ὅταν διιστῆται , ποτὲ μὲν μία ἡ ἐπιφάνεια καὶ ἡ γραμμὴ καὶ τὸ σημεῖόν ἐστιν ἀθρόως : ὅταν γὰρ ἅπτωνται
σημείου τοῦ Ν ἐπὶ θέσει δεδομένην εὐθεῖαν τὴν ΓΔ εὐθεῖα γραμμὴ ἦκται ἡ ΝΜ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ ΝΜΔ
8714834 ἐπιφανεια
περὶ τὸ τμῆμα τῆς σφαίρας : ἔσται ἄρα αὕτη ἡ ἐπιφάνεια , καὶ πολὺ μᾶλλον ἡ τοῦ τμήματος τῆς σφαίρας
λοιπὸν ἐνεργείᾳ ἐστίν . οὕτως οὖν , φησί , καὶ ἐπιφάνεια δυνάμει ἐστὶν ἐν τῷ κύβῳ * * * ἡνίκα
8573521 στιγμη
μονάδες κεῖνταί που καὶ τὴν ἐν σώματι θέσιν ἔχουσι . στιγμὴ γοῦν καὶ μονὰς ἐνταῦθα ταὐτόν . γραμμαὶ δ '
: οὐδὲ γὰρ τὸ φερόμενον τῆς φορᾶς , οὐδὲ ἡ στιγμὴ τῆς γραμμῆς : γραμμῆς γὰρ μέρος γραμμὴ καὶ κινήσεως
7927823 γραμμης
, ἐνεργείᾳ δὲ λίθον εἶναι , καὶ τὸ ἥμισυ τῆς γραμμῆς δυνάμει τελείαν γραμμήν , καὶ σῖτον δυνάμει ἁδρὸν τὸν
καὶ ἐπὶ τῶν γεγονότων : ὡς γὰρ ἡ στιγμὴ πέρας γραμμῆς , οὕτω τὸ γεγονὸς πέρας ἐστὶ τῆς γενέσεως .
7559358 περιφερης
ἅμα τῇ πόσει περιρρεῖσθαι πεσόντα . ὁ δὲ Ἀρίσταρχος στροβηθεὶς περιφερὴς ἔπεσε τῇ τραπέζῃ , ὡς περικλασθῆναι περὶ αὐτήν :
τοῖς τῶν ἐλάφων δὲ παραπλήσια , σφυρὸν ὕπτιον , ὁπλὴ περιφερὴς , ὑφηλὴ , κραταιὰ κατὰ τῶν ἐλάφων τὰ ἰσχυρότατα
7531828 ἀμερης
οὖν περὶ τὸν ἀστεῖον ἡ τροπὴ βραχεῖα , ἄτομος , ἀμερής , οὐκ αἰσθητή , | νοητὴ δὲ μόνον ,
ὄντος συνεστὼς ἀνύπαρκτος ἔσται . ἄλλως τε , εἰ μὲν ἀμερής ἐστιν ὁ χρόνος , πῶς τὸ μέν τι αὐτοῦ
7412506 ἐπιπεδου
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ .
7336128 νοητη
οὗ τοῖς πολλοῖς τὸ εἶναι ὑπάρχει , ὥσπερ καὶ ἑνὰς νοητή , ἐξ ἧς ἡ συνέχεια πᾶσι τοῖς ἐνταῦθα .
εἴδη τῶν οὐσιῶν διατρίψει : τῶν δὲ οὐσιῶν ἡ μὲν νοητή τε καὶ ἀίδιος , ἡ δὲ αἰσθητή τε καὶ
7322229 σφαιρικη
τελειοτάτη ἡ δὶς διὰ πασῶν . ἐκδηλότερόν γε μὴν ἡ σφαιρικὴ δι ' ἀριθμητικῆς τυγχάνει πάντων τῶν προσηκόντων αὐτῇ σκεμμάτων
ἀστρονομία περὶ μόνα τὰ οὐράνια σώματα καταγίνεται , ἡ δὲ σφαιρικὴ περὶ πᾶσαν σφαῖραν καταγίνεται : λέγει γὰρ τὰ συμβαίνοντα
7297779 διχη
ἀρτηρίαν . ἀρτηρία ἐστὶ σώματος ἐπίμηκες κυκλικὸν , δίκην σωλῆνος διχῆ διαιρούντων ἀπὸ καρδίας ἐρχόμενον καὶ ἐπὶ τὸ πᾶν σῶμα
τῶν ἐν αὐτῷ παραδιδομένων . Κατὰ δὲ τῶν ἀνωτάτω μερίζεται διχῆ , καθάπερ ἐν ἀρχῇ προαναπεφώνηται : καὶ ὁ μὲν
7295036 σφαιρα
καὶ τὸ τίκτεται , διότι καὶ πρὸ τοῦ παχυνθῆναι ἡ σφαῖρα , ἦσαν πνεύματα , ἀλλὰ ταῦτα διεφοροῦντο . ἐπειδὰν
καὶ οὐδὲ τοῦτο ἁπλῶς : οὐδὲ γὰρ ἁπλῶς ἡ ἐξωτάτω σφαῖρα ἐν τόπῳ , ἀλλ ' ὡς ὅλη ἐν τόπῳ
7290566 ἀμερες
καὶ αὖθις ζῴου καὶ φυτοῦ στάντων ἡ οὐσία , ὅπερ ἀμερές ἐστι καὶ κοινὸν καὶ ταὐτὸν ἐν πᾶσιν τοῖς ὑπ
, στάσιμον , ἀμετάστατον ἑστηκός , ἀμετακίνητον , ἀγέννητον , ἀμερές , ἀναφές , ἀθάνατον , ἄληπτον , ἄλυτον ,
7261926 ἀδιαστατον
δοκεῖ προκόπτειν . Ἡ τοίνυν στιγμή , ἥν φασι σημεῖον ἀδιάστατον ὑπάρχειν , ἤτοι σῶμα νοεῖται ἢ ἀσώματον . καὶ
οὐ δυνατὸν ἐν τοῖς φαινομένοις λαβεῖν τινος σημεῖον καὶ πέρας ἀδιάστατον , δῆλον ὡς οὐδ ' ἐν τοῖς νοητοῖς ληφθήσεταί
7250824 στιγμης
τρόπον καὶ ἐπὶ τοῦ παρόντος ἡ μὲν μονὰς τὸν τῆς στιγμῆς ἐπέχει λόγον , ἡ δὲ δυὰς τὸν τῆς γραμμῆς
ἐξελέγχουσι , νομίζοντες συμφορὰν ἂν ὀνειδίζειν . τὸ δὲ τῆς στιγμῆς ἀμφιβόλως ἔχει : ἤτοι γὰρ ἐπὶ τοῦ θνητῶν ὑποστικτέον
7239966 διαστατον
τὰ κάτω δ ' ἄνω . Βοῶν ποιείτω τὴν πόλιν διάστατον . Πρὸς τὴν ἀδελφὴν ἀνάδοχον τῶν χρημάτων . Ἑκοῦσα
ὑπηρετοῦντος τοῦ σώματος . λʹ . Σῶμά ἐστι μέγεθος τριχῇ διάστατον ἔχον ἐν ἑαυτῷ μῆκος , βάθος , πλάτος .
7207445 γραμμην
λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ
τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει ,
7181696 τριχη
τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ
. Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ
7142411 καλεισθω
τῆς ΑΓ : ὥστε καὶ ἡ ΑΓ ἄλογός ἐστιν , καλείσθω δὲ ἐκ δύο ὀνομάτων : ὅπερ ἔδει δεῖξαι .
ὅλη τῆς προσαρμοζούσης μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ , καλείσθω ἀποτομὴ δευτέρα . Ἐὰν δὲ μηδετέρα σύμμετρος ᾖ τῇ
7112774 ἀπλατες
πλάτους ἐξ ἀνάγκης πλάτος ἔχουσιν , ὥστε μηδὲν εἶναι μῆκος ἀπλατές , διὰ δὲ τοῦτο μηδὲ γραμμήν . Εἰ δὲ
τοῖς ἄκροις ἐπιπροσθεῖ . τί ἐστι περιφερὴς γραμμή ; μῆκος ἀπλατές , πρὸς ὅπερ ἀφ ' ἑνὸς σημείου τῶν ἐντὸς
6970539 εὐθυγραμμον
τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις
τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον
6917249 ἐπιφανειας
ἧς δεῖ τὴν διάμετρον ἐκθέσθαι , καὶ εἰλήφθω ἐπὶ τῆς ἐπιφανείας τῆς σφαίρας δύο τυχόντα σημεῖα τὰ Α , Β
, πρότερον δὲ καταδεδυκότων διὰ τὴν κυρτότητα τῆς τοῦ ὕδατος ἐπιφανείας . Τούτου δὲ θεωρηθέντος , εἴ τις ἐφεξῆς καὶ
6890715 στερεου
. διὰ τοῦτο γραμμὴ μὲν ἄνευ ἐπιπέδου καὶ τοῦτο χωρὶς στερεοῦ θεωρεῖται , ἐν δὲ τῷ τελείῳ μεγέθει πάντα χρὴ
οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . ἀλλ ' ὡς ἡ ΒΜ βάσις πρὸς
6890380 γραμμων
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων
6881468 τριχῃ
' εἰ μὲν ὁ ἐλάττων διχῇ διαιροῖτο , ὁ μείζων τριχῇ , εἰ δὲ ὁ ἐλάττων τριχῇ , ὁ μείζων
Τί μήν ; Ὦ Πρώταρχε , πειρῶ δὲ αὐτὸ τοῦτο τριχῇ τέμνειν . Πῇ φῄς ; οὐ γὰρ μὴ δυνατὸς
6877434 ἐπιπεδον
τῶν ΔʹΚΑ , ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΜΘ
ἀσωμάτου καὶ σωματικῆς οὐσίας , τῆς μὲν ἀσωμάτου κατὰ τὴν ἐπίπεδον ἣν ἀποτελοῦσι τετράγωνοι , τῆς δὲ σωματικῆς κατὰ τὴν
6877120 τομη
τοῦ ἀπὸ τῆς τὰς ἁφὰς ἐπιζευγνυούσης τετραγώνου . ἔστω κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΓ καὶ ἐφαπτόμεναι αἱ ΑΔ
ἐπίπεδα ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ , καὶ ἡ κοινὴ τομὴ αὐτῶν τῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται : καὶ ἡ
6842030 ἐπιπεδος
ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ
' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε
6830099 εὐθυτης
παράθεσις ἀπότασις : τὸ δ ' οὗ ἕνεκεν , ὀρθότης εὐθύτης : καὶ ἐπὶ τῶν ἄλλων ὁμοίως . Τὰ μὲν
τὸ δὲ ἐναντίον τούτου θηλυδρίαν καὶ ἀμαθέστερον σημαίνει ἄνδρα . εὐθύτης ῥινὸς γλώττης ἀκρασίαν τινὰ λέγει . ῥὶς ἡ μείζων
6814749 στερεον
ἐκείνη , τριὰς δὲ στερεοῦ σώματος , ὅτιπερ τριχῆ τὸ στερεὸν διαιρετόν . . § . : ἡ μὲν οὖν
τοῦ εἰκοσαέδρου , οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό
6804072 πυραμις
πυραμίς , τοῦ δὲ ΕΘΠΟ παραλληλεπιπέδου ἕκτον μέρος ἡ ΔΕΖΘ πυραμίς : ἴση ἄρα ἡ ΑΒΓΗ πυραμὶς τῇ ΔΕΖΘ πυραμίδι
γραμμή , τὰ δὲ γ τρίγωνον , τὰ δὲ δ πυραμίς : ταῦτα δὲ πάντα ἐστὶ πρῶτα καὶ ἀρχαὶ τῶν
6802571 μεση
τὸ τοῦ ἀστέρος λόγον ἔχειν , ὃν ἡ τοῦ ἡλίου μέση πάροδος , τουτέστιν ἥ τε κατὰ μῆκος καὶ ἡ
Ἶρόν φησι Μερμέρου παῖδα . . . : Χαονία , μέση τῆς Ἠπείρου . Οἱ οἰκήτορες Χάονες . Ἑλλάνικος Ἱερειῶν
6770018 ποσοτης
[ ] [ ἡ ] ἑκάστης ? ? ? ? ποσότης ? [ ] [ : ] α β γ
ἀλοιφὴν παραλαμβάνειν , ἐφ ' ὧν ἤδη κένωσις ἐγένετο καὶ ποσότης οὐκ ἐνοχλεῖ τῷ παντὶ σώματι , ἀλλὰ ξηρότης καὶ
6743804 ἀδιαιρετος
διαιρετὸς καὶ ἀδιαίρετος : ἐπὶ μὲν τῶν ἀύλων εἰδῶν παντάπασιν ἀδιαίρετος ὅ τε χρόνος καὶ αὐτὸς ὁ νοῦς , ὅταν
ἀλλὰ μία ἐν ἑκάστῃ φύσει , πότερον ἀμέριστος αὕτη καὶ ἀδιαίρετος ἢ μεριστή τις καὶ πολυδύναμος . καὶ εἰ μὲν
6683503 στιγμην
πλῆρες αἰσθητοῦ σώματος κατὰ τὴν ἁφήν . τὴν μὲν οὖν στιγμὴν οὗτοί γε ἀποφεύξονται , θέα δὲ ἕτερον ἀπορώτερον ,
καὶ τὸ ὅλον ἀμερές ἐστιν . ὥστε ἢ κατὰ μίαν στιγμὴν τοῦ σώματος ἔμψυχον ἔσται τὸ ζῶον , εἰ πᾶσαι
6668605 περιεχουσα
ἐν θεοῖς ὁλοτελής ἐστι , πάντα ἐν ἑαυτῇ καὶ αὐτὴ περιέχουσα κατὰ τὸ ἑαυτῆς ἰδίωμα . Ἡ μὲν γὰρ ἐν
ἀριθμόν : ἡ γὰρ ὑστάτη τελειότης αὐτὸς ἦν ἡ πᾶν περιέχουσα ἐν ἑαυτῇ . τοῦ δὲ κενοῦ παράδειγμα μὲν ἐν
6654112 ἐκβαλλομενη
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω
6645617 ἐπιπεδων
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα
6633313 ἀμεριστος
ἐν τῷ θεάτρῳ : καὶ γὰρ ἡ φωνὴ ἐνέργειά ἐστιν ἀμέριστος πανταχοῦ ὅλη ἡ αὐτὴ χωριστῶς αὐτῷ παροῦσα , ἅτε
πρὸς τὰς ἄλλας ἀμέριστον ἕνωσιν . καὶ γὰρ αὕτη ἡ ἀμέριστος ἕνωσις τοῖς χωρὶς τῶν σωμάτων προσήκει εἴδεσιν . εἰ
6627205 ὑποκειμενη
ἀνδρείως ὑπομένει τὸν κίνδυνον ὅτε ἡ τοῦ νικᾶν ἐλπίς ἐστιν ὑποκειμένη : ὁ δὲ προειδὼς ἑαυτὸν ἡττηθησόμενον ἐν τῷ δρασμῷ
μόνον : λαιμὸν διὰ τὸ ἀπολαυστικὸν εἶναι . Ἡ δὲ ὑποκειμένη τῷ λάρυγγι ἀρτηρία τραχεῖα ὠνόμασται , ἐκ τοῦ πνεύμονος
6595091 γραμμαι
που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε
καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ
6546968 ἑξας
ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται ,
ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ
6537316 στιγμων
χωρίζεται ταῦτα ; ὥστ ' εἴπερ ἀδύνατον ἐξ ἁφῶν ἢ στιγμῶν εἶναι τὰ μεγέθη , ἀνάγκη εἶναι σώματα ἀδιαίρετα καὶ
καὶ ἐξ ὧν τὸ σῶμα μονάδες τῶν ψυχικῶν μονάδων καὶ στιγμῶν , ἑνοῦται δὲ ψυχὴ σώματι , ἀνάγκη καὶ ταύτας
6530913 διαιρετον
κίνησιν διαιρετήν τις εἶναι βιάζοιτο , καὶ τὸ Α ποιήσει διαιρετόν : συνδιαιρεῖται γὰρ ἀεὶ τῇ κινήσει τὸ διάστημα .
ἀρτιάκις ἀρτίοις , ὅτι τούτων μὲν τὸ μέγιστον ἄκρον μόνον διαιρετόν , ἐκείνων δὲ τὸ ἐλάχιστον μόνον ἦν ἀδιαίρετον :
6521731 ἀμβλεια
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ
6510947 δυας
εἰσιν , ἀμφότεροι γραμματικοὶ ὀνομάζονται , καθὸ ὑπέκειτο μέν τις δυὰς ἡ διὰ τοῦ ἀμφότεροι , τὸ δ ' ἐπιγεγενημένον
δὲ τὰ ἀναρίθμητα . Μονὰς ἀπὸ τοῦ μένω μονὰς , δυὰς ἀπὸ τοῦ δύω τὸ ὑπεισέρχομαι , τριὰς ἀπὸ τοῦ
6494091 φλεψ
, καί τι τῆϲ τοῦ πνεύμονοϲ οὐϲίαϲ ἢ βρόγχιον ἢ φλὲψ ἀνενεχθήϲεται : οἶδα δέ τινα τῶν ἐκ τοῦ πνεύμονοϲ
μονοειδῆ , ἄρτον καὶ ὕδωρ , καὶ ἐκ ταύτης τρέφεται φλὲψ ἀρτηρία σὰρξ νεῦρα ὀστᾶ καὶ τὰ λοιπὰ μόρια .
6458785 πεπερασμενης
συμβήσεται . Εὐθείας δοθείσης ἐν ἐπιπέδῳ καθ ' ἓν σημεῖον πεπερασμένης εὑρεῖν ἐν τῷ ἐπιπέδῳ κώνου τομὴν τὴν καλουμένην παραβολήν
ἀλλότριον , φάσεως οὔσης , ὡς εἴρηται , καὶ ἢ πεπερασμένης ἢ ἀπεράντου , ἀλλ ' οὐκ ἐν τῷ ζητεῖν
6450376 περιφορα
, οὐδὲ ἐμπνεόμενος , ὥσπερ αὐλός , ἀλλ ' ἡ περιφορὰ τῶν ἐν αὐτῷ δαιμονίων καὶ μουσικῶν σωμάτων , σύμμετρός
μὲν οὖν τῶν θείων ψυχῶν ἐλέγετο ὅτι περιάγει αὐτὰς ἡ περιφορὰ τοῦ οὐρανοῦ , ὡς ἂν καὶ αὐτῶν ἐπιτηδείων οὐσῶν
6441821 τετρας
] ⌈ κϘʹ . / [ εἰκοστὴ ἕκτη . ] τετρὰς ] ⌈ κζʹ . / [ εἰκοστὴ ζʹ .
, οὕτω καὶ ἡ τοῦ μεγίστου παρὰ τὸν μέσον διαφορὰ τετρὰς οὖσα πρὸς τὴν τοῦ μέσου παρὰ τὸν ἐλάχιστον δυάδα
6426369 ἰσοπλευρου
: ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου ,
τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ
6407828 ἀπλατης
οὐκ αὔξει αὐτὴν οὐδὲ ἀφαιρούμενον μειοῖ , καὶ ἡ γραμμὴ ἀπλατὴς οὖσα πλάτει προστιθεμένη πλάτος οὐ ποιεῖ , καὶ ἡ
γεωμετρίας , ὅτι ἀμερὲς τὸ σημεῖον καὶ ὅτι ἡ γραμμὴ ἀπλατὴς ὑπάρχει , καὶ καθόλου φάναι πᾶσα ἐπιστήμη διανοητική ,
6396300 μεριστον
καὶ μεριστῆς οὐσίας : ἀμέριστον μὲν γὰρ εἶναι τὸ ἓν μεριστὸν δὲ τὸ πλῆθος ἐκ δὲ τούτων γίγνεσθαι τὸν ἀριθμὸν
λέγεται τῶν ποσῶν οὐ τὸ τυχόν , ἀλλὰ δεῖ αὐτὸ μεριστὸν εἶναι . ἄνευ γὰρ τοῦ ποσοῦ οὐ θεωρεῖται τὸ
6383145 κοιλοτης
τὸ εἶναι , οὗ καὶ νοουμένη ἀχώριστος , ὡς δὲ κοιλότης κεχωρισμένη καὶ οὐδὲν δεῖ τῷ νῷ προσεπινοεῖν τὸ ὑποκείμενον
. καὶ ἡ γαστὴρ αὐτή . καὶ ἡ τῶν ἑλκῶν κοιλότης . κράδης : οἱ μὲν τὰ τῆς συκῆς φύλλα
6375560 περατα
οὐ περατόν . παροιμία ἐστί : τὰ πέρα γαδείρων οὐ περατά . λέγει οὖν ὅτι : οὐκ ἔστι δυνατὸν πάντας
καὶ Ἑκάτη ἓν εἶναι δοκοῦσι . Τὰ γὰρ Γαδείρων οὐ περατά : ἐπὶ τῶν ποῤῥωτάτω καὶ ἀδυνάτων : τὰ δὲ
6368876 κωνικη
, ἡ δὲ ἐπ ' εὐθείας αὐτῇ ἐκτός . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον ,
ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ κῶνος ἔσται . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον ,
6365973 ὁλη
πανταχοῦ τοῦ ἀέρος οὐ μία μεμερισμένη , ἀλλὰ μία πανταχοῦ ὅλη : καὶ τὸ τῆς ὄψεως δέ , εἰ παθὼν
περιφέρεια τῇ ΔΟ περιφερείᾳ , κοινὴ προσκείσθω ἡ ΑΟ : ὅλη ἄρα ἡ ΚΟ ἴση ἐστὶ τῇ ΑΔ : ὥστε
6253886 πλατεια
ἀριστερῶν . ἔστι δ ' ἡ ἔκφυσις αὐτῶν ἰσχνὴ καὶ πλατεῖα , κατὰ γραμμὴν ἐγκαρσίαν ἐπ ' ὦτα φερομένη :
σεμνότητος καὶ ἔννοιαι . Λέξις δὲ σεμνὴ πᾶσα μὲν ἡ πλατεῖα καὶ διογκοῦσα κατὰ τὴν προφορὰν τὸ στόμα , ὥστε
6251367 αβʹ
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ
6249395 περατουται
Τὰ εἰς ης λήγοντα , ὧν ἡ γενικὴ εἰς ου περατοῦται , εἰς εω διαλύουσι : Πέρσης Πέρσεω , Ξέρξης
ἐξ ἐναντίων εἰς ἐναντία , ὁρίζεται ὑπὸ τῶν ἐναντίων καὶ περατοῦται , καὶ οὐκ ἔστι συνεχὴς οὐδ ' , εἰ
6248338 ἐνεχθησεται
κύκλου καὶ τοῦ ἰσημερινοῦ , πλείονα χρόνον ὑπὲρ τὸν ὁρίζοντα ἐνεχθήσεται τοῖς πρὸς μεσημβρίαν ἢ τοῖς πρὸς ἄρκτον οἰκοῦσιν .
ἄνωθεν ἀρχὴν μόνην ἀποτέμοις τοῦ μυός , ἐπὶ τὸ πέρας ἐνεχθήσεται , καὶ εἰ τὴν κάτω τελευτήν , ἐπὶ τὴν
6247575 κινησις
αὐτοῦ οὐχ ὡς τὸ κινητικὸν ληπτέον , ἀτελὴς γὰρ ἡ κίνησις , ἀλλ ' ὡς ἐνέργειαν . Καὶ προϊών φησι
ἐστιν , τὸ δὲ φαίνεται : καὶ ἐπὶ ταῦτα ἡ κίνησις κατὰ φύσιν τοῖς τε κούφοις καὶ τοῖς βάρος ἔχουσιν
6231151 διαστασις
ἴση ἡ ΓΗ . ἐπεὶ δέ ἐστιν ὡς ἡ ΑΕ διάστασις , τουτέστιν ἡ ΓΗ , πρὸς τὴν ΓΖ ,
εἰπεῖν , τὴν πρώτην καὶ πρώτων διάκρισιν : ὅθεν ἐπειδὴ διάστασις αὐτῷ γέγονεν ἀπό τε τῶν πρὸ αὐτοῦ καὶ ἀφ
6229859 σωματικη
Τρία εἰσὶ τὰ ῥυθμιζόμενα , λέξις , μέλος , κίνησις σωματική , ὥστε διαιρήσει τὸν χρόνον ἡ μὲν λέξις τοῖς
Τρία εἰσὶ τὰ ῥυθμιζόμενα , λέξις , μέλος , κίνησις σωματική , ὥστε διαιρήσει τὸν χρόνον ἡ μὲν λέξις τοῖς
6225569 στρεφομενη
οὐρανοῦ τεταμένην πέτραν , ἥτις αἰωρεῖται καὶ φέρεται μυρίαις στροφαῖς στρεφομένη καὶ προσηρτημένη χρυσαῖς ἁλύσεσιν ἄνωθεν ἐξ οὐρανοῦ , ἵνα
τὸ δὲ σημεῖον στρεφόμενον κύκλον γράφει , ὅταν εὐθεῖα γραμμὴ στρεφομένη καὶ πᾶσι τοῖς ἑαυτῆς μέρεσι κυκλογραφοῦσα καταμετρῇ τὸ διάστημα
6222500 πεπερασμενη
τοῦ πρ σκιά , τουτέστιν ἡ πρσ , κωνοειδὴς καὶ πεπερασμένη γενήσεται , τῶν ξπ ορ ἀκτίνων ἐπ ' εὐθείας
ἐπ ' αὐτῆς δοθὲν σημεῖον καὶ ἀπὸ τούτου διαχθεῖσά τις πεπερασμένη , ἀπὸ δὲ τοῦ πέρατος ἀχθῇ πρὸς ὀρθὰς ἐπὶ
6217633 ἀκαταληπτος
” τὰ μύρια ὀλίγα ἐστίν “ ἀκαταλήπτῳ . πᾶσα γὰρ ἀκατάληπτος φαντασία ἀκαταλήπτῳ φαντασίᾳ ἐστὶν ἴση . ἐπεὶ οὖν ἡ
μεμοιραμένων οὐδείς : αἰσθητὸν γὰρ τὸ γενόμενον , αἰσθήσει δὲ ἀκατάληπτος ἡ νοητὴ φύσις . | ἐπειδὴ τοίνυν ἀοράτως τόδε
6210418 πεντας
καὶ ψυχρῶν καὶ ξηρῶν καὶ ὑγρῶν ἀντιλαμβάνεται , καὶ ἔστι πεντὰς αὕτη συζυγιῶν ἀνώνυμος ἑνὶ καθάπερ εἶπον ὀνόματι . οὐ
ἀριθμητικὴν ἀναλογίαν , ὡς δηλοῖ τὸ διάγραμμα . ὅτι ἡ πεντὰς πρώτη μεσότητος τῆς ἀρίστης καὶ φυσικωτάτης ἐμφαντικὴ κατὰ διάζευξιν
6197131 ἀνισα
ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν
συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων
6196143 ἑβδομας
τῇ αʹ . εἶτα ἀπ ' ἄλλης ἀρχῆς ἡ τρίτη ἑβδομὰς τὰς αὐτὰς διαθέσεις ποιεῖ τῇ ὑδατικῇ σφαίρᾳ , ἃς
ἑβδομάς . . . § : καλεῖται δ ' ἡ ἑβδομὰς ὑπὸ τῶν κυρίως τοῖς ὀνόμασιν εἰωθότων χρῆσθαι καὶ τελεσφόρος
6191665 τεμνεται
γίνονται . Ὁ δὲ χειμερινὸς τροπικὸς κύκλος ὑπὸ τοῦ ὁρίζοντος τέμνεται οὕτως , ὥστε τὸ μὲν ἔλασσον τμῆμα ὑπὲρ γῆν
τε πραγματικὴν καὶ δικαιολογίαν : ἥτις δικαιολογία ὑπάλληλον γένος οὖσα τέμνεται εἰς ἀντίληψιν καὶ ἀντίθεσιν : ὑπάλληλον δὲ καὶ αὕτη
6142520 τριαδα
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα :
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων
6139372 διαστηματικη
τινές εἰσιν ἰδέαι κινήσεως , ἥ τε συνεχὴς καὶ ἡ διαστηματική . κατὰ μὲν οὖν τὴν συνεχῆ τόπον τινὰ διεξιέναι
ἡ μὲν συνεχής τε καὶ λογικὴ καλουμένη , ἡ δὲ διαστηματική τε καὶ μελῳδική . ἡ μὲν οὖν συνεχὴς κίνησις
6132684 ἀσυνθετον
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις
6122286 ἀκινητος
τὸ εἶδος , ἐπὶ γραμμῆς δὲ οὐκέτι . ἄλλη δὲ ἀκίνητος , καὶ ταύτην φασί τινες εἶναι χωριστήν , οἱ
ἐστὶ πρώτη φιλοσοφία : εἰ δὲ καὶ ἔστι τις οὐσία ἀκίνητος , ὥσπερ καὶ ἔστιν , αὕτη ἐστὶ προτέρα φιλοσοφία
6119159 διτονον
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ
6114625 διαμετρος
ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας
τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ
6110117 γραμμῃ
Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ ἢ ἐν σώματι . ἐν γοῦν
δὲ τῷ τρίτῳ τῶν γεωγραφικῶν καθιστάμενος τὸν τῆς οἰκουμένης πίνακα γραμμῇ τινι διαιρεῖ δίχα ἀπὸ δύσεως ἐπ ' ἀνατολὴν παραλλήλῳ
6106498 εἰκοσαεδρον
, ἐὰν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφῇ δωδεκάεδρόν τε καὶ εἰκοσάεδρον , λόγον ἕξει εὐθείας ἡσδηποτοῦν ἄκρον καὶ μέσον λόγον
, ἐάν τις ἐρεῖ ἡμῖν : πόσας πλευρὰς ἔχει τὸ εἰκοσάεδρον ; φήσομεν οὕτως : φανερόν , ὅτι ὑπὸ εἴκοσι
6105085 ὀκταεδρον
. Ἡ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ ὀκτάεδρον ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου κάθετος δυνάμει τρίτον μέρος
ἀριθμητικὴν συνεπιφέρεσθαι : ἅμα γὰρ ταύτῃ τρίγωνον ἢ τετράγωνον ἢ ὀκτάεδρον ἢ εἰκοσάεδρον ἢ διπλάσιον ἢ ὀκταπλάσιον ἢ ἡμιόλιον ἢ
6099412 διακεκαυμενης
ἐὰν προσλάβωσι τὸ ἐπὶ τὴν Ταπροβάνην καὶ τοὺς ὅρους τῆς διακεκαυμένης , οὓς οὐκ ἐλάττους τῶν τετρακισχιλίων θετέον , ἐκτοπιοῦσι
τε Βάκτρα καὶ τὴν Ἀρίαν εἰς τοὺς ἀπέχοντας τόπους τῆς διακεκαυμένης σταδίους τρισμυρίους καὶ τετρακισχιλίους , ὅσους ἀπὸ τοῦ ἰσημερινοῦ
6094695 ἀμεριστον
θεωρῶμεν : ἢ κατὰ διαίρεσιν , ὅταν τὸ ἓν καὶ ἀμέριστον μαθηματικὸν εἶδος μεριζόμενον περὶ τὰ καθ ' ἕκαστον καὶ
ἕνωσις . καὶ διὰ ταῦτα αὐτός τε πρὸς τὴν καθαρῶς ἀμέριστον γνῶσιν τοῦ ἐνεργείᾳ τελεοῦντος δεῖται νοῦ , καὶ τὰ
6082053 σκαληνον
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις
6080715 γεωμετρικη
ὑπεροχαὶ γὰρ αἱ αὐταί . εἰ δὲ τὸν κ ἡ γεωμετρική : ἡ αὐτὴ γὰρ ἀναλογία , διπλασία γάρ .
ἐλαττόνων , οἷον βʹ γʹ Ϛʹ . ►βʹ ἀριθμητική ) γεωμετρική ) ἁρμονική τριπλάσιος◄ ) ἐπὶ κόρρης . ἐπὶ κεφαλῆς
6080140 κυλινδρου
διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α
ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα
6075185 ἐπιπεδωι
ἀρχῆς τοῦ Καρκίνου , ὁμοταγῆ δὲ καὶ ἐν τῶι αὐτῶι ἐπιπέδωι γινόμενον πάντοτε τῶι ὁρίζοντι κατὰ τὴν τοῦ εἰρημένου δωδεκατημορίου
δὲ γραμμαὶ λέγονται παρ ' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας
6073475 κλασις
οὐκ ἐφ ' ἧς ἐστι χώρας , ἀλλὰ ὅθεν ἡ κλάσις ἐποίησε τῇ ὄψει τὴν ἐπαφὴν αὐτῆς καὶ τὴν ἀνταύγειαν
ἀγαθῶν ἀγαθίδες . . . . , . ἄγη : κλάσις ξίφους . . . α . ἀγαυός : ὁ
6069931 περιεχομενη
γωνία ὀρθή . καὶ λο πὴ ἡ ὑπὸ ΚΕΑ γωνία περιεχομένη ὑπὸ τοῦ ἑπομένου τμήματος τοῦ ζῳδιακοῦ καὶ τῆς βορείας
παρὰ τῆς ἐπὶ τῆς βάσεως γωνίας , ὑπὸ τριῶν ἐπιπέδων περιεχομένη , τὴν κατὰ κορυφὴν ὑπὸ τεττάρων συγκλειομένη , ὥστε
6067929 ἀνισοτης
, τὸ δὲ μεῖζον ὑπὸ γῆν . Ἡ δ ' ἀνισότης τῶν τμημάτων τὴν αὐτὴν παραλλαγὴν ἔχει ἐπὶ πάντων τῶν
κεφαλὴν προωθούμενος . ἐν δὲ τοῖς ἀνάντεσιν ἡ τῶν ποδῶν ἀνισότης κατὰ τὴν ἀνωμαλότητα τὴν τῶν τόπων ἀπισοῖ τὸ σῶμα
6067721 διαστατα
οἱ ἐν τῷ λογιστικῷ . τρίγωνα μὲν γὰρ καὶ τετράγωνα διαστατά , ἀνθρώπου δὲ λόγος καὶ ζώου ἀμερῆ . καὶ
ὀνομαζόμενα : σώματα δὲ τὰ αἰσθήσει ὑποπίπτοντα , τὰ τριχῇ διαστατά : πράγματα δὲ τὰ διανοίᾳ ληπτά : κοινὸν δὲ
6063981 διεστως
ὀργάνων . . . . ἀπήορος : ὁ ἀπηρτημένος καὶ διεστώς : παρὰ τὸ ἀείρω ἀερῶ . . . .
. ἀπήορος , , : ἀπήορος : ὁ ἀπηρτισμένος καὶ διεστώς . παρὰ τὸ ἀείρω ἀπάορος καὶ ἀπήορος . Φιλόξενος
6061132 ἀνισοτητος
ὕστερον δὲ γλαφυρώτατα δείξει ὅτι καὶ ἡ ἰσότης προτέρα τῆς ἀνισότητος . δείκνυσιν οὖν ὅτι τὸ πολλαπλάσιον πρῶτόν ἐστι τῶν
πόλοι ἐπὶ τοῦ ὁρίζοντος πίπτουσιν , ἀναιρουμένου τοῦ αἰτίου τῆς ἀνισότητος τῶν ἡμερῶν , τοῦτο δὲ ἦν τὸ ἔγκλιμα ,
6060724 συνεστωσα
δ ' ἡ Θρᾴκη σύμπασα ἐκ δυεῖν καὶ εἴκοσιν ἐθνῶν συνεστῶσα : δύναται δὲ στέλλειν καίπερ οὖσα περισσῶς ἐκπεπονημένη μυρίους
συναλείφουσα τὰ δύο συλλαβή , ἐξ ἀφώνου τε καὶ δυεῖν συνεστῶσα φωνηέντων : εἰ γοῦν τις αὐτῆς ἀφέλοι τὸ τ
6057691 ἀτομος
εἶναι ἑπόμενον ταῖς ὑποθέσεσιν ἔχουσιν . ἐπεὶ δὲ καὶ ἡ ἄτομος οὐσία , ᾗ καὶ κυρίως τὸ τόδε πρόσεστι ,
ἐφαρμόσει † καὶ οὐκ ἔστιν ἰδέα , ὥστε οὐκέτι ἔσται ἄτομος ἰδέα . διὸ ἐπήγαγε λέγων ὅτι γένοιτο γὰρ ἂν
6053017 γεωμετρια
ἔπειτα δὲ οὐδὲ πάντα ἀπὸ τῶν αἰσθητῶν δύναται λαμβάνειν ἡ γεωμετρία : πολλὰ γὰρ σχήματα καὶ πάθη θεωρεῖ σχημάτων ,
σχεδὸν δὲ αἱ αὐταὶ καὶ ἀκριβεῖς καὶ αὐτάρκεις , οἷον γεωμετρία καὶ ἀριθμητική : τῶν γὰρ τοιούτων καὶ ὥρισται τὰ
6050554 διαστημα
τὰς τάξεις τάσσειν , ἵνα μὴ ὡς κονδότεραι καὶ ὀλίγον διάστημα κρατοῦσαι μὴ δύνανται εὐκόλως τὰ κυνήγια περιλαμβάνειν , μήτε
οἷόν τε ὑπὸ ὄντος κατέχεσθαι μὴ κατεχόμενον δέ , ἢ διάστημα ἔρημον σώματος , ἢ διάστημα ἀκαθεκτούμενον ὑπὸ σώματος ,
6041258 κωνοειδες
ἐν δευτέρῳ τῶν Φυσικῶν καὶ Ἀπολλόδωρος . γίνεσθαι μέντοι τὸ κωνοειδὲς τοῦ ἀέρος πρὸς τῇ ὄψει , τὴν δὲ βάσιν
τοῦ ἡμίσους λάμπεται , ἵνα καὶ τὸ ἀπορρέον αὐτῆς σκίασμα κωνοειδὲς ἀποτελῆται , τὸ δὲ ἐπὶ θάτερα ἀντεκβαλλόμενον ἐπ '
6009102 εὐθεια
ὀρθαῖς ἴσαι . ἐπ ' εὐθείας ἄρα ἐστὶν ἡ ΔΥ εὐθεῖα . Ἐν ἄλλῳ οὕτως : ἐὰν κύβου τῶν ἀπεναντίον
ἀφ ' ὧν τὴν τῶν η ν ἑξηκοστῶν περιφέρειαν ὑποτείνει εὐθεῖα ἑξηκοστῶν θ ιε : λοιπὴν ἄρα τὴν τῶν μϚ
6007648 ἀπειρου
στοιχείων τὸ ἄπειρον , ὅπως μὴ δι ' ἑνὸς ὄντος ἀπείρου τὰ λοιπὰ φθείρηται αὐτῷ ὑπὸ τῆς ἐν τῷ ἀπείρῳ
ἀέρα ἢ ὕδωρ , ὡς μὴ τἆλλα φθείρηται ὑπὸ τοῦ ἀπείρου αὐτῶν : ἔχουσι γὰρ πρὸς ἄλληλα ἐναντίωσιν , οἷον
6005286 ἀπειραχως
ὅτι δὲ ταῦτα οὐ μοναχῶς ἀλλ ' ὀλίγου δέω λέγειν ἀπειραχῶς ἐν τοῖς οὖσιν ἔστι , πάλαι καὶ πρόπαλαι θεολόγων
ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ . Ἔστω δὴ νῦν ἰσοσκελὲς τὸ ΑΒΓ
5994609 ἀδιαιρετον
οὐ περιπατεῖ . καὶ τὸ μὲν καθ ' ἕκαστα ὑποκείμενον ἀδιαίρετον μένει τὸ δὲ καθόλου διαιρεῖται εἴς τε τὸ ἀπροσδιόριστον
' ἐκείνων ναστὰ καὶ ἀδιαίρετα δὴ κληθέντα ἄτομα προσηγόρευσεν . ἀδιαίρετον δὲ καὶ ἄτομον καὶ ναστὸν οἱ μὲν διὰ τὸ
5985160 πλατος
. Τὸ μὲν ὕψος λαμβάνει πήχεις Ϙ , τὸ δὲ πλάτος πήχεις μη . Γίνεται δὲ τῷ σχήματι πυργοειδής :
. Ἀλλ ' ὁ λόγος νῦν οὐ περὶ τῆς κατὰ πλάτος ἐπινοουμένης ὑγείας διέξεισιν , ἀλλὰ τῆς οἷον ἀμέμπτου πάντῃ

Back