῶν , ἑνοῦται δὲ ψυχὴ σώματι , ἀνάγκη καὶ ταύτας |
ἡ διπλασία : ἐκ ταύτης γὰρ γεγόνασι . τῶν δὲ ἐπιμερῶν ἡ ἡμιολία , καὶ ἐπὶ τῶν λοιπῶν ὁμοίως . | ||
τοῦ ἐπιμεροῦς γίνεται πολλαπλασιεπιμερής . ἰστέον δὲ κἀκεῖνο ὅτι τῶν ἐπιμερῶν τε καὶ τῶν ἐπιμορίων πάντων οἱ πυθμένες πρῶτοι πρὸς |
ἔξωθεν , ὧν ἓν μέν τι γένος αἱ ὑπὸ τῶν ὁμογενῶν , ἃς ὀλίγῳ πρότερον εἴπομεν , ἄλλαι δὲ ὑπὸ | ||
τὰ δὲ ἄλλα διαφοραὶ χωρίζουσαι αὐτὴν τῶν τε ἑτερογενῶν καὶ ὁμογενῶν , ἑτερογενῶν μὲν πολιτικοῦ πράγματος τῶν ἐπὶ μέρους : |
ἔστιν ἀριθμός , τῶν ἀριθμῶν πεφυκότων πολλαπλασιαζομένων πλέον συνάγειν ἢ συντιθεμένων : τρὶς μὲν γὰρ τρεῖς θ , τρεῖς δὲ | ||
τίνα ὀνόματα φύσει καλά [ παραδείγματος ἕνεκα ] , ὧν συντιθεμένων καλὴν οἴεται καὶ μεγαλοπρεπῆ γενήσεσθαι τὴν φράσιν , καὶ |
αὐτοί . ἐντεῦθεν κατασκευάζει ὅτι ὁ ἄνθρωπος ἡ ψυχή ἐστι κατηγορικῶς . ἔχε οὖν . ἡ ἐλάττων πρότασις ἐνθένδε , | ||
τῶν οὖν εἶναί τι ἢ μὴ εἶναι δεικνύντων οἱ μὲν κατηγορικῶς δεικνύουσιν οἱ δὲ ὑποθετικῶς . περὶ μὲν οὖν τῶν |
πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ | ||
οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν |
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
, τρίτον τὴν διαίρεσιν αὐτῆς , τέταρτον τὴν τάξιν τῶν διαιρεθέντων εἰδῶν , ὧν ἡ παροῦσα πρᾶξις δύο τὰ πρῶτα | ||
ποιωδῶν εἰπεῖν : τοῦτο γάρ ἐστι λοιπὸν τῶν ἐξ ἀρχῆς διαιρεθέντων γενῶν , ἐν ᾧ συμπεριλαμβάνονταί πως τὸ λαχανηρὸν καὶ |
ἀναλογεῖ τῇ ἐπιστήμῃ , ἡ δὲ τῇ πίστει καὶ τῇ παρωνύμῳ δόξῃ . ἀβουλήτως οὖν οἱ ῥήτορες καὶ οἱ τύραννοι | ||
τὴν γένεσιν αὐτὸς ἔσχε : διόπερ συμβαίνει αὐτῷ πρὸς τῷ παρωνύμῳ μέρει ἔτι καὶ ἑτερώνυμον ἢ ἑτερώνυμα κεκτῆσθαι , τὸ |
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
κατὰ πλάτος τριπλάσιοι , οἱ δὲ ὑποκάτω τῶν ἐπάνω ὁμοταγῶν ἐπίτριτοι , ὁμοταγεῖς ὁμοταγῶν : ἐκ γὰρ τῶν τριπλασίων οἱ | ||
κἀνταῦθα ἡ ἀναλογία κατὰ τάξιν . πάλιν γὰρ οἱ ἐφεξῆς ἐπίτριτοι ἔσονται καὶ ἐπιτέταρτοι καὶ ἐφεξῆς : λαβὲ γὰρ θ |
, ὅταν ὁ μὲν ἑνός , ὁ δὲ δυεῖν μετέχῃ συστημάτων , τετάρτη ἡ κατὰ τὸν τῆς φωνῆς τόπον , | ||
, ἔτι δὲ ἁρμονίαι καὶ συμφωνίαι καὶ τῶν γενῶν καὶ συστημάτων αἱ μεταβολαὶ καὶ πάνθ ' ὅσα κατὰ μουσικὴν ἐπικρίνεται |
αὐτὴν [ τὴν μεσότητα . ] ἁρμονικὴν καλεῖσθαι νομίζουσιν ἀκολούθως Φιλολάωι ἀπὸ τοῦ παρέπεσθαι πάσηι γεωμετρικῆι ἁρμονίαι , γεωμετρικὴν δὲ | ||
] ? ? . καὶ κατὰ μὲν ταῦτα συνηγόρευσεν τῶι Φιλολάωι , κατὰ δὲ τἆλλα αυτονει ? ? ? ? |
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
ἀληθεύειν : ἡ μὲν γὰρ καθόλου ἀπόφασις διάκρισιν παντελῆ τῶν σημαινομένων ὑπ ' αὐτῆς πραγμάτων δηλοῦσα δι ' αὐτὸ τοῦτο | ||
πολλὰ σημαινόμενα , εἶθ ' οὕτως εἰπεῖν περὶ ποίου τῶν σημαινομένων τὴν διδασκαλίαν ποιεῖται : ἡ γὰρ ὁμωνυμία εἴωθεν ἀσάφειαν |
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
λόγον , ἡμιόλιον τυχὸν ἢ ἐπίτριτον ἢ ἄλλον τινὰ τῶν ἐπιμορίων ἢ τῶν ἐπιμερῶν , τὰ μὲν ἀπ ' αὐτῶν | ||
. ἐκ τούτων πάλιν κατὰ ἀναστροφὴν γίνονται τὰ εἴδη τῶν ἐπιμορίων : οἷόν ἐστι πρῶτον εἶδος τῶν πολλαπλασίων τὸ διπλάσιον |
ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ | ||
Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # # |
γένους ὡς γένους ταῦτα κατηγοροῦνται καὶ τῶν ὑπ ' αὐτὸ εἰδῶν , καὶ τὰ κατηγορούμενα τῆς διαφορᾶς ὡς διαφορᾶς ταῦτα | ||
ἀξιόλογον θεωρίαν , ἆρ ' οἱ τῶν γενῶν καὶ τῶν εἰδῶν ὁρισμοὶ νοημάτων εἰσὶν ὁρισμοὶ ἢ φύσεων ἐν τοῖς καθ |
κοινῆς θεωρίας τὸ ζητούμενον δείκνυσιν . διττῶν δὲ ὄντων τῶν ὀρθογωνίων τριγώνων , τῶν μὲν ἰσοσκελῶν , τῶν δὲ σκαληνῶν | ||
ἀποφαίνεται : τὸ μὲν πῦρ ὑπὸ τεσσάρων καὶ εἴκοσι τριγώνων ὀρθογωνίων συμπληροῦται τέσσαρσιν ἰσοπλεύροις περιεχόμενον . ἕκαστον δὲ ἰσόπλευρον σύγκειται |
οἰκεῖα πληρώματα ὁ νοῦς , ἐξ ὧν ὁ σύμπας ὁμοῦ συμπληροῦται , ἐπιδεὴς ἂν εἴη αὐτὸς ἑαυτοῦ , οὐ μόνον | ||
περιττοῦ φύσιν ἔχουσι : μὴν δὲ καθ ' ἑβδομάδας τέσσαρας συμπληροῦται , τῇ μὲν πρώτῃ ἑβδομάδι διχοτόμου τῆς σελήνης ὁρωμένης |
καὶ βραχείαϲ ˘ ἑπτάχρονοϲ , οἷον Καλλίξεινοϲ : διϲπόνδειοϲ ἐκ τεϲϲάρων μακρῶν = = ὀκτάχρονοϲ , οἷον Ἡρακλείδηϲ . Τὸ | ||
δὲ ἀπὸ τοῦ πρώτου λουτροῦ πρὸϲ τὸ δεύτερον ὡρῶν ἰϲημερινῶν τεϲϲάρων ἢ πέντε χρόνοϲ , εἰ τὸ τρίτον ἔτι μέλλοιϲ |
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
αὐτὸς δὲ πᾶσαν τὴν Ἀσίαν , ἧς ἦν κύριος , διέλαβε πυρσοῖς καὶ βυβλιαφόροις , δι ' ὧν ὀξέως ἤμελλεν | ||
συμμαχίδων πόλεων ἀπεωσμένος , ἅμα δὲ τῆς σιτοπομπίας ἐπιλειπούσης , διέλαβε συμφέρειν ἐφ ' ἑτέρων τόπων συστήσασθαι τὸν πόλεμον . |
μέτρον , κάλλος δὲ σωφροσύνῃ , ὡς ἐν αὐτῇ τῶν ὀργανικῶν μορίων ἐχόντων τὸ πρὸς ἄλληλα σύμμετρον καὶ τὴν εὔχροιαν | ||
αἱ ἄρισται κατασκευαὶ τῶν σωμάτων συνεστήκασιν ἐκ συμμέτρων μὲν τῶν ὀργανικῶν , ἐξ εὐκρασίας δὲ τῶν ὁμοιομερῶν . ρλδʹ . |
τοῦτον : ἀριθμὸς ὁ ἔχων ἐν ἑαυτῷ ὅλον τε τὸν συγκρινομένων καὶ μέρος αὐτοῦ τρίτον πρὸς τῷ ὅλῳ . ὑποδείγματα | ||
ἐπεὶ καὶ Δαναώτατος ὑπερτίθεται παρὰ Ἀριστοφάνει , τῶν κυρίων οὐ συγκρινομένων . εἰ δὲ καθὸ ὀξύνεται , ὄνομα , καὶ |
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ | ||
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις |
τὰς συμφωνίας ἀπεδείκνυσαν , δηλοῖ Εὔδημος ἐν τῷ πρώτῳ τῆς Ἀριθμητικῆς ἱστορίας , λέγων περὶ τῶν Πυθαγορείων ταὐτὶ κατὰ λέξιν | ||
μέσης τεταγμένης . ἐκ τοῦ περὶ πεντάδος λόγου δευτέρου τῆς Ἀριθμητικῆς τοῦ Γερασηνοῦ Νικομάχου . οἱ ἄνθρωποι ὅταν μὲν ἀδικῶνται |
τρίτον ὅτι τεσσάρων ὄντων , ὡς εἴρηται , γενικωτάτων ὑπαλλήλων εἰδικωτάτων καὶ ἀτόμων , τὸ μὲν γενικώτατον καὶ ὑπάλληλον καὶ | ||
. τοῦτο τρίτον . τέταρτον ὅτι τεσσάρων ὄντων γενικωτάτων ὑπαλλήλων εἰδικωτάτων ἀτόμων τὸ μὲν γενικώτατον μόνως ὅλον , τὸ δὲ |
γὰρ εἰκοσάεδρον καὶ τὸ ὀκτάεδρον καὶ ἡ πυραμὶς ἐκ τῶν ἰσοπλεύρων σύγκειται τριγώνων , ὁ δὲ κύβος ἐκ τῶν τετραγώνων | ||
ἡ τοῦ ὅλου γένεσις κατὰ Πλάτωνα : ἐκ μὲν γὰρ ἰσοπλεύρων τριγώνων τρία σχήματα συνίσταται , πυραμὶς ὀκτάεδρον εἰκοσάεδρον , |
ἄγειν τοὺϲ τεταρταῖον νοϲοῦνταϲ πυρετόν , μήτε φάρμακόν τι τῶν ἰϲχυροτέρων μηδὲν προϲφέρονταϲ μήτε κένωϲιν , εἰ μή τι ἄρα | ||
πεπλυμένηϲ ἀλόηϲ ὅϲον γρ . γ , ἐπὶ δὲ τῶν ἰϲχυροτέρων καὶ ἀπλύτου . ἐπειδὴ δὲ τὰ παιδία τὴν ἀλόην |
τῆς ἀντιφάσεως , ὡς οὐ κατὰ τὸ ποσὸν μόνον τῶν περιεχομένων ὑπ ' αὐτῆς πραγμάτων ἀλλὰ καὶ κατὰ τὸ σφοδρὸν | ||
ὅπερ ὠνόμασται μὲν οὕτως ἀπὸ τοῦ δύο τινῶν ἐν αὐτῷ περιεχομένων ζητημάτων ἀπὸ τῶν πρός τι τοῦ πρώτου ζητήματος ἀνακύπτειν |
ὅρων ἕκαστος ἴδιον ἔχει τὸ αἴτιον , ἐπὶ δὲ τῶν τόνων ἕπονταί πως τῷ πρώτῳ τῶν ὅρων οἱ λοιποὶ δύο | ||
ἀμεταβόλῳ συστήματι ἕξ : ἐλάχιστον μὲν τὸ διὰ τεσσάρων , τόνων δύο ἡμίσεος , οἷόν ἐστι τὸ ἀπὸ ὑπάτης ὑπάτων |
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ | ||
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος |
ὅπερ ἔδει δεῖξαι . Ἐὰν ἀριθμὸς μήτε τῶν ἀπὸ δυάδος διπλασιαζομένων ᾖ μήτε τὸν ἥμισυν ἔχῃ περισσόν , ἀρτιάκις τε | ||
τέτταρες ἔσονται ἢ ἄλλο τι πλῆθος τῶν ἀφ ' ἑνὸς διπλασιαζομένων : τοσαῦτα δὲ καὶ τὰ εἴδη . ἔστι δ |
εὐαζούσαις καὶ τιμώσαις τὸν θεόν : τὰς δὲ γυναῖκας κατὰ συστήματα θυσιάζειν τῷ θεῷ καὶ βακχεύειν καὶ καθόλου τὴν παρουσίαν | ||
καὶ ἐμμεταβόλου διοίσει , καθ ' ἣν διαφέρει τὰ ἁπλᾶ συστήματα τῶν μὴ ἁπλῶν . ἁπλᾶ μὲν οὖν ἐστι τὰ |
ἱρῷ , ὅτι Γάλλοι Ἥρῃ μὲν οὐδαμά , Ῥέῃ δὲ τέμνονται καὶ Ἄττεα μιμέονται . Τὰ δέ μοι εὐπρεπέα μὲν | ||
ἀλλήλων διαφέρουσι τῇ φύσει τῆς διαιρέσεως : τοῖς γὰρ αὐτοῖς τέμνονται κεφαλαίοις : πλὴν τοῦ ὁμωνύμου αὐτῇ τῇ στάσει : |
ὡς Εὐκλείδης φησί : τὰ δὲ περὶ ταῦτα πάντα τετράπλευρα τραπέζια καλείσθω . Ἄλλως . Ἐπὶ τὴν ἀνατολὴν πρὸς τῷ | ||
, ἐξ οὗ καὶ τὰ ἀγάλματα καὶ τὰ κλινία καὶ τραπέζια καὶ τἆλλα τὰ τοιαῦτα ποιοῦσιν . Ἡ δὲ βάλανος |
τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς , καὶ ἐφεξῆς . οἷόν εἰσιν ἡμιόλιοι δ , Ϛ , θ . λαβὲ ἀπὸ τῶν | ||
πρὸς τὸ δεύτερον καὶ τὸ τρίτον πρὸς τὸ τέταρτον : ἡμιόλιοι γὰρ ἀμφότεροι ἀμφοτέρων . καὶ τὰ ἰσάκις τοίνυν πολλαπλάσια |
γὰρ πέντε κε . καὶ ὁ λ ἄρα τοῦ κε ἐπίπεμπτός ἐστιν , ὡς ἔχει ἡ ΑΒ πρὸς τὴν ΒΓ | ||
γὰρ πέντε κε . καὶ ὁ λ ἄρα τοῦ κε ἐπίπεμπτός ἐστιν , ὡς ἔχει ἡ ΑΒ πρὸς τὴν ΒΓ |
Ἐν τούτῳ τῷ λεʹ παραδόξῳ θεωρήματι δείκνυται τὸ ποσὸν τῶν παραλληλογράμμων . ὀρθογωνίων μὲν συναμφοτέρων ὄντων τῶν παραλληλογράμμων δείκνυται τὸ | ||
: λέγω , ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ |
ἀσιτίαις : εἰ δὲ μηδέτερον εἴη τούτων , ἐπὶ τῶν τοπικῶν ἴασιν εὐθὺς ἀφικνούμεθα , κατ ' ἀρχὰς μὲν ἀναστέλλοντες | ||
κωνικῶν γραμμῶν . λέγομεν , ὅτι καὶ τῶν πρὸς γραμμαῖς τοπικῶν τὰ μὲν ἐπίπεδον ἔχει τόπον , τὰ δὲ στερεόν |
μετ ' αὐτοὺς πεντάγωνοι , εἶτα ἐπὶ τούτοις ἑξάγωνοι καὶ ἑπτάγωνοι καὶ ἐπ ' ἄπειρον : προσαγορεύονται δέ , ὡς | ||
, μέχρις ἄν τις θέλῃ . οἱ δὲ τούτοις ἀκόλουθοι ἑπτάγωνοι τοὺς μὲν γνώμονας ἔχουσι πεντάδι μὲν διαφέροντας , τετράδι |
εἰς τρίβραχυν . ἐμπίπτουσι δὲ καὶ οἱ μολοττοὶ ἐπὶ τῶν περιττῶν χωρῶν ἐν τοῖς ἀπ ' ἐλάττονος ἰωνικοῖς , ὥσπερ | ||
τοῦτο δεύτερός ἐστιν ἕκαστος τοῦ μετροῦντος αὐτόν . τῶν δὲ περιττῶν πάντως εἰς ἄνισα διαιρουμένων κατὰ τὴν εἰς δύο τὰ |
ἴϲχεται : κἢν μὴ ἰηθῇ ἡ γυνή , ἐϲ πολλὰϲ περιόδουϲ ἀντιπερίειϲι ἡ ἀναγωγή : μετεξετέρῃϲι δὲ καὶ ἀπερράγη τὰ | ||
κοτύλην καθ ' ἑκάϲτην ἡμέραν καὶ πάλιν ἀφιϲτάμην ἐπὶ β περιόδουϲ καὶ ἅμα ἥ τε νόϲοϲ διελέλυτο καὶ τὸ ϲῶμα |
τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # Φ Ϲ | ||
. ζʹ ψκθ πα . ηʹ ψξη λθ . θʹ ωξδ ϘϚ . ιʹ Ϡοβ ρη . ιαʹ ͵ακδ νβ |
Ἀνάγκη γὰρ ἢ τὰ σχήματα μεταρρυθμίζεσθαι καὶ ἐκ σκαληνῶν καὶ ὀξυγωνίων περιφερῆ γίνεσθαι , ἢ πάντων ἐνυπαρχόντων τῶν τε τοῦ | ||
σχηματισμοῦ ἐκ τοῦ ὕδατος , σύνωσιν δὲ τῶν σκαληνῶν καὶ ὀξυγωνίων τῶν ἐν τῷ ὕδατι ὑπαρχόντων : καὶ κατὰ τὴν |
ἄλλωϲ πωϲ διεφθορότοϲ αὐτοῦ τὸ πεπονθὸϲ ὅλον δι ' ἐκκοπέων ἀντιθέτων περιέλωμεν , εἰ δέοι , πρότερον τρυπάνῳ περιτρυπήϲαντεϲ , | ||
μὲν τῶν πάσας ὁμοίας ἐχόντων μηδεπώποτε , διὰ δὲ τῶν ἀντιθέτων ὀλιγάκις . Τῶν δὴ μέτρων πρωτότυπα μέν ἐστι καὶ |
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
ἐννέα ἐτυραννοκτόνησαν , καὶ ἐτιμήθησαν : ὁ πατὴρ τοῦ ἀναιρεθέντος προςαγγέλλει ἑαυτόν . Σκοπός ἐστι τῷ πατρὶ οὐκ ἀληθῶς ἀποθανεῖν | ||
ἑαυτόν : ἀνέβλεψεν ὁ πατὴρ , καὶ μετὰ ταῦτα ἑαυτὸν προςαγγέλλει . Ἡ κατάστασις ἔχει τοῦ παιδὸς τὴν γένεσιν μετὰ |
εἴτε ἀνισάκις ἀνίσων ἀνισάκις , ἵνα σκαληνοί , δύο ὅροι εὑρίσκωνται ἀνὰ μέσον ἄλλοι ἐναλλὰξ πρὸς τοὺς ἄκρους τοὺς αὐτοὺς | ||
καὶ πλάτους , ἐὰν μὲν καὶ οὕτως ἰσόμοιροι ἢ διάμετροι εὑρίσκωνται , τὸν αὐ - τὸν ἕξομεν χρόνον καὶ τῆς |
ἀσύνθετον οὔτε πλείω ἑνὸς ἡμιτόνια κατὰ τὸ ἑξῆς ἐν τούτῳ μελῳδεῖται τῷ γένει : οὔτε μὴν κατὰ χρῶμα : πάλιν | ||
δὲ παρυπάτης καὶ λιχανοῦ τῷ λιχανοῦ καὶ μέσης καὶ ἴσον μελῳδεῖται καὶ ἄνισον ἀμφοτέρως : ἴσον μὲν ἐν τῷ συντονωτέρῳ |
μὲν γὰρ ὁ λόγος μόνον καὶ ἡ σχέσις θεωρεῖται τῶν πεπερασμένων μεγεθῶν κατὰ τὸ μεῖζον καὶ ἔλαττον , ὅπου δὲ | ||
δὲ καὶ ἄπειρα , ἡ δὲ ἐπιστήμη ἀιδίων τε καὶ πεπερασμένων ἐστὶ γνῶσις , ἀνήγαγον ἑαυτοὺς ἀπὸ τῶν κατὰ μέρος |
λύσις , ἐναντία τῷ πάθει . οὐ γὰρ ἀπὸ τῶν ἀποτελούντων , ἀλλ ' ἀπὸ τῶν ἀποτελουμένων , ὡς καὶ | ||
, μιμοῦνται κατῳνωμένους , περὶ καθαρμούς τε καὶ τελετάς τινας ἀποτελούντων , σύμπαν τοῦτο τῆς ὀρχήσεως τὸ γένος οὔθ ' |
τις ἀκριβῶς ταῦτα γνοίη , ῥᾳδίως καὶ τὰ διαπεπτωκότα τῶν ὡρισμένων τούτων χρωμάτων δι ' οἱονδήτινα καταγνοίη λόγον . Οὐκοῦν | ||
εἴς τε μετοχὴν ἀναλυομένου καὶ θάτερον τούτων , τῶν μὲν ὡρισμένων εἰς τὸ ἔστι , τῶν δὲ ἀορίστων εἰς τὸ |
βραχέσι συστελλόμενα : ἀπὸ δ ' αὐτῶν τῶν τριῶν τούτων διχρόνων οὐκ ἔδει προτάξαι τὸ Ι : ἀλλ ' οὐδὲ | ||
ι δὲ λήγει τὸ οὐδέτερον , καθότι τὰ συστελλόμενα τῶν διχρόνων ἀποβολῇ τοῦ ς τὸ οὐδέτερον ποιοῦσι , ταχύς ταχύ |
ἐπὶ τὰ εὐώνυμα μέρη , ὁ δὲ ἐπ ' ἀσπίδα ἐκπερισπασμὸς ἀπὸ τῶν ἔμπροσθεν ἐπὶ τὰ δεξιὰ νεύειν . Ἐὰν | ||
ἀπὸ τῶν ἔμπροσθεν νεύειν κατόπιν , ὁ δὲ ἐπὶ δόρυ ἐκπερισπασμὸς ἀπὸ τῶν ἔμπροσθεν ἐπὶ τὰ εὐώνυμα μέρη , ὁ |
μαθηματικῶς ἐπιχειρεῖν , οἷον περὶ τῶν τεττάρων στοιχείων γεωμετρικῶς ἢ ἀριθμητικῶς ἢ ἁρμονικῶς , καὶ περὶ τῶν ἄλλων ὡσαύτως . | ||
γʹ τῷ δʹ : καὶ οὕτω διῃρημένα μὲν ἀνάλογον ἔχει ἀριθμητικῶς : ἡ αὐτὴ γὰρ ὑπεροχὴ τοῦ δʹ πρὸς τὸ |