| ἐναιωρημάτων , ὥσπερ καὶ ἕτερον μὲν ἐπὶ τῷ πέρατι τῶν ἐναιωρημάτων , ἀρχῇ δὲ τῶν νεφελῶν : τρεῖς δ ' | ||
| ὥσπερ πειρώμεναι τὸν ὡρισθέντα τόπον ταῖς ὑποστάσεσι . Τῶν δὲ ἐναιωρημάτων ὅσα μὲν τὸν ἀκριβῶς μέσον τοῦ παντὸς ἀπείληφε διαστήματος |
| αὐτοῦ τὴν ἐπιστροφήν . περισπασμὸς δέ ἐστιν ἡ ἐκ δυεῖν ἐπιστροφῶν τοῦ τάγματος κίνησις , ὥστε μεταλαμβάνειν τὸν ὀπίσω τόπον | ||
| τὸν ὀπίσω τόπον . ἐκπερισπασμὸς δέ ἐστιν ἡ ἐκ τριῶν ἐπιστροφῶν συνεχῶν τοῦ τάγματος κίνησις , ὥστε μεταλαμβάνειν , ἐὰν |
| Γίνεται δὲ καὶ σχήματα τοῦ αὐτοῦ μεγέθους ἐκ τῶν αὐτῶν ἀσυνθέτων συγκείμενα καὶ ἀριθμοῦ , εἰ ἡ τάξις αὐτῶν ἀλλοίωσιν | ||
| καὶ διὰ τί οὐχ ἁπλῶς δείκνυται , ὅτι ἐκ τοσούτων ἀσυνθέτων ἕκαστον τῶν γενῶν συνέστηκεν ὅσα ἐστὶν ἐν τῷ διὰ |
| ἔστιν ἀριθμός , τῶν ἀριθμῶν πεφυκότων πολλαπλασιαζομένων πλέον συνάγειν ἢ συντιθεμένων : τρὶς μὲν γὰρ τρεῖς θ , τρεῖς δὲ | ||
| τίνα ὀνόματα φύσει καλά [ παραδείγματος ἕνεκα ] , ὧν συντιθεμένων καλὴν οἴεται καὶ μεγαλοπρεπῆ γενήσεσθαι τὴν φράσιν , καὶ |
| Θρᾷττα ταινιόπωλις , τὴν ἐπὶ τῶν ὑφασμάτων λέγει καὶ τῶν ζωνῶν , αἷς αἱ γυναῖκες περιδέονται . ΤΡΑΧΟΥΡΟΙ . τούτων | ||
| εὑρήσεις καὶ τὸν κύριον τοῦ μηνὸς οὕτως , τῇ τῶν ζωνῶν διαθέσει ἀνωφερῶς χρώμενος . οἷον ὁ Θὼθ ἔσται Ἄρεως |
| , διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ | ||
| , οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων |
| ἐφ ' ἑκάστης πλάσεως τῶν τε ἐπιμερῶν σχέσεων καὶ τῶν πολλαπλασιεπιμορίων πῶς καὶ ἀντιπεπόνθησίς τις γλαφυρὰ ὑποφύεται . αἱ μὲν | ||
| τῶν ἐπιμερῶν , καὶ τῶν μὴ ἐξ ἀναστροφῆς , τουτέστι πολλαπλασιεπιμορίων , πάλιν τῷ αὐτῷ τρόπῳ διὰ τῶν αὐτῶν προσταγμάτων |
| πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ | ||
| οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν |
| ἀρκεῖ τὰς σημειώδεις καὶ ἁπλουστέρας ἐκθέσθαι τῶν ὑπ ' αὐτοῦ λεχθεισῶν , ὑποθεμένοις , ὥσπερ ἐκεῖνος , εἶναι τὸ μέγεθος | ||
| δύο συλλαβῶν γενομένων ἰὴ παιάν ἡρῷον γίνεται , βραχέως δὲ λεχθεισῶν ἰαμβεῖον : δῆλον οὖν ὅτι καὶ τὸν ἴαμβον ἀναθετέον |
| ἰσόρροπόν τι εἶναι χρῆμα ἐν μέσῳ κείμενον , ὁμοίων τῶν περιεχόντων . Ὁ δὲ αἰθὴρ ἐξωτάτω διῃρημένος εἴς τε τὴν | ||
| ' ἐμοῦ : οὐδὲν παθέων ἀποκουφίζους ' : οὐδὲν τῶν περιεχόντων σε κακῶν θεραπεύουσα καὶ ἀποκουφίζουσα , ἀλλὰ τοὐναντίον ἐπιτιθεῖσα |
| οὖν εὑρημένων τῶν ἀριθμῶν , οὐδέπω δὲ καθ ' ἑαυτοὺς διακεκριμένων , ἔφοδον ἡμῖν τῆς διακρίσεως παρέχει ἡ τοῦ Θυμαρίδου | ||
| : τῶν δὲ τραχυνομένων παρυφισταμένων τὰ μὲν μετρίως τοῦτο πάσχει διακεκριμένων αὐτῶν τῆς ὄψεως ἀντιλαμβανομένης , τὰ δ ' αὖ |
| ἐπὶ τὰ εὐώνυμα μέρη , ὁ δὲ ἐπ ' ἀσπίδα ἐκπερισπασμὸς ἀπὸ τῶν ἔμπροσθεν ἐπὶ τὰ δεξιὰ νεύειν . Ἐὰν | ||
| ἀπὸ τῶν ἔμπροσθεν νεύειν κατόπιν , ὁ δὲ ἐπὶ δόρυ ἐκπερισπασμὸς ἀπὸ τῶν ἔμπροσθεν ἐπὶ τὰ εὐώνυμα μέρη , ὁ |
| καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους , | ||
| δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα |
| ηζθʹ κύκλου ἐπιπέδῳ : ἡ αβʹ ἄρα πρὸς ἑκατέραν τῶν ηθʹ κμʹ ὀρθή ἐστιν : ὥστε ἡ ὑπὸ τῶν κμθʹ | ||
| γὰρ τῶν ηζʹ ζθʹ ἀνὰ ἥμισύ ἐστιν ζῳδίου : ἡ ηθʹ ἄρα ζῳδίου ἐστίν , ὥστε καὶ ἡ λμʹ : |
| , τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ | ||
| τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ |
| μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
| ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
| μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου | ||
| μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος : |
| ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
| τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
| μέσα ἡσδηποτοῦν ἑξάδος ὡς ἐπὶ τῆς δευτέρας δεδήλωται ἀπαρτηθῇ ὁ τριακοστὸς ἀριθμός , οὐκέτι προσθήσομεν τὸν ιδʹ , ἀλλὰ πάλιν | ||
| . ἐπὶ τοίνυν τοῦ παρόντος δόξα αὐτῷ ἐστιν ὁ Ἀλκιμέδων τριακοστὸς νικητὴς ἀναδειχθείς . λέγεται γὰρ σὺν τούτῳ ἀλεῖψαι τριάκοντα |
| μέχρι τοῦ ἀπογείου τοῦ ἐπικύκλου , ὃ συνῆκται διὰ τῶν προαποδεδειγμένων τοιούτων ξδ ι , οἵου ἐστὶν ἡ ἐκ τοῦ | ||
| ἔξω τοῦ κόσμου κενὸν εἶναι ἀναγκαῖον , γνώριμον διὰ τῶν προαποδεδειγμένων : ὅτι δὲ τοῦτο ἀπὸ παντὸς μέρους αὐτοῦ εἰς |
| βραχεῖαι : ἡμίβραχυ γὰρ λαμβάνεται ἕκαστον τῶν συμφώνων πλὴν τῶν διπλῶν : ἤγουν τοῦ Ζ . Ξ . Ψ . | ||
| , καὶ τότε τοῖς τῆς σκυτάλης ἄκροις ἢ τοῦ καυτηρίου διπλῶν καιριῶν μεσότητες ἢ βρόχων ἀνισοτόνων ἀγκύλαι περιτιθέσθωσαν ἀγόμεναι κάτω |
| φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται | ||
| καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν |
| ἑκάτερον τῶν λίθων ἓξ ὀνόματα ἐγγλύφεται , διότι καὶ τῶν ἡμισφαιρίων ἑκάτερον δίχα τέμνον τὸν ζῳοφόρον ἓξ ἐναπολαμβάνει ζῴδια . | ||
| οὐδὲν γὰρ τούτων περιφορὰ τοῦ παντὸς οὐρανοῦ , ἀλλὰ τῶν ἡμισφαιρίων καὶ μέρος τῆς ὅλης περιφορᾶς . πρὸς τούτοις δὲ |
| ' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ | ||
| , ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ |
| οἷον ηυ , ωυ , υι . Σύμφωνα δέ εἰσι δεκαεπτά . Ἐκλήθησαν δὲ σύμφωνα , ὅτι αὐτὰ μὲν καθ | ||
| ἐννήρεις λʹ , ἑπτήρεις λζʹ , ἑξήρεις εʹ , πεντήρεις δεκαεπτά : τὰ δ ' ἀπὸ τετρήρους μέχρι τριηρημιολίας διπλάσια |
| , οὗ αἱ διέσεις ἐφ ' ἑκάτερα τοῦ διατόνου ἀπὸ παρυπάτης μέσων ἐπὶ τρίτην συνημμένων , τρίτον δέ , οὗ | ||
| μὲν ὑπάτης καὶ παρυπάτης διάστημα ἡμιτονιαῖόν ἐστι , τὸ δὲ παρυπάτης καὶ λιχανοῦ ἐννέα δωδεκατημορίων ἀσύνθετον λαμβανομένων . δεύτερον δὲ |
| , ἀνάπαιστος ἀπὸ μείζονος ἐκ μακρᾶς θέσεως καὶ δύο βραχειῶν ἄρσεων , ἀνάπαιστος ἀπ ' ἐλάσσονος ἐκ δύο βραχειῶν ἄρσεων | ||
| , ἐπιβατὸς δέ , ἐπειδὴ τέτρασι χρώμενος μέρεσιν ἐκ δυεῖν ἄρσεων καὶ δυεῖν διαφόρων θέσεων γίνεται . Μιγνυμένων δὴ τῶν |
| γοῦν ἐπὶ τῶν τεχνητῶν , οὕτω καὶ ἐπὶ τῶν φύσει συνεστώτων ἔχει . ἡ μὲν γὰρ ἔφεσις ἁπλῶς τοῦ θείου | ||
| ὀργανικοῦ σώματος . τῶν γὰρ πραγμάτων ἐξ ὕλης καὶ εἴδους συνεστώτων ἢ ἀνάλογόν γε εἴδει καὶ ὕλῃ τὴν σύστασιν ἐχόντων |
| τὸ πεπερατωμένον σῶμα . εἰ οὖν φαμεν τὸ μεταξὺ τῶν πεπερατωμένων σωμάτων τόπον εἶναι , ἔσται σῶμα ὁ τόπος : | ||
| τὰ πεπερατωμένα τῶν πεπερατωμένων ἅψεται ἢ καὶ τὰ πεπερατωμένα τῶν πεπερατωμένων καὶ τὰ πέρατα τῶν περάτων , οἷον ἐπὶ τοῦ |
| λόγον , ἡμιόλιον τυχὸν ἢ ἐπίτριτον ἢ ἄλλον τινὰ τῶν ἐπιμορίων ἢ τῶν ἐπιμερῶν , τὰ μὲν ἀπ ' αὐτῶν | ||
| . ἐκ τούτων πάλιν κατὰ ἀναστροφὴν γίνονται τὰ εἴδη τῶν ἐπιμορίων : οἷόν ἐστι πρῶτον εἶδος τῶν πολλαπλασίων τὸ διπλάσιον |
| τῶν Γ Δ Ε ἐστιν μονάδων ρμδʹ [ ὁ Θ στερεός : ἁπλῶν οὖν μυριάδων ρμδʹ ἐστὶν ὁ ἐκ τῶν | ||
| ὥστε ὁ ἐκ τῶν νʹ νʹ νʹ μʹ μʹ λʹ στερεός ἐστιν μυριάδων ξʹ διπλῶν . ιεʹ . Ἔστωσαν δὴ |
| χρόνους ἧκόν τινες ἀπὸ Σικελίας ἀπόστασιν ἀγγέλλοντες οἰκετῶν εἰς πολλὰς ἀριθμουμένων μυριάδας . οὗ προσαγγελθέντος , ἐν πολλῇ περιστάσει τὸ | ||
| : ὅ ἐστιν : οὐκ εἰς τὸ ἀκριβὲς ἦλθεν ὥστε ἀριθμουμένων τῶν ψήφων εἰς τὸ βραχὺ ἐλθεῖν καὶ εἰς ἰσοψηφίαν |
| μὲν ἔχειν δύο μὴ κρινομένους δὲ , ὥσπερ ἐπὶ τῶν συνεζευγμένων ἐστὶν ὁ ἐμπίπτων : ὁ γὰρ δεύτερος ὅρος εἰς | ||
| τὸ καθ ' αὑτὸν ἀπολογήσεται . Σωπάτρου . Δεύτερος τῶν συνεζευγμένων ἐστὶν ὁ προκατασκευαζόμενος : ὃς ὠνόμασται μὲν οὕτως ἀπὸ |
| Ἐν τῷ αὐτῷ δὲ γένει τούτῳ δύο ἡμιτονιαῖα ἑξῆς οὐ τεθήσεται . τιθέσθω γὰρ πρῶτον ἐπὶ τὸ βαρὺ τοῦ ὑπάρχοντος | ||
| σημεῖον προσαγορεύουσιν . ὅτι δὲ τοῦτο οὕτως ἔχει , παράδειγμα τεθήσεται , ὅ τινες μὲν Ὀρφέως , τινὲς δὲ τῆς |
| χρόνων ἁπάντων γένεσις , οὕτως ἔχει καὶ ἐπὶ τῶν ἄλλων συζυγιῶν . Ἡ πέμπτη συζυγία τῶν βαρυτόνων ἐκφέρεται μὲν διὰ | ||
| τῶν παρεπομένων τῷ ῥήματι , ἐγκλίσεων λέγω καὶ διαθέσεων καὶ συζυγιῶν καὶ χρόνων ἀρκούντως εἴπομεν , φέρε καὶ ἑκάστην τῶν |
| πρῶτον ἀποδρεπόμεναι , οὕτω δὴ καὶ ἡμῖν ἀπὸ τοῦ κρείττονος ἀρξαμένοις καὶ τῆς ἐκείνου σοφίας τὴν ἀπόρροιαν δεξαμένοις καὶ ταύτην | ||
| τούτων δὲ οὐδὲν λαμβάνει , καθάπερ εὐθὺς ἀπὸ τῶν χρωμάτων ἀρξαμένοις ἡμῖν φανεῖται . εἴπερ οὖν ἡ ὅρασις καταλαμβάνεταί τι |
| , τουτέστιν τριπλῆ , ἐπὶ τὸν Ε , τουτέστιν τὰ ͵βωπʹ , γενομένη ποιεῖ τὸν ἐκ τῶν στερεῶν ἀριθμὸν τῶν | ||
| τξʹ , θέρμα φμʹ , κεράτια δὲ ͵απʹ , χαλκοῦς ͵βωπʹ , νομίσματα μεʹ . Τὸ τριβλίον τὸ αὐτὸ μέτρον |
| ' αὖ ἐπὶ τῶν νεφελῶν καὶ ὁ μὲν τῶν συμμέτρων νεφελῶν τόπος ὁ ὕστατός τε καὶ ἑνδέκατος ἔστω δάκτυλος . | ||
| ταῖς κορυφαῖς ἁμιλλωμένην τῷ ἐλευθέρῳ αἰθέρι , ὀλίγου ψαύουσαν τῶν νεφελῶν , ἐγγυτάτω τῶν νεφῶν , φαιδρῷ ἀέρι περιρρεομένην , |
| θ μο , μο θ ↑ δυ μιᾶς , ἤτοι φξ ξδʹ καταλειφθήσονται , ἀπὸ δὲ τῶν κα μο , | ||
| δὲ τῶν κα μο , ἤτοι ͵ατμδ ξδʹ , τῶν φξ ξδʹ . καταλειφθήσονται ψπδ ξδʹ , ὅλος τετράγωνος . |
| , λαβὼν ὑμῖν ἀναγνώσομαι . οὗτος ὁ νόμος ἐστὶν ὁ συνέχων τὴν πόλιν , οὗτος ὁ πλείστους αὐτῇ προξενῶν εὐεργέτας | ||
| Ποσειδῶν , ὁ μεγάλην ἔχων ἰσχύν , ὁ τὴν γῆν συνέχων : ἐπεὶ γὰρ ἐπ ' αὐτῷ ἐστι τὸ κινεῖν |
| γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν | ||
| τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον |
| ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
| βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
| ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον . | ||
| ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν |
| τριπλασίων καὶ τετραπλασίων καὶ ἐπιμορίων καὶ ἐπιμερῶν καὶ πολλαπλασιεπιμορίων καὶ πολλαπλασιεπιμερῶν . καὶ ὅτι ἐν πάσαις ταύταις ταῖς σχέσεσιν ἡ | ||
| καὶ τῶν ἐπιμερῶν καὶ τῶν μικτῶν ἀντὶ τοῦ τῶν τε πολλαπλασιεπιμερῶν καὶ τῶν πολλαπλασιεπιμορίων . ἔστι δὲ καὶ ἄλλο ἰδίωμα |
| τοῦ κυφώματοϲ , ὡϲ εἶναι τῆϲ γλυφῆϲ τὸ μῆκοϲ ὅϲον πήχεωϲ , μήτε ὑψηλότερον τῆϲ τοῦ κάμνοντοϲ ῥάχεωϲ μήτε πολλῷ | ||
| ὀϲτοῦ . Ϙθʹ . Περὶ βραχίονοϲ . ρʹ . Περὶ πήχεωϲ καὶ κερκίδοϲ . ραʹ . Περὶ ἄκραϲ χειρὸϲ καὶ |
| σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ | ||
| καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος |
| ἡ τῶν πλανήτων κίνησις ἡ ἀπὸ δύσεως εἰς ἀνατολάς : ἐπῳδῷ δέ , ὅτι ἵσταντο ἐν ἑνὶ τόπῳ καὶ ἔλεγον | ||
| [ ὁ ποιητής ] , ἤγουν στροφῇ , ἀντιστρόφῳ καὶ ἐπῳδῷ , ἢ στροφῇ μόνῃ καὶ ἀντιστρόφῳ : οἱ δ |
| συντονωτάτῳ διατόνῳ , δύο ἔσται μεγέθη μόνα ἐξ ὧν τὸ διάτονον συνεστηκὸς ἔσται . ἐὰν δὲ τὰ μὲν δύο ἴσα | ||
| καὶ δίεσιν καὶ δίτονον κινοῖτο , ἐναρμόνιον ποιεῖ γένος . διάτονον μὲν οὖν λέγεται , ἐπειδὴ κατὰ τὸ πλεῖον διὰ |
| κατὰ πλάτος τριπλάσιοι , οἱ δὲ ὑποκάτω τῶν ἐπάνω ὁμοταγῶν ἐπίτριτοι , ὁμοταγεῖς ὁμοταγῶν : ἐκ γὰρ τῶν τριπλασίων οἱ | ||
| κἀνταῦθα ἡ ἀναλογία κατὰ τάξιν . πάλιν γὰρ οἱ ἐφεξῆς ἐπίτριτοι ἔσονται καὶ ἐπιτέταρτοι καὶ ἐφεξῆς : λαβὲ γὰρ θ |
| πωροκήλη , στεατοκήλη , σαρκοκήλη , ἐπιπλοκήλη , κιρσοκήλη , ἐντεροκήλη . εἰσὶ δὲ ἐφ ' ὧν καὶ ἐπιπλέκεται ταῦτα | ||
| μήτρας ὅλης πρόπτωσις εἰς τὰ ἐκτός . περὶ δὲ ὄσχεον ἐντεροκήλη , κιρσοκήλη , ἐπιπλοκήλη , σαρκοκήλη , πωροκήλη , |
| , ὅταν ὁ μὲν ἑνός , ὁ δὲ δυεῖν μετέχῃ συστημάτων , τετάρτη ἡ κατὰ τὸν τῆς φωνῆς τόπον , | ||
| , ἔτι δὲ ἁρμονίαι καὶ συμφωνίαι καὶ τῶν γενῶν καὶ συστημάτων αἱ μεταβολαὶ καὶ πάνθ ' ὅσα κατὰ μουσικὴν ἐπικρίνεται |
| ἑορτὴν τῶν Χόων . ἱστορία : ἡ δὲ περὶ τῶν χόων ἱστορία ῥηθήσεται ἑξῆς ἔνθα μέμνηται τῶν Χόων καὶ τῶν | ||
| ἑορτὴν τῶν Χόων . ἱστορία : ἡ δὲ περὶ τῶν χόων ἱστορία ῥηθήσεται ἑξῆς ἔνθα μέμνηται τῶν Χόων καὶ τῶν |
| τὸν κζ λόγον , ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμὸν τετραγώνων ἀμφοτέρων ὄντων καὶ τοῦ λϚ καὶ τοῦ κζ ; | ||
| τῆς ΑΓ ἔλαττόν ἐστι τῶν ἀπὸ τῶν ΓΒ , ΒΑ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΒ , ΒΔ περιεχομένῳ ὀρθογωνίῳ |
| ἐξαιρέτως συνάρθρους καὶ ἀσυνάρθρους ἐκάλεσαν . ὡς οὐ δυναμένων τῶν προκατειλεγμένων ὀνομάτων ἀσυνάρθρων καλεῖσθαι . καὶ ἴσως ἂν εἴη μᾶλλον | ||
| Τρύφων ἤρξατο τὴν ἐν τοῖς ἄρθροις σύνταξιν παραδιδόναι , τῶν προκατειλεγμένων τρόπων οὐδὲ ἔννοιαν παραθέμενος . . . . : |
| . Ἐπίθετον δέ ἐϲτι τὸ ἐπὶ κυρίων ἢ προϲηγορικῶν † ὁμωνύμωϲ τιθέμενον καὶ δηλοῦν ἔπαινον ἢ ψόγον . λαμβάνεται δὲ | ||
| Ἰταλικὸν δηνάριον ἔχει δραχμὴν αʹ . Δραχμὴ δὲ καὶ ἄλλη ὁμωνύμωϲ καλεῖται Αἰγυπτιακή , ἥτιϲ ἕκτον μέροϲ ἐϲτὶ τῆϲ Ἀττικῆϲ |
| . Τίς ὁ χιλίαρχος . Τίς ἡ μεραρχία καὶ ὁ μεράρχης , τί τέλος καὶ τίς τελάρχης . Τίς ἡ | ||
| , εἰς μέσον ἀριστερόν , οὗ ἄρχει ὁ μέσος ἀριστερὸς μεράρχης ἤτοι στρατηλάτης , εἰς μέσον δεξιόν , οὗ ἄρχει |
| : ἔπειτα τῷ ἡμίσει πλείους εἰσὶν αἱ μακραὶ συλλαβαὶ τῶν βραχειῶν ἐν ἑκατέρῳ τῶν στίχων : ἔπειτα πᾶσαι διαβεβήκασιν αἱ | ||
| τοῦ γὰρ ἰωνικοῦ ἀπὸ μείζονος ἐκ μακρῶν δύο καὶ δύο βραχειῶν ὄντος , ἔξεστι μεταθεῖναι καὶ ποιῆσαι διτρόχαιον ἐκ μακρᾶς |
| πλατεῖ καὶ ἰσχυρῷ , μαλθακῷ δὲ καὶ μακρῷ ἐκ δύο διανταίων συμβεβλημένῳ μέσῳ κατὰ μέσον τὸ στῆθος δὶς περιβεβλῆσθαι ὡς | ||
| . ἄριστος δ ' εἰς τοῦτο βρόχος ὁ ἐκ δυοῖν διανταίων . οὗτος οὖν ἐν μὲν τοῖς κάτω τοῦ κατάγματος |
| κλιμακτηρίζει . μεταβαίνω ἐπὶ τὴν πεντάδα : χρηματίζει δὲ τῆς πεντάδος ἡ Σελήνη καὶ Κρόνος καὶ εὑρίσκονται οὗτοι ἀλλήλοις ἀποκαθιστανόμενοι | ||
| καὶ αὐτῶν ὁμοκαταλήκτων ὄντων , ὡς ὁ ρκεʹ ἀπὸ πλευρᾶς πεντάδος ὢν καὶ ὁ σιϚʹ ἀπὸ πλευρᾶς ἑξάδος . κἂν |
| ὡς ὑφηγητοῦ τινος πύλαις διπλαῖς ἐνήλατ ' , ἐκ δὲ πυθμένων ἔκλινε κοῖλα κλῇθρα κἀμπίπτει στέγῃ . Οὗ δὴ κρεμαστὴν | ||
| τὸν Κ ] , ὁ δὲ ὑπὸ τῶν Ζ Η πυθμένων καὶ τῶν Γ Δ Ε ἐστιν μονάδων ρμδʹ [ |
| δεξιῶν ἢ ἐξ εὐωνύμων , διαμενόντων ἑκάστῳ τῶν ἐπιστατῶν καὶ παραστατῶν , ὅπερ πῶς γίνεται δηλώσομεν , ὅταν πρότερον τὰς | ||
| αἱ κεραῖαι . τίς δ ' ἐστὶν ἡ τῶν ἀδενοειδῶν παραστατῶν χρεία , σκοπῶμεν , ἐπεὶ μηδὲ σπέρματος , ἀλλ |
| , ιθʹ , καʹ , λʹ . Τῶν δὲ τριῶν δεκανῶν αὐτοῦ ὁ μὲν αʹ κέκληται Θοσόλβ , ὁ δὲ | ||
| , κʹ , κϚʹ , λʹ . Τῶν δὲ τριῶν δεκανῶν αὐτοῦ ὁ μὲν πρῶτος καλεῖται Χάρ , ὁ δὲ |
| , ὡς ἐν οὐδεμιᾷ τῶν κατηγοριῶν ἀναχθήσεται : οὐ γὰρ προηγουμένη αὐτῶν ἐστιν ἡ σημασία , ἀλλὰ συσσημαίνουσιν , ὥσπερ | ||
| ἑαυτὸν εἰς τὴν τοῦ φονέως ἐναρμόσῃ τάξιν . καὶ γίνεται προηγουμένη μὲν ἡ κατὰ τοῦ φονέως αὐτῷ ψῆφος , κατὰ |
| , τρίτον τὴν διαίρεσιν αὐτῆς , τέταρτον τὴν τάξιν τῶν διαιρεθέντων εἰδῶν , ὧν ἡ παροῦσα πρᾶξις δύο τὰ πρῶτα | ||
| ποιωδῶν εἰπεῖν : τοῦτο γάρ ἐστι λοιπὸν τῶν ἐξ ἀρχῆς διαιρεθέντων γενῶν , ἐν ᾧ συμπεριλαμβάνονταί πως τὸ λαχανηρὸν καὶ |
| , ὥστε γενέσθαι πάντα τὸν ἐκ τῶν β ὀρθογωνίων ἀριθμὸν σνβ . τοσοῦτον δὲ φεν . . . . . | ||
| , ἃς ἐὰν ἀφέλωμεν ἀπὸ τῶν κατὰ τὴν τήρησιν μοιρῶν σνβ ζ , ἕξομεν ἐποχὴν εἰς τὸ αʹ ἔτος Ναβονασσάρου |
| τοῦτον : ἀριθμὸς ὁ ἔχων ἐν ἑαυτῷ ὅλον τε τὸν συγκρινομένων καὶ μέρος αὐτοῦ τρίτον πρὸς τῷ ὅλῳ . ὑποδείγματα | ||
| ἐπεὶ καὶ Δαναώτατος ὑπερτίθεται παρὰ Ἀριστοφάνει , τῶν κυρίων οὐ συγκρινομένων . εἰ δὲ καθὸ ὀξύνεται , ὄνομα , καὶ |
| ἐξέφυσε , τῆς αὐτῆς αὐτῷ τυγχάνοντα φύσεως , διὰ τῶν σπονδύλων τοῦ τραχήλου , ῥάχεώς τε καὶ τῶν ἐφεξῆς ἰόντα | ||
| ἐκφυομένων ἀπὸ τῶν ὀστῶν , ὀστῶν δὲ τῶν σπονδύλων , σπονδύλων δὲ τῶν κατὰ τὴν ὀσφύν . τοῦτο δὲ ἐδήλωσεν |
| ἀντιλήψειςπῶς οὖν μέγεθος ὂν τὸ μὴ μέγεθος νοήσει καὶ τῷ μεριστῷ τὸ μὴ μεριστὸν νοήσει ; Ἢ μέρει τινὶ ἀμερεῖ | ||
| ἀμερές , στιγμὴ καὶ οὐ γραμμὴ καθέστηκεν . εἰ δὲ μεριστῷ , πάντως ἐπεὶ τὸ μεριστῷ ἀντιπαρεκτεινόμενον τόπῳ ὀφεῖλον καὶ |
| τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς , καὶ ἐφεξῆς . οἷόν εἰσιν ἡμιόλιοι δ , Ϛ , θ . λαβὲ ἀπὸ τῶν | ||
| πρὸς τὸ δεύτερον καὶ τὸ τρίτον πρὸς τὸ τέταρτον : ἡμιόλιοι γὰρ ἀμφότεροι ἀμφοτέρων . καὶ τὰ ἰσάκις τοίνυν πολλαπλάσια |
| ὅρων ἕκαστος ἴδιον ἔχει τὸ αἴτιον , ἐπὶ δὲ τῶν τόνων ἕπονταί πως τῷ πρώτῳ τῶν ὅρων οἱ λοιποὶ δύο | ||
| ἀμεταβόλῳ συστήματι ἕξ : ἐλάχιστον μὲν τὸ διὰ τεσσάρων , τόνων δύο ἡμίσεος , οἷόν ἐστι τὸ ἀπὸ ὑπάτης ὑπάτων |
| τὴν στροφήν . ἐπεὶ οὖν οὐκ ἔνι ἔξω τόπων καὶ θέσεων ταῦτα κατανοῆσαι , ἀγνοεῖται ἡ φύσις αὐτῶν . Ὄγδοος | ||
| , οὐ θέσις ἔσται ἀλλ ' ὑπόθεσις . Τῶν δὲ θέσεων αἳ μὲν πολιτικαί , αἳ δὲ οὔ : καὶ |
| ἀκόλουθον ἂν εἴη συνάψαι καὶ τὰς αὐτῶν τῶν τοῦ ζῳδιακοῦ δωδεκατημορίων παραδεδομένας φυσικὰς ἰδιοτροπίας . αἱ μὲν γὰρ ὁλοσχερέστεραι καθ | ||
| , ἄμφω δ ' αὖτε τὸν αὐτὸν ἅμα θρώσκωσι τυχόντες δωδεκατημορίων ἑλικὸν δρόμον αἰθροδόνητον , τηνίκα τοὺς τεχθέντας ἀναγγέλλουσιν ἔσεσθαι |
| . Τὸ δέ γε τοιοῦτον ἐκ πολλῶν μερῶν ὂν οὐ συμφωνήσει τῷ [ ὅλῳ ] λόγῳ . Μανθάνω . Πότερον | ||
| καὶ φανερὸν ὡς καθ ' ἑκατέραν τὴν ὑπόθεσιν τὰ αὐτὰ συμφωνήσει μέγιστα καὶ πάλιν ἐλάχιστα καὶ μέσα εἶναι ἀποστήματα . |
| εἴς τι μεταβεβληκὸς ἐν χρόνῳ μεταβέβληκεν , ὁ δὲ χρόνος διαιρετός . εἰ γὰρ ἐν τῷ νῦν , ἐν μὲν | ||
| κινεῖται διάστημα . εἰ τοίνυν καὶ οὗτος ὁ χρόνος εἴη διαιρετός , ἐν ᾧ κινεῖταί τι κατὰ ἀμεροῦς καὶ ἐλαχίστου |
| Κριοῦ ἐστιν ἀρχή , κατὰ δὲ τὸ ἕτερον ἡ τῶν Χηλῶν . τοῦ μέντοι θερινοῦ τροπικοῦ πλέον ἢ τὸ ἥμισυ | ||
| τοῦ ἐπικύκλου , ὅταν ὑπὸ τὴν ιʹ μοῖραν ᾖ τῶν Χηλῶν , τὸ δὲ Γ , καθ ' οὗ γίνεται |
| καὶ συνηγμένων πρὸς τὸ ἐπιγάστριον τῶν ποδῶν ἐπὶ τοῦ ἐνηλάτου στηρίζειν . εἶτα ἑκατέρωθεν δι ' ὑπηρετῶν τὸ σῶμα κατέχειν | ||
| σελήνης οὐδ ' ὅλως : οὔτε γὰρ προηγεῖσθαί ποτε οὔτε στηρίζειν οὔτε ἀναποδίζειν οὗτοι φαίνονται , διὰ τὸ τὸν μὲν |
| ἐπὶ τὴν αὐτὴν τάσιν ἀφίκωνται ἥ τε παρυπάτη καὶ ἡ λιχανός , ἡ μὲν ἐπιτεινομένη ἡ δ ' ἀνιεμένη , | ||
| . τὸ γὰρ δίτονον , ὅταν μὲν ὁρίζωσι μέση καὶ λιχανός , ἀσύνθετόν ἐστιν , ὅταν δὲ μέση καὶ παρυπάτη |
| συνέστηκεν , ἀλλ ' ἐκ τῶν ὑπ ' αὐτῆς ἀεὶ παραλαμβανομένων . ταῦτα δέ ἐστι πρόσθεσις καὶ ἀφαίρεσις . ὥσθ | ||
| ' αὐτῷ τίμιον . ὁ αὐτὸς λόγος καὶ ἐπὶ τῶν παραλαμβανομένων ἐκ προϋπηργμένης ἀδικίας , δεῖ ἐμοῦ ὁρῶντος ἐκεῖνον αἰκίζεσθαι |
| δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
| ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
| διαιρετὸς καὶ ἀδιαίρετος : ἐπὶ μὲν τῶν ἀύλων εἰδῶν παντάπασιν ἀδιαίρετος ὅ τε χρόνος καὶ αὐτὸς ὁ νοῦς , ὅταν | ||
| ἀλλὰ μία ἐν ἑκάστῃ φύσει , πότερον ἀμέριστος αὕτη καὶ ἀδιαίρετος ἢ μεριστή τις καὶ πολυδύναμος . καὶ εἰ μὲν |
| χωρίζεται ταῦτα ; ὥστ ' εἴπερ ἀδύνατον ἐξ ἁφῶν ἢ στιγμῶν εἶναι τὰ μεγέθη , ἀνάγκη εἶναι σώματα ἀδιαίρετα καὶ | ||
| καὶ ἐξ ὧν τὸ σῶμα μονάδες τῶν ψυχικῶν μονάδων καὶ στιγμῶν , ἑνοῦται δὲ ψυχὴ σώματι , ἀνάγκη καὶ ταύτας |
| τοὺϲ κροταφίταϲ μῦϲ . ἔϲτω δὲ τὸ ϲχῆμα τῶν τριῶν διαιρέϲεων παραπλήϲιον τῷ π γράμματι , τὰϲ κεραίαϲ ἔχοντι ϲεϲιμωμέναϲ | ||
| καταλαβοῦ τὰ ῥάμματα περὶ τὴν ὀφρύν : κατὰ δὲ τῶν διαιρέϲεων ϲπληνάρια μικρὰ κολλητικῆϲ καὶ ἀφλεγμάντου δυνάμεωϲ ἐπιτίθει , ἔπειτα |
| γὰρ πέντε κε . καὶ ὁ λ ἄρα τοῦ κε ἐπίπεμπτός ἐστιν , ὡς ἔχει ἡ ΑΒ πρὸς τὴν ΒΓ | ||
| γὰρ πέντε κε . καὶ ὁ λ ἄρα τοῦ κε ἐπίπεμπτός ἐστιν , ὡς ἔχει ἡ ΑΒ πρὸς τὴν ΒΓ |
| διὸ καὶ εἰκότως μακρότερα ἔσται . Συριανοῦ καὶ Σωπάτρου . Ἔφαμεν ἤδη ὅτι τὰς στάσεις λεγομένας φησὶν ἤτοι διὰ τὸ | ||
| μόρια μήτε ὅλα μήτε ἕτερα ἀλλήλων ταὐτὰ ἔσεσθαι ἀλλήλοις . Ἔφαμεν γάρ . Φῶμεν ἄρα καὶ τὸ ἓν πρὸς τὰ |
| , καὶ ὁ ἡγεμὼν πάλαι μὲν στρατηγός , νῦν δὲ φαλαγγάρχης : τὸ δὲ τῆς φαλαγγαρχίας ἤτοι ἀποτομῆς διπλοῦν διφαλαγγία | ||
| ὁ τῶν δύο καὶ τριάκοντα , ὁ δὲ τῶν διπλασιόνων φαλαγγάρχης , καὶ ὁμωνύμως τὸ σύστημα καθ ' ἑκάστην ἀρχὴν |
| ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
| οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
| πολλαπλάσιον καὶ ἐπιμόριον καὶ ἐπιμερὲς καὶ πολλαπλασιεπιμόριον καὶ πολλαπλασιεπιμερές , ὑπολόγων δὲ τῶν ἴσων μετὰ τῆς ὑπό προθέσεως ὀνομαζομένων . | ||
| τινα ἄλλον λόγον . διότι γὰρ ἰσάκις εἰσὶν ὑπερέχοντες τῶν ὑπολόγων οἱ πρόλογοι , διὰ τοῦτο καὶ ἐναλλὰξ ἀνάλογόν εἰσιν |
| ἁπάντων ἀνθρώπων τῶν γε νῦν ζώντων καὶ ἐν πράγμασι πολιτικοῖς ἀναστρεφομένων , ἐπῃνοῦντο καὶ ἠγαπῶντο πρός τε ἀστῶν καὶ ξένων | ||
| ἐκ τῶν ἐν τῶι φυσικῶι [ ] [ χαρακτῆρι [ ἀναστρεφομένων ] ⸐ . ἀλλὰ γὰρ ὅπερ αὐτὸς ἐπεφώνησεν περὶ |
| , καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν , | ||
| ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ |
| φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ | ||
| Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # # |
| ἀνάπαιστος ὡς καὶ ἐνταῦθα τὸ πρύμνῃ πόλεως , ἀλλὰ καὶ χορεῖος . οἴακα νωμῶν : κυβερνήτης ὢν τῶν τῆς πόλεως | ||
| ἕκτῃ ἢ τροχαῖος ἢ σπονδεῖος ἢ δάκτυλος ἢ ἀνάπαιστος ἢ χορεῖος , ἐν δὲ τῇ πρώτῃ καὶ τρίτῃ καὶ πέμπτῃ |
| , καθ ' ἣν ἕκαστον τῶν ὄντων ἓν λέγεται . Ἀριθμὸς δὲ τὸ ἐκ μονάδων συγκείμενον πλῆθος . Μέρος ἐστὶν | ||
| μερῶν ἐπιπέδῳ σὺν τῷ ἀπὸ τοῦ προειρημένου μέρους τετραγώνῳ . Ἀριθμὸς γὰρ ὁ αβ διῃρήσθω εἰς δύο ἀριθμοὺς τοὺς αγ |
| τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν | ||
| τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ |
| ἐν ἐκθέσει ἐστὶ τὸ ἔθιμον , 〚 διπλῆ 〛 δίστιχος ἀνάπαιστος τετράμετρος καταληκτικός : ὑφ ' ὃ διπλῆ καὶ ἑξῆς | ||
| μόνον βακχεῖος ἐν τῷ διμέτρῳ χοριαμβικῷ κώλῳ , ἀλλὰ καὶ ἀνάπαιστος , πλὴν ἴστωσαν ὡς ἐπειδὴ οὐ μόνον θεμιτὸς εὕρηται |
| ὀρθὴ ἡ ὑπὸ ΒΔΜ , τῶν ΗΓ ΜΔ ἐκβληθεισῶν καὶ συμπιπτουσῶν κατὰ τὸ Ν . ἐπεὶ οὖν τὸ ΜΒΔ τρίγωνον | ||
| τὰ πέρατα καὶ τὴν ἐπιφάνειαν αὐτὴν τῆς σφαίρας διῆκον , συμπιπτουσῶν τῶν δύο σχέσεων ἐν ταὐτῷ , καὶ τοῦ αὐτοῦ |
| Ὁ δὲ Ζυγὸς τὸ ζῴδιον δισώμου τάξιν ἔχων ἐκ γὰρ χηλῶν συνίσταται καὶ τῶν πλαστίγγων τούτου ἔχει δὲ καὶ τὰ | ||
| τῆς δωδεκαώρου . συνήντηκε δὲ Ζυγὸς ἀπὸ τῶν τοῦ Σκορπίου χηλῶν , ἔχει δὲ καὶ δισώμου δύναμιν διὰ τὰς πλάστιγγας |
| μείζονες ἡγεμονίαι πρὸς αὑτάς . Νῦν δὲ καὶ περὶ τῶν διαστημάτων , ὧν ἀπ ' ἀλλήλων ἀφεστᾶσιν οἱ ὁπλῖται κατά | ||
| ' ἀμφοτέρας τὰς διαιρέσεις φαίνεται , τὰ δὲ μεγέθη τῶν διαστημάτων δῆλον ὅτι οὐ ταὐτὰ ἐν ἑκατέρᾳ τῶν διαιρέσεων . |
| ἔτι ὄντος τοῦ κατὰ γαστρὸς καὶ ἀσφαλῶς προσεχομένου καὶ μήπω χάλασμα πολὺ τοῦ χορίου μηδὲ διάτασιν [ τοῦ ] εἰληφότος | ||
| τὸ ἐκ τῶν σανίδων , θύραι τὸ ἄνοιγμα αὐτὸ καὶ χάλασμα τῆς θύρας . κομιδῆ μὲν περισπωμένως ἐπίῤῥημα σημαῖνον τὸ |
| γὰρ ἦν , ὦ ἄνδρες , Συπαλήττιος . Οὗτος ἔλαβε Ξεναινέτου Ἀχαρνέως θυγατέρα , ἐξ ἧς γίγνεται Κυρωνίδης καὶ Δημοχάρης | ||
| καὶ οὗτοι , ὄντες ἐξ ἐκείνου , μὴ μόνον τὸν Ξεναινέτου οἶκον πλέον ἢ τεττάρων ταλάντων ἕξουσιν , ἀλλὰ καὶ |
| πούς , εἶτα βακχεῖος , εἰ δὲ βούλεταί τις , δάκτυλος : εἶτα κρητικός : μεθ ' οὕς εἰσι δύο | ||
| ὑγροτέρῳ τῷ σκέλει χρῶνται : ὥσπερ ὁ μέγας τῆς χειρὸς δάκτυλος : μάλιστα γὰρ οὗτος ἐκπίπτει φύσει : οἷς μὲν |
| καθαρῶν ὑδάτων στένουσιν ἄλγος οἰκτρόν . . . Ἄτλας δὲ ἀλληγορικώτερον ὁ ἄξων ἐστὶ , διακρίνων τὸ ὑπὸ γῆν καὶ | ||
| διαβάλλουσιν , ὡς ἀρχαιοτέρους εἶναι τῆς σελήνης . τὸ δὲ ἀλληγορικώτερον οὕτως ἔχει : ἀστρολογίαν γάρ , ἐνιαυτόν , μῆνας |