| . διὰ τοῦτο γραμμὴ μὲν ἄνευ ἐπιπέδου καὶ τοῦτο χωρὶς στερεοῦ θεωρεῖται , ἐν δὲ τῷ τελείῳ μεγέθει πάντα χρὴ | ||
| οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . ἀλλ ' ὡς ἡ ΒΜ βάσις πρὸς |
| περὶ τὸ τμῆμα τῆς σφαίρας : ἔσται ἄρα αὕτη ἡ ἐπιφάνεια , καὶ πολὺ μᾶλλον ἡ τοῦ τμήματος τῆς σφαίρας | ||
| λοιπὸν ἐνεργείᾳ ἐστίν . οὕτως οὖν , φησί , καὶ ἐπιφάνεια δυνάμει ἐστὶν ἐν τῷ κύβῳ * * * ἡνίκα |
| διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ | ||
| τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ . |
| τὸ ὂν ἀγένητον ἀπολείπει : λέγει δὲ τὴν γῆν τοῦ πυκνοῦ καταρρυέντος [ ἀέρος ] γεγονέναι . . . καὶ | ||
| ἄστρα καὶ τὸν ἥλιον ἐκ πυρός φησι καὶ τοῦ πρώτου πυκνοῦ συγκεῖσθαι , τὴν δὲ σελήνην ἐκ τοῦ δευτέρου πυκνοῦ |
| τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
| ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
| διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α | ||
| ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα |
| ὑπόπυῤῥόν τε ἅμα καὶ ὑπόξανθον , εὐθὺς δὲ λεπτοῦ καὶ πάχους συμμέτρως ἔχον . οὔσης δὲ τριττῆς τῆς τῶν θολερῶν | ||
| συστᾶσα ἡ σύριγξ φθείρειε τὸ ὀστοῦν , εἰ μὲν διὰ πάχους , ἐκ τῶν ἔξωθεν μερῶν καὶ τὰ μῆλα χιάσαντες |
| καὶ ὥρας ἰσημερινὰς κγ ιβʹ συνάγει κατὰ τὴν ἀποδεδειγμένην τοῦ πλάτους μέσην κίνησιν ἐπουσίαν μοίρας ρξ καὶ ἑξηκοστὰ δ . | ||
| κθ ιδ ὡς ἀπὸ τῶν συνδέσμων εἰσαγαγόντες εἰς τὸ τοῦ πλάτους κανόνιον σελήνης , καὶ τὴν παρακειμένην πρὸς ἀνάλογον μοῖραν |
| τρίγωνα ἰσόπλευρα εἶναι . ἔσται δὴ ἡ ΑΒΓΔΕ πυραμὶς μέρος εἰκοσαέδρου σχήματος . τετμήσθω μία πλευρὰ ἑνὸς τριγώνου ἡ ΖΓ | ||
| , οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό τε τοῦ |
| σφαίρας τοῦ ἀπὸ τῆς ΖΘ καθέτου ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου . τριπλάσιόν ἐστιν . μζʹ . Ἔστω τρίγωνον ἰσόπλευρον | ||
| πέντε ἡ τοῦ εἰκοσαέδρου , ὑπὸ δὲ τεσσάρων ἡ τοῦ ὀκταέδρου , ὑπὸ δὲ τριῶν ἡ τῆς πυραμίδος . δῆλον |
| ἐν τῷ ιγʹ βιβλίῳ τῶν στοιχείων ἤτοι τῆς συστάσεως τοῦ δωδεκαέδρου , ὅτι ἡ ἀπὸ τοῦ Κ κάθετος ἀγομένη ἐπὶ | ||
| ποτε ζητοῦντες τὸ ὑπὸ Ἀπολλωνίου συγγραφὲν περὶ τῆς συγκρίσεως τοῦ δωδεκαέδρου καὶ τοῦ εἰκοσαέδρου τῶν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφομένων |
| μέχρι τῆς περιφερείας οὖσα τοῦ ἐν τῇ ἑτέρᾳ ἐπιφανείᾳ τοῦ τυμπάνου περὶ τὸν κότραφον ὁμοίως γραφομένου τοῦ ΧΩ κύκλου , | ||
| δέ πως ἢ λελοιφωμένος ἐκ τῶν ἐφ ' ἑκάτερα τοῦ τυμπάνου μερῶν ] . ἐὰν ἄρα τὰ ἐκ τοῦ βάρους |
| τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
| εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
| ⊂ , πλάτος δὲ τρήματος α ⊂ πάχος δὲ ἡμίσους τρήματος καὶ ἔτι ὀγδόου : τοὺς δὲ μεσοστάτας μῆκος ἔχοντας | ||
| τῷ μεταξὺ διαστήματι τῶν τροχῶν , κεχωρισμένων δὲ τοῦ μέσου τρήματος . οὗτοι οἱ κάλοι εἴρονται : εἶθ ' ὅταν |
| ἥμισυ τρήματος τὸ διὰ πασῶν σύμφωνον ἀποτελεῖται . τριχῆ δὲ διαιρεθέντος καὶ τῶν μὲν δυεῖν μερῶν ὄντων πρὸς τῇ γλωσσίδι | ||
| τῆς τοῦ κανονίου προσαγωγῆς εἰς ἓξ τοὺς ἐφεξῆς ἐπογδόους λόγους διαιρεθέντος παραφέρωμεν καθ ' ἕκαστον φθόγγον τὸ παραπλήσιον ὑπαγώγιον ἐπὶ |
| ἐκείνη , τριὰς δὲ στερεοῦ σώματος , ὅτιπερ τριχῆ τὸ στερεὸν διαιρετόν . . § . : ἡ μὲν οὖν | ||
| τοῦ εἰκοσαέδρου , οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό |
| Ε σημεῖα . ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος , μείζων ἡ Ζ γωνία τῆς Θ γωνίας . | ||
| ὁ αὐτὸς δὲ γίνεται καὶ τοῦ περὶ τὴν γῆν ὁμοίου τμήματος πρὸς τὸν ἐν αὐτῇ μέγιστον κύκλον . Οἱ μὲν |
| παντὸς ἀφορίζεσθαι καὶ ὑπὸ τοῦ Δ κέντρου τοῦ πρώτου καὶ μένοντος ἐκκέντρου , καὶ γράφεσθαι μὲν τὸν κινούμενον ἔκκεντρον ἑκάστοτε | ||
| ἑτέρως ἢ κατὰ τὴν νοῦ νόησιν . Εἴ τι οὖν μένοντος αὐτοῦ ἐν αὐτῷ γίνεται , ἀπ ' αὐτοῦ τοῦτο |
| μὲν καθόλου ληφθέντος τοῦ δὲ ἐπὶ μέρους καὶ ἐν τούτῳ περιεχομένου . δέδεικται γάρ , ὅτι , εἰ εἴη συλλογισμός | ||
| τῶν ἱερῶν ἀφυλάκτων ὄντων ἤδη καὶ συμφέρον . φυσικῶς οὖν περιεχομένου τῷ συμφέροντι τοῦ δυνατοῦ , ἀναγκαίως καὶ ὑποτέτακται αὐτῷ |
| δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ | ||
| τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν |
| στοιχείων τὸ ἄπειρον , ὅπως μὴ δι ' ἑνὸς ὄντος ἀπείρου τὰ λοιπὰ φθείρηται αὐτῷ ὑπὸ τῆς ἐν τῷ ἀπείρῳ | ||
| ἀέρα ἢ ὕδωρ , ὡς μὴ τἆλλα φθείρηται ὑπὸ τοῦ ἀπείρου αὐτῶν : ἔχουσι γὰρ πρὸς ἄλληλα ἐναντίωσιν , οἷον |
| ὅταν διιστῆται , ποτὲ μὲν μία ἡ ἐπιφάνεια καὶ ἡ γραμμὴ καὶ τὸ σημεῖόν ἐστιν ἀθρόως : ὅταν γὰρ ἅπτωνται | ||
| σημείου τοῦ Ν ἐπὶ θέσει δεδομένην εὐθεῖαν τὴν ΓΔ εὐθεῖα γραμμὴ ἦκται ἡ ΝΜ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ ΝΜΔ |
| ἐκ τῶν πέντε συγκείμενον κινεῖται , πάντως καὶ ἕκτου προσελθόντος ἀμεροῦς κινήσεται , ἰσχυροτέρων ὄντων τῶν πέντε παρὰ τὸ ἕν | ||
| ὁ χρόνος εἴη διαιρετός , ἐν ᾧ κινεῖταί τι κατὰ ἀμεροῦς καὶ ἐλαχίστου , δῆλον ὡς ἐν τῷ μέρει τοῦ |
| δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ | ||
| τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν . |
| . Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ | ||
| τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου |
| ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
| καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
| τμημάτων ὁ μηνίσκος . ἔσται οὖν ἐλάττων ὁ μηνίσκος τοῦ τριγώνου τοῖς ὑπὸ τοῦ ἑξαγώνου ἀφαιρουμένοις τμήμασιν . ὁ ἄρα | ||
| καταγίνεται , ὡς γεωμετρία ἀποδεικνύουσα ἀεὶ τὰς τρεῖς γωνίας τοῦ τριγώνου δυσὶν ὀρθαῖς ἴσας εἶναι , ἢ ὡς ἐπὶ τὸ |
| , ὄρθιον δὲ ὅ τι περ ἂν τὸ βάθος τοῦ μήκους . λοξὴ δὲ ὀνομάζεται φάλαγξ ἡ τὸ μὲν ἕτερον | ||
| εἰς ἀσάφειαν προάγομεν τὸν λόγον ἢ διὰ τὸ σαφῶς εἰπεῖν μήκους δεόμεθα . χρὴ τοίνυν τὴν συντομίαν σκοπεῖν , εἰ |
| πυραμίς , τοῦ δὲ ΕΘΠΟ παραλληλεπιπέδου ἕκτον μέρος ἡ ΔΕΖΘ πυραμίς : ἴση ἄρα ἡ ΑΒΓΗ πυραμὶς τῇ ΔΕΖΘ πυραμίδι | ||
| γραμμή , τὰ δὲ γ τρίγωνον , τὰ δὲ δ πυραμίς : ταῦτα δὲ πάντα ἐστὶ πρῶτα καὶ ἀρχαὶ τῶν |
| , οὐδ ' εἴ τις ἄλλος οὕτω λέγει , ὡς κινουμένου τοῦ φωτὸς καὶ γινομένου πρῶτον μεταξὺ τῆς γῆς καὶ | ||
| καταχρηστικῶς , ὃς περὶ τὴν συναφὴν ὢν τοῦ αἰθέρος κινεῖται κινουμένου τοῦ αἰθερίου ⌈ τοῦ σώματος καὶ αὐτὸν συγκινοῦντος , |
| τὰ ζητούμενα διὰ μεθόδων . Λαβόντες γὰρ τὴν πλευρὰν τοῦ πολυγώνου , ἀεὶ διπλασιάσαντες , ἀφελοῦμεν μονάδα , καὶ τὸν | ||
| ἀπὸ τοῦ Η κέντρου ἤχθω ἐπὶ μίαν πλευρὰν τοῦ ΑΒΓΔΕ πολυγώνου ἐπὶ τὴν ΓΔ κάθετος ἡ ΗΘ . ἐπεὶ οὖν |
| : ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου , | ||
| τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ |
| πάθεσι καὶ κακίαις , ἢ καὶ ἕνεκα τοῦ ἀμέτρου καὶ περιττοῦ ; καὶ πότερον διὰ τὰς τοῦ γηγενοῦς χρείας ἢ | ||
| ἐπὶ τοῖς ὑγιαίνουσιν ἡδονῆς , ἀλλ ' ὥς τινος ἐκκρινομένου περιττοῦ , ὁ κάμνων ἀναισθήτως ἔχει . εἰ δὲ χρονίσαν |
| ἀδιάστατον ἀπολείψουσι τὸ σημεῖον , ὅ γε διχάζεται πρὸς τοῦ τέμνοντος . ὁ δὲ αὐτὸς λόγος καὶ ἐπειδὰν φῶσι τὸν | ||
| ἐπιφανείᾳ τοῦ κώνου τὴν ΔΖΕ : κοινὴ δὴ τομὴ τοῦ τέμνοντος ἐπιπέδου καὶ τοῦ ΑΒΓ τριγώνου ἡ ΖΗ . καὶ |
| . Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
| ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
| ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος , | ||
| δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , |
| τελειοτάτη ἡ δὶς διὰ πασῶν . ἐκδηλότερόν γε μὴν ἡ σφαιρικὴ δι ' ἀριθμητικῆς τυγχάνει πάντων τῶν προσηκόντων αὐτῇ σκεμμάτων | ||
| ἀστρονομία περὶ μόνα τὰ οὐράνια σώματα καταγίνεται , ἡ δὲ σφαιρικὴ περὶ πᾶσαν σφαῖραν καταγίνεται : λέγει γὰρ τὰ συμβαίνοντα |
| ἐν δευτέρῳ τῶν Φυσικῶν καὶ Ἀπολλόδωρος . γίνεσθαι μέντοι τὸ κωνοειδὲς τοῦ ἀέρος πρὸς τῇ ὄψει , τὴν δὲ βάσιν | ||
| τοῦ ἡμίσους λάμπεται , ἵνα καὶ τὸ ἀπορρέον αὐτῆς σκίασμα κωνοειδὲς ἀποτελῆται , τὸ δὲ ἐπὶ θάτερα ἀντεκβαλλόμενον ἐπ ' |
| , ἐὰν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφῇ δωδεκάεδρόν τε καὶ εἰκοσάεδρον , λόγον ἕξει εὐθείας ἡσδηποτοῦν ἄκρον καὶ μέσον λόγον | ||
| , ἐάν τις ἐρεῖ ἡμῖν : πόσας πλευρὰς ἔχει τὸ εἰκοσάεδρον ; φήσομεν οὕτως : φανερόν , ὅτι ὑπὸ εἴκοσι |
| : καὶ ἐνταῦθα ἁμάρτημα : οἱ γὰρ παλαιοὶ ἐπὶ τοῦ στρογγύλου τιθέασιν , οἱ δὲ νῦν ἐπὶ τῆς ὑπὸ τῶν | ||
| , ἀλλὰ καὶ πρὸς τοὐκτὸς ἐπιστρέφων αὐτὴν διὰ τένοντος ἠρέμα στρογγύλου : ὁ δ ' αὖ πάλιν ἐφεξῆς τῷδε τοῖς |
| μονάδες κεῖνταί που καὶ τὴν ἐν σώματι θέσιν ἔχουσι . στιγμὴ γοῦν καὶ μονὰς ἐνταῦθα ταὐτόν . γραμμαὶ δ ' | ||
| : οὐδὲ γὰρ τὸ φερόμενον τῆς φορᾶς , οὐδὲ ἡ στιγμὴ τῆς γραμμῆς : γραμμῆς γὰρ μέρος γραμμὴ καὶ κινήσεως |
| τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
| πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
| γὰρ εἰκοσάεδρον καὶ τὸ ὀκτάεδρον καὶ ἡ πυραμὶς ἐκ τῶν ἰσοπλεύρων σύγκειται τριγώνων , ὁ δὲ κύβος ἐκ τῶν τετραγώνων | ||
| ἡ τοῦ ὅλου γένεσις κατὰ Πλάτωνα : ἐκ μὲν γὰρ ἰσοπλεύρων τριγώνων τρία σχήματα συνίσταται , πυραμὶς ὀκτάεδρον εἰκοσάεδρον , |
| . Ὁμοίως δὴ δείξομεν τοῖς πρότερον καὶ ἐπὶ τοῦ ἀφανοῦς ἡμισφαιρίου . Φανερὸν δέ , ὅτι , ἐὰν μέσου ἡμέρας | ||
| νουμηνίαν , τότε μηνοειδὴς ἡ σελήνη θεωρεῖται : τοῦ γὰρ ἡμισφαιρίου τοῦ πεφωτισμένου μικρὸν μέρος παρακλίνεται πρὸς τὴν ἡμετέραν ὅρασιν |
| ; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ | ||
| νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ |
| ΓΖΝ ἐστιν ἴση διὰ τὴν ὁμοιότητα τῶν ΑΒ , ΓΔ στερεῶν , ἴσον ἄρα ἐστὶ [ καὶ ὅμοιον ] τὸ | ||
| πόδα δακτύλους ιϚʹ : γίνονται ιθʹ : τοσούτων ἔσται ποδῶν στερεῶν τὸ μάρμαρον . Μάρμαρον μῆκος ποδῶν Ϛʹ , πλάτος |
| . ὁ κόρυς τοῦ κόρεος , ὡς ὁ πῆχυς τοῦ πήχεος . τήμερον ] σήμερον . . τὸ παρὸν σύστημα | ||
| : τοῦ γὰρ βραχίονος τὸ γιγγλυμοειδὲς , ἐν τῇ τοῦ πήχεος βαθμίδι ἐν τουτέῳ τῷ σχήματι ἐρεῖδον , ἰθυωρίην ποιέει |
| φυσικώτατα ἔκ τε τῆς ἀπείρου καὶ περαινούσης καὶ ἐκ τῆς ἀρτιοπερίσσου φύσεως καὶ αὐτὴ καὶ τὰ μέρη αὐτῆς πάντα . | ||
| ' ἡμῶν λεχθεῖσαν ἰδιότητα . ἐπεὶ γὰρ αὕτη οὐ μόνον ἀρτιοπερίσσου τῆς μονάδος ἐναργές ἐστι πρὸ τῶν ἄλλων ὁμοίωμα , |
| ὥρας : ἵνα δὲ μὴ εὐρύτερον τὸ ὕδωρ ἐξ αὐτομάτου κατασκευάσματος ὑπάρχῃ , δι ' οὗ [ τὸ ὕδωρ ] | ||
| τρίποδα μόνον ἐπιγραφὴν ἔχοντα Τῷ σοφωτάτῳ . ἀναχθέντος δὲ τοῦ κατασκευάσματος δοθῆναι τῷ Βίαντι . Ὅτι Βίας ἦν δεινότατος καὶ |
| τῶν περιεχόντων ἐπιπέδων ἅπτεσθαι : μείζων ἄρα ἐστὶν ἡ τοῦ πολυέδρου ἐπιφάνεια τῆς ἐπιφανείας τῆς ἐγγεγραμμένης σφαίρας : περιέχει γὰρ | ||
| , καὶ ἐγγράψαι τὰ τρίγωνα ὅλα τὰ ποιοῦντα τὰς τοῦ πολυέδρου γωνίας . καὶ ἡ ἀπόδειξις ἐκ τῆς ἀναλύσεως εὐχερής |
| δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ | ||
| ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ |
| τοῦ ὁρατοῦ πεπτωκὸς σῶμα οὐκ ἐᾷ τὴν ὄψιν ἀντιλαμβάνεσθαι τοῦ ὁρατοῦ , οὕτως εἰ μεταξὺ τῆς διανοίας καὶ τοῦ ἐκτὸς | ||
| τοιαῦται ψυχαὶ εἴδωλα , αἱ μὴ καθαρῶς ἀπολυθεῖσαι ἀλλὰ τοῦ ὁρατοῦ μετέχουσαι , διὸ καὶ ὁρῶνται . Εἰκός γε , |
| . Ἡ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ ὀκτάεδρον ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου κάθετος δυνάμει τρίτον μέρος | ||
| ἀριθμητικὴν συνεπιφέρεσθαι : ἅμα γὰρ ταύτῃ τρίγωνον ἢ τετράγωνον ἢ ὀκτάεδρον ἢ εἰκοσάεδρον ἢ διπλάσιον ἢ ὀκταπλάσιον ἢ ἡμιόλιον ἢ |
| ἧς δεῖ τὴν διάμετρον ἐκθέσθαι , καὶ εἰλήφθω ἐπὶ τῆς ἐπιφανείας τῆς σφαίρας δύο τυχόντα σημεῖα τὰ Α , Β | ||
| , πρότερον δὲ καταδεδυκότων διὰ τὴν κυρτότητα τῆς τοῦ ὕδατος ἐπιφανείας . Τούτου δὲ θεωρηθέντος , εἴ τις ἐφεξῆς καὶ |
| , ἐνεργείᾳ δὲ λίθον εἶναι , καὶ τὸ ἥμισυ τῆς γραμμῆς δυνάμει τελείαν γραμμήν , καὶ σῖτον δυνάμει ἁδρὸν τὸν | ||
| καὶ ἐπὶ τῶν γεγονότων : ὡς γὰρ ἡ στιγμὴ πέρας γραμμῆς , οὕτω τὸ γεγονὸς πέρας ἐστὶ τῆς γενέσεως . |
| ἔχρῃζον : τὸ γὰρ ὅμως ἐναντιωτικὸν ὂν παρίστησι τὸν Ταλθύβιον πολοῦ τὴν ζωὴν τιμώμενον , ὅσα καὶ φίλαυτον γέροντα : | ||
| ἐν ἱεροῖς βλασφημούντων . Ῥωπικὸν ὤνιον : ἐπὶ τῶν εὐτελῶν πολοῦ πιπρασκομένων . Σαλαμινία ναῦς : ἐπὶ τῶν ταχέων : |
| τῆς ἀσωμάτου καὶ νοητῆς οὐσίας ἤγαγεν εἰς ἔννοιαν ἡμᾶς τριχῆ διαστατοῦ σώματος τοῦ φύσει πρῶτον αἰσθητοῦ . ὁ δὲ μὴ | ||
| τῆς μαθηματικῆς οὐσίας γνῶσις . διόπερ οὔτε ἰδέαν τοῦ πάντῃ διαστατοῦ οὔτε ἀριθμὸν αὐτοκίνητον οὔτε ἁρμονίαν ἐν λόγοις ὑφεστῶσαν οὔτε |
| τριήρεσι πολλαῖς ὁρῶν πεφραγμένον τὸν ἔσπλουν , τρεῖς δὲ τὰς ἐξωτάτω ἐφορμούσας τῷ στόματι τριήρεις προσπεσόντες οἱ Φοίνικες καὶ ἀντίπρωροι | ||
| κατὰ τὸν χειμερινόν . Ἀναξιμένης καὶ Παρμενίδης τὴν περιφορὰν τὴν ἐξωτάτω τῆς γῆς εἶναι τὸν οὐρανόν . Ἐμπεδοκλῆς στερέμνιον εἶναι |
| . ἐμφύεται δ ' ὁ μῦς οὗτος εἰς τὸ τοῦ πήχεως ὀστοῦν , ὥσπερ ὁ προειρημένος ὁ μείζων εἰς τὸ | ||
| ὁ ἀριστερὸς ὦμος , ὑπολειπόμενος τοῦ μεσημβρινοῦ ὡς δύο μέρη πήχεως καὶ τοῦ Κήτους ὁ ἐπὶ τῆς λοφίας . Δύνει |
| περὶ τὰ ἀναγκαῖα . ὀρθογωνίου μὲν γὰρ τριγώνου ἢ διέσεως ἡμιτονίου οὐδεμίαν φύσει ἔννοιαν ἥκομεν ἔχοντες , ἀλλ ' ἔκ | ||
| ἀλλήλων τετάρτους τὸν διὰ τεσσάρων ἀλλήλοις διόλου συμφωνεῖν , τοῦ ἡμιτονίου κατὰ μετάβασιν τήν τε πρώτην καὶ τὴν μέσην καὶ |
| τε καὶ γῆν καὶ πάντα τὰ φαινόμενα περιέχουσα , οὗ λυομένου πάντα τὰ ἐν αὐτῷ σύγχυσιν λήψεται , ἀποτομὴν ἔχουσα | ||
| τοῦ θερμοῦ ἐς τὸν θώρηκα : καὶ πάλιν ἀνάλογον , λυομένου τοῦ πυρετοῦ καὶ κατακερματιζομένου , ἐς τοὺς πόδας καταβαίνει |
| , [ ὁ ] κόσμος . . καὶ ὁ κυκεὼν διίσταται μὴ κινούμενος . . . τυφλὸν δὲ τὸν Πλοῦτον | ||
| δὲ μὴ , καθάπερ Ἡράκλειτός φησι , καὶ ὁ κυκεὼν διίσταται μὴ κινούμενος . Εἴη δ ' ἂν καὶ τῇ |
| μὲν γίνεται , οὐ μὴν καὶ ἔξωθέν τι προσλαβοῦσα ἢ κενοῦ μιχθέντος : καὶ ὅταν ὕδωρ ἐξ ἀέρος , ἔλαττον | ||
| ] φύσιν ἔχουσιν ? [ ] [ οὐδὲν ] τοῦ κενοῦ [ ] [ χρῄζοντες ] μ ? [ ] |
| , ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
| γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
| ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω , | ||
| ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ |
| θʹ πρὸς τὰ ηʹ : καὶ πάλιν τούτῳ τῷ λόγῳ προστεθέντος ἐπιτρίτου λόγου τοῦ τῶν ιβʹ πρὸς τὰ θʹ συμπληροῦται | ||
| ληγούσης ον εἰς ω μέγα τρέψῃς τύπτω γίνεται , εἶτα προστεθέντος τοῦ ἐάν αἰτιολογικοῦ συνδέσμου ἐὰν τύπτω γίνεται : γίνωσκε |
| προτάσεις καὶ ᾗ αὐτό ἐστιν : ἐκ μὲν γὰρ τοῦ ἑτεροκινήτου δείκνυται οὐ μόνον τὸ αὐτοκίνητον ἀεικίνητον , ἀλλὰ καὶ | ||
| ἀλλὰ πρῶτον μὲν κοινὸν τοῦτο ἔσται πάσης οὐσίας καὶ τῆς ἑτεροκινήτου λεγομένης , ἐπεὶ καὶ τὸ πῦρ οὕτως αὐτοκίνητον , |
| παραλλάξεων , ὅταν μὲν τὸ κατὰ κορυφὴν σημεῖον ἐπὶ τοῦ μεσημβρινοῦ βορειότερον ᾖ τοῦ τότε μεσουρανοῦντος τοῦ διὰ μέσων τῶν | ||
| εὐλογωτέρας τε καὶ ἐμφατικωτέρας παρειλήφαμεν τὰς ἀφοριζομένας ὑπό τε τοῦ μεσημβρινοῦ καὶ τῶν τοῦ διὰ μέσων ἀνατολῶν τε καὶ δύσεων |
| ἑαυτῆς , ἀρτίου τε καὶ περισσοῦ , κινουμένου τε καὶ ἀκινήτου , ἀγαθοῦ τε καὶ κακοῦ . ἔτι γέγονεν ἐκ | ||
| , ἔφθαρται . ὥστε , φησί , τὰ μὲν ὑπὸ ἀκινήτου οὐσίας καὶ ἀιδίου γινόμενα ἄφθαρτα ὑπάρχουσι , τὰ δὲ |
| ἄλλων πλειόνων : τὰ γὰρ ηʹ πρὸς τὰ θʹ ἐποίει τονιαίου ἀκούειν διαστήματος . διὰ τοῦτο δὲ πρῶτον διάστημα ὁ | ||
| δ ' ὅτι , καὶ εἴ τις ἐν τῇ τοῦ τονιαίου δυνάμει τιθείη τὸ τοῦ συντονωτέρου σπονδειασμοῦ ἴδιον , συμβαίνοι |
| ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
| , ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
| . * χλοάοντος : γράφεται καὶ κλώθοντος * κλώθοντος : στρεφομένου καὶ ἠρτημένου ἐν ἀρπέζαισιν ἐρίνου : ἐρινεὸν Ἀθηναῖοι ὀνομάζουσιν | ||
| πῆχυς πρὸς τὴν σπάθην τῆς χειρὸς κεκαμμένης , ὅτε λοιπὸν στρεφομένου τοῦ ἐν τοῖς σκέλεσιν ἄξονος ὑπὸ τοῦ κάλου καθελκομένη |
| δοθέντας ἀριθμούς . Δεῖ δὴ τῶν εὑρισκομένων τὸν ἀπὸ τοῦ ἡμίσεος τοῦ συναμφοτέρου τετράγωνον τοῦ ὑπ ' αὐτῶν ὑπερέχειν τετραγώνῳ | ||
| προσοδιακὸν τρίμετρον βραχυκατάληκτον ἐξ Ἰωνικοῦ ἀπὸ μείζονος , χοριάμβου καὶ ἡμίσεος ποδὸς ἀδιαφόρου . Τὸ ηʹ ἰαμβικὸν δίμετρον ἀκατάληκτον : |
| καί , καθ ' ὅσον ἂν τόπον ταῦτα χρονίσωσι τοῦ χύματος , καὶ τὴν ἐπ ' ἐκείνῳ τοῦ σώματος διάθεσιν | ||
| παρυφιστάμενον δὲ τὸ ἐν αὐτῷ ἑτεροίως ἐμφαινόμενον . ἀλλὰ τοῦ χύματος πάλιν ἰσάριθμοι τυγχάνουσιν αἱ διαφοραί . δύο γάρ ἐστι |
| ταύτην τὴν αἰτίαν καὶ ἡ ψυχὴ ἐκ τῶν δύο , περιφεροῦς καὶ εὐθείας , ὑπέστη ἐκ πέρατος καὶ ἀπείρου , | ||
| ψυχροῦ . Κρύσταλλος συντελεῖται καὶ κατ ' ἔκθλιψιν μὲν τοῦ περιφεροῦς σχηματισμοῦ ἐκ τοῦ ὕδατος , σύνωσιν δὲ τῶν σκαληνῶν |
| . . τὸ πᾶν ὁ πατὴρ σωματοποιήσας καὶ ὀγκώσας ἐποίησε σφαιροειδές , τοῦτο αὐτῷ τὸ ποιὸν περιθείς , οὖσαν καὶ | ||
| ἕδραν : οἱ μὲν φυσικώτερον τὸν οὐρανὸν ἀπέδοσαν διὰ τὸ σφαιροειδές , ἀλλ ' ἐναντιοῦται αὐτοῖς τὰ τῆς ἱστορίας : |
| καταληφθέντος , ἐφ ' ὃν ἡ κάθετος πίπτει ἀπὸ τοῦ ὁρωμένου , οὐκέτι ὁρᾶται τὸ ὁρώμενον . Καὶ ἐν τοῖς | ||
| ἔξω βλέπειν , ἤδη ἔχουσα παρ ' ἑαυτῆς εἶδος τοῦ ὁρωμένου τούτῳ τῷ ἐκεῖ εἰσελθεῖν τὸν τύπον βλέπουσα . Τὸ |
| ἀναγεγράφθω κύκλος οὗ ἡ περίμετρος λγ : γίνεται αὐτοῦ τὸ ἐμβαδὸν πϚ ∠ ʹ ηʹ . καὶ ὁμοίως ἀφαιρῶ τὰ | ||
| το - μέως δοθέντος , ἀφέλωμεν τὸ τοῦ ΑΓΘ τριγώνου ἐμβαδὸν δοθέν , ἕξομεν λοιπὸν τὸ περιεχόμενον τμῆμα ὑπό τε |
| τῆς μοναδικῆς . οὔτε οὖν διάστημα χρὴ καλεῖν τὴν τοῦ διαστήματος γεννητικὴν ἀρχὴν οὔτε μόρια τοῦ διαστήματος ἐπινοεῖν , ἀφ | ||
| καὶ τῆς εὐθείας μέρος τὸ κατὰ τούτου μὲν φερόμενον τοῦ διαστήματος , μὴ κυκλογραφοῦν δέ . ὅπερ ἐστὶν ἄτοπον . |
| δὲ ὁ Φαρνάκεος αὐτίκα τε οὐκ ἠρέσκετο κατ ' ἀρχὰς λειπομένου Μαρδονίου ἀπὸ βασιλέος , καὶ τότε πολλὰ ἀπαγορεύων οὐδὲν | ||
| στίχου μέρος ἐστὶ τὸ μῆνιν . καὶ μὴν οὐδὲ τοῦ λειπομένου , φημὶ δὲ τοῦ ἄειδε θεὰ Πηληιάδεω Ἀχιλῆος . |
| καὶ τὸ τίκτεται , διότι καὶ πρὸ τοῦ παχυνθῆναι ἡ σφαῖρα , ἦσαν πνεύματα , ἀλλὰ ταῦτα διεφοροῦντο . ἐπειδὰν | ||
| καὶ οὐδὲ τοῦτο ἁπλῶς : οὐδὲ γὰρ ἁπλῶς ἡ ἐξωτάτω σφαῖρα ἐν τόπῳ , ἀλλ ' ὡς ὅλη ἐν τόπῳ |
| ἐστὶ τοιαύτη , ὥστε ἔχειν μεσουρανοῦντα Καρκίνον ἐπὶ τοῦ θερινοῦ τροπικοῦ , ἀνατολικὰς Χηλὰς ἐπὶ τοῦ ἰσημερινοῦ , δυτικὸν Κριόν | ||
| ' αἵρεσιν ἐκπτώσεων ἢ μετοικισμῶν αἴτιος ἢ φυγῶν , πλὴν τροπικοῦ ὄντος τοῦ ζῳδίου ἢ δισώμου ἐπανέρχεται εἰς τὴν προτέραν |
| : ἀρχὴ δὲ οὗτος γίνεται τοῦ τε ὑπεζωκότος τὰς πλευρὰς ὑμένος καὶ τοῦ διαφράγματος καὶ τοῦ περιτοναίου καὶ παντὸς ὑμένος | ||
| σπόγγων καὶ τὸ Σεβηριανόν . Πτερύγιόν ἐστιν ὑπερσάρκημα τοῦ ἐπιπεφυκότος ὑμένος ἀρχόμενον ἐκ τοῦ μεγάλου κανθοῦ καὶ ἐξαπλούμενον μέχρι τῆς |
| λύσις ἐστὶν ἐπιχειρηματικὴ , ἀλλ ' οὐ τὰς ἀφορμὰς ἀπὸ χρώματος ἔχουσα : ἐρεῖ οὖν οὐκ εἴ τις φίλος , | ||
| Φωκέων , ὅτι ἠπατήθην , ὅρα πῶς ἐκβολὴν ἐποιήσατο τοῦ χρώματος : ἔδει τοίνυν μισεῖν τὸν ἀπατήσοντα , ἀλλὰ μὴν |
| ἄφθονος , δεῖ δὲ ἡμῖν τέχνης ἑτέρας πρὸς βάσανον τοῦ ληφθέντος : φέρε παρακαλῶμεν τὴν τέχνην ταύτην ξυνεπιλαβέσθαι ἡμῖν τοῦ | ||
| τῆς ἁφῆς ἀχθῇ παράλληλος τῇ ἀσυμπτώτῳ , ἡ διὰ τοῦ ληφθέντος σημείου ἀγομένη παράλληλος τῇ ἑτέρᾳ τῶν ἀσυμπτώτων ὑπὸ τῆς |
| κινήσεως κατὰ μὲν τὸ ὑποκείμενόν ἐστι μία ἡ ἐνέργεια τοῦ κινοῦντος καὶ τοῦ κινουμένου , ἀλλ ' ἀπὸ μὲν τοῦ | ||
| κτλ . Ἀριστοτέλης δὲ καὶ Εὔδημός φασι τὸ ἐγγυτέρω τοῦ κινοῦντος τάχιστα κινεῖσθαι . . . . , : τὸν |
| οὔτε δίτονον πρὸς διτόνῳ τεθήσεται οὔτε τόνος ἐπὶ τὸ βαρὺ διτόνου , ὥστε λείπεται τὸ πυκνόν . φανερὸν δὴ ὅτι | ||
| πρὸς αὐτῷ κατ ' οὐδέτερον τῶν τόπων οὔτε τόνος . διτόνου γὰρ οὕτω τιθεμένου ἤτοι βαρύτατος πυκνοῦ ἢ ὀξύτατος πεσεῖται |
| δοκεῖ προκόπτειν . Ἡ τοίνυν στιγμή , ἥν φασι σημεῖον ἀδιάστατον ὑπάρχειν , ἤτοι σῶμα νοεῖται ἢ ἀσώματον . καὶ | ||
| οὐ δυνατὸν ἐν τοῖς φαινομένοις λαβεῖν τινος σημεῖον καὶ πέρας ἀδιάστατον , δῆλον ὡς οὐδ ' ἐν τοῖς νοητοῖς ληφθήσεταί |
| ἀφεστηκυίας , καὶ ἐπεὶ διάφοροι πρὸς τὰ αὐτὰ σημεῖα τοῦ αἰσθητοῦ αἱ γωνίαι γίνονται , εἰκότως καὶ δύο αἱ κρίσεις | ||
| , ἀλλὰ διὰ τὸ ἐνυλότερον καὶ τοῦ αἰσθητηρίου καὶ τοῦ αἰσθητοῦ ἐν τούτοις εἴδους σφοδρότερον καὶ διὰ τοῦτο ἐναργέστερόν τε |
| | ἓν γὰρ τὸ ἐξ ἀμφοῖν τῶν ἐναντίων , οὗ τμηθέντος γνώριμα τὰ ἐναντία . οὐ τοῦτ ' ἐστίν , | ||
| λοιπὸς ἄρα ὁ ΓΑ ἐστι μονάδων ι καὶ β . τμηθέντος δὲ τοῦ ΓΑ δίχα τοῦ ιβ κατὰ τὸ Δ |
| δεηθῶμεν . ἔτι μὴν σφίγγει τε καὶ φρουρεῖ τὴν τοῦ νεύρου τοῦ μαλακοῦ κατάφυσιν . εἰ γοῦν τινος θεάσει προπετέστερον | ||
| κρυϲταλλοειδοῦϲ ὑγροῦ : ἡ δὲ ἀμαύρωϲιϲ ἔμφραξίϲ ἐϲτι τοῦ ὀπτικοῦ νεύρου , ὡϲ μηδόλωϲ ὁρᾶν τὸν οὕτω παθόντα καθαρᾶϲ φαινομένηϲ |
| ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου | ||
| τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις |
| ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
| ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
| μὴ ἦι ὁτὲ μὲν ῥικνά , ὁτὲ δὲ πολύσαρκα : ἀνωμάλου γὰρ βίου ὤιοντο εἶναι δεῖγμα . ἀλλὰ ὡσαύτως καὶ | ||
| δυνάμενα ἕδρας ἐνδῦναι , συνωθοῦντα ἡμῶν τὸ νοτερόν , ἐξ ἀνωμάλου κεκινημένου τε ἀκίνητον δι ' ὁμαλότητα καὶ τὴν σύνωσιν |
| τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις | ||
| τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον |
| πρόσωπον καὶ οἷον ζυγὸν τὰς εἰς τοὔμπροσθεν δύο πλευρὰς τοῦ ῥομβοειδοῦς , οἷον αθξτψαϚχσνη ↑ ↑ , λαβδοειδὲς σχῆμα , | ||
| πλευράς τε καὶ γωνίας ἴσας . αὐτὸς δὲ ἐπὶ τοῦ ῥομβοειδοῦς μόνον τοῦτο προσέθηκεν , ἵνα μὴ διὰ ψιλῶν αὐτὸ |
| δὲ ἀπήχημα τῇ ῥωγμῇ ὑπάγουσι . τιζʹ . Ῥωγμή ἐστιν ὀστοῦ διακοπὴ ἐπιπόλαιος εὐθεῖα καὶ ἤτοι στενὴ ἢ πλατεῖα . | ||
| οἷον τὸν ἄρτον τόνδε καὶ σαρκὸς τῆσδε καὶ τοῦδε τοῦ ὀστοῦ μῖγμα εἶναι ὁμοίως τῶι παντί . , ἐδόκει δὲ |
| τουτέστι τὸ διὰ τοῦ ἄξονος ἰσοσκελὲς τοῦ διὰ τῆς ΑΖ ἰσοσκελοῦς : οὐκ ἄρα τὸ διὰ τοῦ ἄξονος ἰσοσκελὲς μέγιστόν | ||
| διὰ τὸ ιεʹ πάλιν Ἀρχιμήδους θεώρημα [ παντὸς γὰρ κώνου ἰσοσκελοῦς ἡ ἐπιφάνεια , χωρὶς τῆς βάσεως , ἴση ἐστὶν |
| αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
| ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
| τοῦ αὐτοῦ σημείου τοῦ ἰσημερινοῦ ἀπό τινος τμήματος ἤτοι τοῦ ὁρίζοντος ἢ τοῦ μεσημβρινοῦ ἐπὶ τὸ αὐτὸ ἀποκατάστασις , νυχθήμερον | ||
| αὐτὰ δειχθήσεται καὶ ὅταν ὁ πόλος τῶν παραλλήλων ἐπὶ τοῦ ὁρίζοντος ᾖ , καὶ γραφομένων διὰ τῶν Κ , Θ |
| . Τὸν δὲ περίπατον πρὸς τὸ γνῶναι τὸν τόπον τοῦ μερισμοῦ καὶ τὸν ἐπιμερίζοντα ἐν ταῖς τῶν χρόνων ἐναλλαγαῖς οὕτως | ||
| ἀκατάστατον τοῦ τόνου μὴ ἔχεσθαι αὐτὸ τοῦ κατὰ τὰ ἐπιρρήματα μερισμοῦ . τὰ γὰρ τοιαῦτά φησιν ὀξύνεσθαι , ἀναιμωτί , |