| ὅταν διιστῆται , ποτὲ μὲν μία ἡ ἐπιφάνεια καὶ ἡ γραμμὴ καὶ τὸ σημεῖόν ἐστιν ἀθρόως : ὅταν γὰρ ἅπτωνται | ||
| σημείου τοῦ Ν ἐπὶ θέσει δεδομένην εὐθεῖαν τὴν ΓΔ εὐθεῖα γραμμὴ ἦκται ἡ ΝΜ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ ΝΜΔ |
| περὶ τὸ τμῆμα τῆς σφαίρας : ἔσται ἄρα αὕτη ἡ ἐπιφάνεια , καὶ πολὺ μᾶλλον ἡ τοῦ τμήματος τῆς σφαίρας | ||
| λοιπὸν ἐνεργείᾳ ἐστίν . οὕτως οὖν , φησί , καὶ ἐπιφάνεια δυνάμει ἐστὶν ἐν τῷ κύβῳ * * * ἡνίκα |
| μονάδες κεῖνταί που καὶ τὴν ἐν σώματι θέσιν ἔχουσι . στιγμὴ γοῦν καὶ μονὰς ἐνταῦθα ταὐτόν . γραμμαὶ δ ' | ||
| : οὐδὲ γὰρ τὸ φερόμενον τῆς φορᾶς , οὐδὲ ἡ στιγμὴ τῆς γραμμῆς : γραμμῆς γὰρ μέρος γραμμὴ καὶ κινήσεως |
| , ἐνεργείᾳ δὲ λίθον εἶναι , καὶ τὸ ἥμισυ τῆς γραμμῆς δυνάμει τελείαν γραμμήν , καὶ σῖτον δυνάμει ἁδρὸν τὸν | ||
| καὶ ἐπὶ τῶν γεγονότων : ὡς γὰρ ἡ στιγμὴ πέρας γραμμῆς , οὕτω τὸ γεγονὸς πέρας ἐστὶ τῆς γενέσεως . |
| ἅμα τῇ πόσει περιρρεῖσθαι πεσόντα . ὁ δὲ Ἀρίσταρχος στροβηθεὶς περιφερὴς ἔπεσε τῇ τραπέζῃ , ὡς περικλασθῆναι περὶ αὐτήν : | ||
| τοῖς τῶν ἐλάφων δὲ παραπλήσια , σφυρὸν ὕπτιον , ὁπλὴ περιφερὴς , ὑφηλὴ , κραταιὰ κατὰ τῶν ἐλάφων τὰ ἰσχυρότατα |
| οὖν περὶ τὸν ἀστεῖον ἡ τροπὴ βραχεῖα , ἄτομος , ἀμερής , οὐκ αἰσθητή , | νοητὴ δὲ μόνον , | ||
| ὄντος συνεστὼς ἀνύπαρκτος ἔσται . ἄλλως τε , εἰ μὲν ἀμερής ἐστιν ὁ χρόνος , πῶς τὸ μέν τι αὐτοῦ |
| διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ | ||
| τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ . |
| οὗ τοῖς πολλοῖς τὸ εἶναι ὑπάρχει , ὥσπερ καὶ ἑνὰς νοητή , ἐξ ἧς ἡ συνέχεια πᾶσι τοῖς ἐνταῦθα . | ||
| εἴδη τῶν οὐσιῶν διατρίψει : τῶν δὲ οὐσιῶν ἡ μὲν νοητή τε καὶ ἀίδιος , ἡ δὲ αἰσθητή τε καὶ |
| τελειοτάτη ἡ δὶς διὰ πασῶν . ἐκδηλότερόν γε μὴν ἡ σφαιρικὴ δι ' ἀριθμητικῆς τυγχάνει πάντων τῶν προσηκόντων αὐτῇ σκεμμάτων | ||
| ἀστρονομία περὶ μόνα τὰ οὐράνια σώματα καταγίνεται , ἡ δὲ σφαιρικὴ περὶ πᾶσαν σφαῖραν καταγίνεται : λέγει γὰρ τὰ συμβαίνοντα |
| ἀρτηρίαν . ἀρτηρία ἐστὶ σώματος ἐπίμηκες κυκλικὸν , δίκην σωλῆνος διχῆ διαιρούντων ἀπὸ καρδίας ἐρχόμενον καὶ ἐπὶ τὸ πᾶν σῶμα | ||
| τῶν ἐν αὐτῷ παραδιδομένων . Κατὰ δὲ τῶν ἀνωτάτω μερίζεται διχῆ , καθάπερ ἐν ἀρχῇ προαναπεφώνηται : καὶ ὁ μὲν |
| καὶ τὸ τίκτεται , διότι καὶ πρὸ τοῦ παχυνθῆναι ἡ σφαῖρα , ἦσαν πνεύματα , ἀλλὰ ταῦτα διεφοροῦντο . ἐπειδὰν | ||
| καὶ οὐδὲ τοῦτο ἁπλῶς : οὐδὲ γὰρ ἁπλῶς ἡ ἐξωτάτω σφαῖρα ἐν τόπῳ , ἀλλ ' ὡς ὅλη ἐν τόπῳ |
| καὶ αὖθις ζῴου καὶ φυτοῦ στάντων ἡ οὐσία , ὅπερ ἀμερές ἐστι καὶ κοινὸν καὶ ταὐτὸν ἐν πᾶσιν τοῖς ὑπ | ||
| , στάσιμον , ἀμετάστατον ἑστηκός , ἀμετακίνητον , ἀγέννητον , ἀμερές , ἀναφές , ἀθάνατον , ἄληπτον , ἄλυτον , |
| δοκεῖ προκόπτειν . Ἡ τοίνυν στιγμή , ἥν φασι σημεῖον ἀδιάστατον ὑπάρχειν , ἤτοι σῶμα νοεῖται ἢ ἀσώματον . καὶ | ||
| οὐ δυνατὸν ἐν τοῖς φαινομένοις λαβεῖν τινος σημεῖον καὶ πέρας ἀδιάστατον , δῆλον ὡς οὐδ ' ἐν τοῖς νοητοῖς ληφθήσεταί |
| τρόπον καὶ ἐπὶ τοῦ παρόντος ἡ μὲν μονὰς τὸν τῆς στιγμῆς ἐπέχει λόγον , ἡ δὲ δυὰς τὸν τῆς γραμμῆς | ||
| ἐξελέγχουσι , νομίζοντες συμφορὰν ἂν ὀνειδίζειν . τὸ δὲ τῆς στιγμῆς ἀμφιβόλως ἔχει : ἤτοι γὰρ ἐπὶ τοῦ θνητῶν ὑποστικτέον |
| τὰ κάτω δ ' ἄνω . Βοῶν ποιείτω τὴν πόλιν διάστατον . Πρὸς τὴν ἀδελφὴν ἀνάδοχον τῶν χρημάτων . Ἑκοῦσα | ||
| ὑπηρετοῦντος τοῦ σώματος . λʹ . Σῶμά ἐστι μέγεθος τριχῇ διάστατον ἔχον ἐν ἑαυτῷ μῆκος , βάθος , πλάτος . |
| λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ | ||
| τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει , |
| τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
| . Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
| τῆς ΑΓ : ὥστε καὶ ἡ ΑΓ ἄλογός ἐστιν , καλείσθω δὲ ἐκ δύο ὀνομάτων : ὅπερ ἔδει δεῖξαι . | ||
| ὅλη τῆς προσαρμοζούσης μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ , καλείσθω ἀποτομὴ δευτέρα . Ἐὰν δὲ μηδετέρα σύμμετρος ᾖ τῇ |
| πλάτους ἐξ ἀνάγκης πλάτος ἔχουσιν , ὥστε μηδὲν εἶναι μῆκος ἀπλατές , διὰ δὲ τοῦτο μηδὲ γραμμήν . Εἰ δὲ | ||
| τοῖς ἄκροις ἐπιπροσθεῖ . τί ἐστι περιφερὴς γραμμή ; μῆκος ἀπλατές , πρὸς ὅπερ ἀφ ' ἑνὸς σημείου τῶν ἐντὸς |
| τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις | ||
| τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον |
| ἧς δεῖ τὴν διάμετρον ἐκθέσθαι , καὶ εἰλήφθω ἐπὶ τῆς ἐπιφανείας τῆς σφαίρας δύο τυχόντα σημεῖα τὰ Α , Β | ||
| , πρότερον δὲ καταδεδυκότων διὰ τὴν κυρτότητα τῆς τοῦ ὕδατος ἐπιφανείας . Τούτου δὲ θεωρηθέντος , εἴ τις ἐφεξῆς καὶ |
| . διὰ τοῦτο γραμμὴ μὲν ἄνευ ἐπιπέδου καὶ τοῦτο χωρὶς στερεοῦ θεωρεῖται , ἐν δὲ τῷ τελείῳ μεγέθει πάντα χρὴ | ||
| οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . ἀλλ ' ὡς ἡ ΒΜ βάσις πρὸς |
| ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
| καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
| ' εἰ μὲν ὁ ἐλάττων διχῇ διαιροῖτο , ὁ μείζων τριχῇ , εἰ δὲ ὁ ἐλάττων τριχῇ , ὁ μείζων | ||
| Τί μήν ; Ὦ Πρώταρχε , πειρῶ δὲ αὐτὸ τοῦτο τριχῇ τέμνειν . Πῇ φῄς ; οὐ γὰρ μὴ δυνατὸς |
| τῶν ΔʹΚΑ , ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΜΘ | ||
| ἀσωμάτου καὶ σωματικῆς οὐσίας , τῆς μὲν ἀσωμάτου κατὰ τὴν ἐπίπεδον ἣν ἀποτελοῦσι τετράγωνοι , τῆς δὲ σωματικῆς κατὰ τὴν |
| τοῦ ἀπὸ τῆς τὰς ἁφὰς ἐπιζευγνυούσης τετραγώνου . ἔστω κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΓ καὶ ἐφαπτόμεναι αἱ ΑΔ | ||
| ἐπίπεδα ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ , καὶ ἡ κοινὴ τομὴ αὐτῶν τῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται : καὶ ἡ |
| ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
| ' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
| παράθεσις ἀπότασις : τὸ δ ' οὗ ἕνεκεν , ὀρθότης εὐθύτης : καὶ ἐπὶ τῶν ἄλλων ὁμοίως . Τὰ μὲν | ||
| τὸ δὲ ἐναντίον τούτου θηλυδρίαν καὶ ἀμαθέστερον σημαίνει ἄνδρα . εὐθύτης ῥινὸς γλώττης ἀκρασίαν τινὰ λέγει . ῥὶς ἡ μείζων |
| ἐκείνη , τριὰς δὲ στερεοῦ σώματος , ὅτιπερ τριχῆ τὸ στερεὸν διαιρετόν . . § . : ἡ μὲν οὖν | ||
| τοῦ εἰκοσαέδρου , οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό |
| πυραμίς , τοῦ δὲ ΕΘΠΟ παραλληλεπιπέδου ἕκτον μέρος ἡ ΔΕΖΘ πυραμίς : ἴση ἄρα ἡ ΑΒΓΗ πυραμὶς τῇ ΔΕΖΘ πυραμίδι | ||
| γραμμή , τὰ δὲ γ τρίγωνον , τὰ δὲ δ πυραμίς : ταῦτα δὲ πάντα ἐστὶ πρῶτα καὶ ἀρχαὶ τῶν |
| τὸ τοῦ ἀστέρος λόγον ἔχειν , ὃν ἡ τοῦ ἡλίου μέση πάροδος , τουτέστιν ἥ τε κατὰ μῆκος καὶ ἡ | ||
| Ἶρόν φησι Μερμέρου παῖδα . . . : Χαονία , μέση τῆς Ἠπείρου . Οἱ οἰκήτορες Χάονες . Ἑλλάνικος Ἱερειῶν |
| [ ] [ ἡ ] ἑκάστης ? ? ? ? ποσότης ? [ ] [ : ] α β γ | ||
| ἀλοιφὴν παραλαμβάνειν , ἐφ ' ὧν ἤδη κένωσις ἐγένετο καὶ ποσότης οὐκ ἐνοχλεῖ τῷ παντὶ σώματι , ἀλλὰ ξηρότης καὶ |
| διαιρετὸς καὶ ἀδιαίρετος : ἐπὶ μὲν τῶν ἀύλων εἰδῶν παντάπασιν ἀδιαίρετος ὅ τε χρόνος καὶ αὐτὸς ὁ νοῦς , ὅταν | ||
| ἀλλὰ μία ἐν ἑκάστῃ φύσει , πότερον ἀμέριστος αὕτη καὶ ἀδιαίρετος ἢ μεριστή τις καὶ πολυδύναμος . καὶ εἰ μὲν |
| πλῆρες αἰσθητοῦ σώματος κατὰ τὴν ἁφήν . τὴν μὲν οὖν στιγμὴν οὗτοί γε ἀποφεύξονται , θέα δὲ ἕτερον ἀπορώτερον , | ||
| καὶ τὸ ὅλον ἀμερές ἐστιν . ὥστε ἢ κατὰ μίαν στιγμὴν τοῦ σώματος ἔμψυχον ἔσται τὸ ζῶον , εἰ πᾶσαι |
| ἐν θεοῖς ὁλοτελής ἐστι , πάντα ἐν ἑαυτῇ καὶ αὐτὴ περιέχουσα κατὰ τὸ ἑαυτῆς ἰδίωμα . Ἡ μὲν γὰρ ἐν | ||
| ἀριθμόν : ἡ γὰρ ὑστάτη τελειότης αὐτὸς ἦν ἡ πᾶν περιέχουσα ἐν ἑαυτῇ . τοῦ δὲ κενοῦ παράδειγμα μὲν ἐν |
| ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
| καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
| ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
| , ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
| ἐν τῷ θεάτρῳ : καὶ γὰρ ἡ φωνὴ ἐνέργειά ἐστιν ἀμέριστος πανταχοῦ ὅλη ἡ αὐτὴ χωριστῶς αὐτῷ παροῦσα , ἅτε | ||
| πρὸς τὰς ἄλλας ἀμέριστον ἕνωσιν . καὶ γὰρ αὕτη ἡ ἀμέριστος ἕνωσις τοῖς χωρὶς τῶν σωμάτων προσήκει εἴδεσιν . εἰ |
| ἀνδρείως ὑπομένει τὸν κίνδυνον ὅτε ἡ τοῦ νικᾶν ἐλπίς ἐστιν ὑποκειμένη : ὁ δὲ προειδὼς ἑαυτὸν ἡττηθησόμενον ἐν τῷ δρασμῷ | ||
| μόνον : λαιμὸν διὰ τὸ ἀπολαυστικὸν εἶναι . Ἡ δὲ ὑποκειμένη τῷ λάρυγγι ἀρτηρία τραχεῖα ὠνόμασται , ἐκ τοῦ πνεύμονος |
| που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε | ||
| καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ |
| ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
| ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
| χωρίζεται ταῦτα ; ὥστ ' εἴπερ ἀδύνατον ἐξ ἁφῶν ἢ στιγμῶν εἶναι τὰ μεγέθη , ἀνάγκη εἶναι σώματα ἀδιαίρετα καὶ | ||
| καὶ ἐξ ὧν τὸ σῶμα μονάδες τῶν ψυχικῶν μονάδων καὶ στιγμῶν , ἑνοῦται δὲ ψυχὴ σώματι , ἀνάγκη καὶ ταύτας |
| κίνησιν διαιρετήν τις εἶναι βιάζοιτο , καὶ τὸ Α ποιήσει διαιρετόν : συνδιαιρεῖται γὰρ ἀεὶ τῇ κινήσει τὸ διάστημα . | ||
| ἀρτιάκις ἀρτίοις , ὅτι τούτων μὲν τὸ μέγιστον ἄκρον μόνον διαιρετόν , ἐκείνων δὲ τὸ ἐλάχιστον μόνον ἦν ἀδιαίρετον : |
| ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ | ||
| . στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ |
| εἰσιν , ἀμφότεροι γραμματικοὶ ὀνομάζονται , καθὸ ὑπέκειτο μέν τις δυὰς ἡ διὰ τοῦ ἀμφότεροι , τὸ δ ' ἐπιγεγενημένον | ||
| δὲ τὰ ἀναρίθμητα . Μονὰς ἀπὸ τοῦ μένω μονὰς , δυὰς ἀπὸ τοῦ δύω τὸ ὑπεισέρχομαι , τριὰς ἀπὸ τοῦ |
| , καί τι τῆϲ τοῦ πνεύμονοϲ οὐϲίαϲ ἢ βρόγχιον ἢ φλὲψ ἀνενεχθήϲεται : οἶδα δέ τινα τῶν ἐκ τοῦ πνεύμονοϲ | ||
| μονοειδῆ , ἄρτον καὶ ὕδωρ , καὶ ἐκ ταύτης τρέφεται φλὲψ ἀρτηρία σὰρξ νεῦρα ὀστᾶ καὶ τὰ λοιπὰ μόρια . |
| συμβήσεται . Εὐθείας δοθείσης ἐν ἐπιπέδῳ καθ ' ἓν σημεῖον πεπερασμένης εὑρεῖν ἐν τῷ ἐπιπέδῳ κώνου τομὴν τὴν καλουμένην παραβολήν | ||
| ἀλλότριον , φάσεως οὔσης , ὡς εἴρηται , καὶ ἢ πεπερασμένης ἢ ἀπεράντου , ἀλλ ' οὐκ ἐν τῷ ζητεῖν |
| , οὐδὲ ἐμπνεόμενος , ὥσπερ αὐλός , ἀλλ ' ἡ περιφορὰ τῶν ἐν αὐτῷ δαιμονίων καὶ μουσικῶν σωμάτων , σύμμετρός | ||
| μὲν οὖν τῶν θείων ψυχῶν ἐλέγετο ὅτι περιάγει αὐτὰς ἡ περιφορὰ τοῦ οὐρανοῦ , ὡς ἂν καὶ αὐτῶν ἐπιτηδείων οὐσῶν |
| ] ⌈ κϘʹ . / [ εἰκοστὴ ἕκτη . ] τετρὰς ] ⌈ κζʹ . / [ εἰκοστὴ ζʹ . | ||
| , οὕτω καὶ ἡ τοῦ μεγίστου παρὰ τὸν μέσον διαφορὰ τετρὰς οὖσα πρὸς τὴν τοῦ μέσου παρὰ τὸν ἐλάχιστον δυάδα |
| : ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου , | ||
| τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ |
| οὐκ αὔξει αὐτὴν οὐδὲ ἀφαιρούμενον μειοῖ , καὶ ἡ γραμμὴ ἀπλατὴς οὖσα πλάτει προστιθεμένη πλάτος οὐ ποιεῖ , καὶ ἡ | ||
| γεωμετρίας , ὅτι ἀμερὲς τὸ σημεῖον καὶ ὅτι ἡ γραμμὴ ἀπλατὴς ὑπάρχει , καὶ καθόλου φάναι πᾶσα ἐπιστήμη διανοητική , |
| καὶ μεριστῆς οὐσίας : ἀμέριστον μὲν γὰρ εἶναι τὸ ἓν μεριστὸν δὲ τὸ πλῆθος ἐκ δὲ τούτων γίγνεσθαι τὸν ἀριθμὸν | ||
| λέγεται τῶν ποσῶν οὐ τὸ τυχόν , ἀλλὰ δεῖ αὐτὸ μεριστὸν εἶναι . ἄνευ γὰρ τοῦ ποσοῦ οὐ θεωρεῖται τὸ |
| τὸ εἶναι , οὗ καὶ νοουμένη ἀχώριστος , ὡς δὲ κοιλότης κεχωρισμένη καὶ οὐδὲν δεῖ τῷ νῷ προσεπινοεῖν τὸ ὑποκείμενον | ||
| . καὶ ἡ γαστὴρ αὐτή . καὶ ἡ τῶν ἑλκῶν κοιλότης . κράδης : οἱ μὲν τὰ τῆς συκῆς φύλλα |
| οὐ περατόν . παροιμία ἐστί : τὰ πέρα γαδείρων οὐ περατά . λέγει οὖν ὅτι : οὐκ ἔστι δυνατὸν πάντας | ||
| καὶ Ἑκάτη ἓν εἶναι δοκοῦσι . Τὰ γὰρ Γαδείρων οὐ περατά : ἐπὶ τῶν ποῤῥωτάτω καὶ ἀδυνάτων : τὰ δὲ |
| , ἡ δὲ ἐπ ' εὐθείας αὐτῇ ἐκτός . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον , | ||
| ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ κῶνος ἔσται . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον , |
| πανταχοῦ τοῦ ἀέρος οὐ μία μεμερισμένη , ἀλλὰ μία πανταχοῦ ὅλη : καὶ τὸ τῆς ὄψεως δέ , εἰ παθὼν | ||
| περιφέρεια τῇ ΔΟ περιφερείᾳ , κοινὴ προσκείσθω ἡ ΑΟ : ὅλη ἄρα ἡ ΚΟ ἴση ἐστὶ τῇ ΑΔ : ὥστε |
| ἀριστερῶν . ἔστι δ ' ἡ ἔκφυσις αὐτῶν ἰσχνὴ καὶ πλατεῖα , κατὰ γραμμὴν ἐγκαρσίαν ἐπ ' ὦτα φερομένη : | ||
| σεμνότητος καὶ ἔννοιαι . Λέξις δὲ σεμνὴ πᾶσα μὲν ἡ πλατεῖα καὶ διογκοῦσα κατὰ τὴν προφορὰν τὸ στόμα , ὥστε |
| κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
| ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
| Τὰ εἰς ης λήγοντα , ὧν ἡ γενικὴ εἰς ου περατοῦται , εἰς εω διαλύουσι : Πέρσης Πέρσεω , Ξέρξης | ||
| ἐξ ἐναντίων εἰς ἐναντία , ὁρίζεται ὑπὸ τῶν ἐναντίων καὶ περατοῦται , καὶ οὐκ ἔστι συνεχὴς οὐδ ' , εἰ |
| κύκλου καὶ τοῦ ἰσημερινοῦ , πλείονα χρόνον ὑπὲρ τὸν ὁρίζοντα ἐνεχθήσεται τοῖς πρὸς μεσημβρίαν ἢ τοῖς πρὸς ἄρκτον οἰκοῦσιν . | ||
| ἄνωθεν ἀρχὴν μόνην ἀποτέμοις τοῦ μυός , ἐπὶ τὸ πέρας ἐνεχθήσεται , καὶ εἰ τὴν κάτω τελευτήν , ἐπὶ τὴν |
| αὐτοῦ οὐχ ὡς τὸ κινητικὸν ληπτέον , ἀτελὴς γὰρ ἡ κίνησις , ἀλλ ' ὡς ἐνέργειαν . Καὶ προϊών φησι | ||
| ἐστιν , τὸ δὲ φαίνεται : καὶ ἐπὶ ταῦτα ἡ κίνησις κατὰ φύσιν τοῖς τε κούφοις καὶ τοῖς βάρος ἔχουσιν |
| ἴση ἡ ΓΗ . ἐπεὶ δέ ἐστιν ὡς ἡ ΑΕ διάστασις , τουτέστιν ἡ ΓΗ , πρὸς τὴν ΓΖ , | ||
| εἰπεῖν , τὴν πρώτην καὶ πρώτων διάκρισιν : ὅθεν ἐπειδὴ διάστασις αὐτῷ γέγονεν ἀπό τε τῶν πρὸ αὐτοῦ καὶ ἀφ |
| Τρία εἰσὶ τὰ ῥυθμιζόμενα , λέξις , μέλος , κίνησις σωματική , ὥστε διαιρήσει τὸν χρόνον ἡ μὲν λέξις τοῖς | ||
| Τρία εἰσὶ τὰ ῥυθμιζόμενα , λέξις , μέλος , κίνησις σωματική , ὥστε διαιρήσει τὸν χρόνον ἡ μὲν λέξις τοῖς |
| οὐρανοῦ τεταμένην πέτραν , ἥτις αἰωρεῖται καὶ φέρεται μυρίαις στροφαῖς στρεφομένη καὶ προσηρτημένη χρυσαῖς ἁλύσεσιν ἄνωθεν ἐξ οὐρανοῦ , ἵνα | ||
| τὸ δὲ σημεῖον στρεφόμενον κύκλον γράφει , ὅταν εὐθεῖα γραμμὴ στρεφομένη καὶ πᾶσι τοῖς ἑαυτῆς μέρεσι κυκλογραφοῦσα καταμετρῇ τὸ διάστημα |
| τοῦ πρ σκιά , τουτέστιν ἡ πρσ , κωνοειδὴς καὶ πεπερασμένη γενήσεται , τῶν ξπ ορ ἀκτίνων ἐπ ' εὐθείας | ||
| ἐπ ' αὐτῆς δοθὲν σημεῖον καὶ ἀπὸ τούτου διαχθεῖσά τις πεπερασμένη , ἀπὸ δὲ τοῦ πέρατος ἀχθῇ πρὸς ὀρθὰς ἐπὶ |
| ” τὰ μύρια ὀλίγα ἐστίν “ ἀκαταλήπτῳ . πᾶσα γὰρ ἀκατάληπτος φαντασία ἀκαταλήπτῳ φαντασίᾳ ἐστὶν ἴση . ἐπεὶ οὖν ἡ | ||
| μεμοιραμένων οὐδείς : αἰσθητὸν γὰρ τὸ γενόμενον , αἰσθήσει δὲ ἀκατάληπτος ἡ νοητὴ φύσις . | ἐπειδὴ τοίνυν ἀοράτως τόδε |
| καὶ ψυχρῶν καὶ ξηρῶν καὶ ὑγρῶν ἀντιλαμβάνεται , καὶ ἔστι πεντὰς αὕτη συζυγιῶν ἀνώνυμος ἑνὶ καθάπερ εἶπον ὀνόματι . οὐ | ||
| ἀριθμητικὴν ἀναλογίαν , ὡς δηλοῖ τὸ διάγραμμα . ὅτι ἡ πεντὰς πρώτη μεσότητος τῆς ἀρίστης καὶ φυσικωτάτης ἐμφαντικὴ κατὰ διάζευξιν |
| ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν | ||
| συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων |
| τῇ αʹ . εἶτα ἀπ ' ἄλλης ἀρχῆς ἡ τρίτη ἑβδομὰς τὰς αὐτὰς διαθέσεις ποιεῖ τῇ ὑδατικῇ σφαίρᾳ , ἃς | ||
| ἑβδομάς . . . § : καλεῖται δ ' ἡ ἑβδομὰς ὑπὸ τῶν κυρίως τοῖς ὀνόμασιν εἰωθότων χρῆσθαι καὶ τελεσφόρος |
| γίνονται . Ὁ δὲ χειμερινὸς τροπικὸς κύκλος ὑπὸ τοῦ ὁρίζοντος τέμνεται οὕτως , ὥστε τὸ μὲν ἔλασσον τμῆμα ὑπὲρ γῆν | ||
| τε πραγματικὴν καὶ δικαιολογίαν : ἥτις δικαιολογία ὑπάλληλον γένος οὖσα τέμνεται εἰς ἀντίληψιν καὶ ἀντίθεσιν : ὑπάλληλον δὲ καὶ αὕτη |
| , ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
| λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
| τινές εἰσιν ἰδέαι κινήσεως , ἥ τε συνεχὴς καὶ ἡ διαστηματική . κατὰ μὲν οὖν τὴν συνεχῆ τόπον τινὰ διεξιέναι | ||
| ἡ μὲν συνεχής τε καὶ λογικὴ καλουμένη , ἡ δὲ διαστηματική τε καὶ μελῳδική . ἡ μὲν οὖν συνεχὴς κίνησις |
| τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ | ||
| μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις |
| τὸ εἶδος , ἐπὶ γραμμῆς δὲ οὐκέτι . ἄλλη δὲ ἀκίνητος , καὶ ταύτην φασί τινες εἶναι χωριστήν , οἱ | ||
| ἐστὶ πρώτη φιλοσοφία : εἰ δὲ καὶ ἔστι τις οὐσία ἀκίνητος , ὥσπερ καὶ ἔστιν , αὕτη ἐστὶ προτέρα φιλοσοφία |
| ' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ | ||
| , ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ |
| ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας | ||
| τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ |
| Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ ἢ ἐν σώματι . ἐν γοῦν | ||
| δὲ τῷ τρίτῳ τῶν γεωγραφικῶν καθιστάμενος τὸν τῆς οἰκουμένης πίνακα γραμμῇ τινι διαιρεῖ δίχα ἀπὸ δύσεως ἐπ ' ἀνατολὴν παραλλήλῳ |
| , ἐὰν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφῇ δωδεκάεδρόν τε καὶ εἰκοσάεδρον , λόγον ἕξει εὐθείας ἡσδηποτοῦν ἄκρον καὶ μέσον λόγον | ||
| , ἐάν τις ἐρεῖ ἡμῖν : πόσας πλευρὰς ἔχει τὸ εἰκοσάεδρον ; φήσομεν οὕτως : φανερόν , ὅτι ὑπὸ εἴκοσι |
| . Ἡ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ ὀκτάεδρον ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου κάθετος δυνάμει τρίτον μέρος | ||
| ἀριθμητικὴν συνεπιφέρεσθαι : ἅμα γὰρ ταύτῃ τρίγωνον ἢ τετράγωνον ἢ ὀκτάεδρον ἢ εἰκοσάεδρον ἢ διπλάσιον ἢ ὀκταπλάσιον ἢ ἡμιόλιον ἢ |
| ἐὰν προσλάβωσι τὸ ἐπὶ τὴν Ταπροβάνην καὶ τοὺς ὅρους τῆς διακεκαυμένης , οὓς οὐκ ἐλάττους τῶν τετρακισχιλίων θετέον , ἐκτοπιοῦσι | ||
| τε Βάκτρα καὶ τὴν Ἀρίαν εἰς τοὺς ἀπέχοντας τόπους τῆς διακεκαυμένης σταδίους τρισμυρίους καὶ τετρακισχιλίους , ὅσους ἀπὸ τοῦ ἰσημερινοῦ |
| θεωρῶμεν : ἢ κατὰ διαίρεσιν , ὅταν τὸ ἓν καὶ ἀμέριστον μαθηματικὸν εἶδος μεριζόμενον περὶ τὰ καθ ' ἕκαστον καὶ | ||
| ἕνωσις . καὶ διὰ ταῦτα αὐτός τε πρὸς τὴν καθαρῶς ἀμέριστον γνῶσιν τοῦ ἐνεργείᾳ τελεοῦντος δεῖται νοῦ , καὶ τὰ |
| ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου | ||
| τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις |
| ὑπεροχαὶ γὰρ αἱ αὐταί . εἰ δὲ τὸν κ ἡ γεωμετρική : ἡ αὐτὴ γὰρ ἀναλογία , διπλασία γάρ . | ||
| ἐλαττόνων , οἷον βʹ γʹ Ϛʹ . ►βʹ ἀριθμητική ) γεωμετρική ) ἁρμονική τριπλάσιος◄ ) ἐπὶ κόρρης . ἐπὶ κεφαλῆς |
| διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α | ||
| ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα |
| ἀρχῆς τοῦ Καρκίνου , ὁμοταγῆ δὲ καὶ ἐν τῶι αὐτῶι ἐπιπέδωι γινόμενον πάντοτε τῶι ὁρίζοντι κατὰ τὴν τοῦ εἰρημένου δωδεκατημορίου | ||
| δὲ γραμμαὶ λέγονται παρ ' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας |
| οὐκ ἐφ ' ἧς ἐστι χώρας , ἀλλὰ ὅθεν ἡ κλάσις ἐποίησε τῇ ὄψει τὴν ἐπαφὴν αὐτῆς καὶ τὴν ἀνταύγειαν | ||
| ἀγαθῶν ἀγαθίδες . . . . , . ἄγη : κλάσις ξίφους . . . α . ἀγαυός : ὁ |
| γωνία ὀρθή . καὶ λο πὴ ἡ ὑπὸ ΚΕΑ γωνία περιεχομένη ὑπὸ τοῦ ἑπομένου τμήματος τοῦ ζῳδιακοῦ καὶ τῆς βορείας | ||
| παρὰ τῆς ἐπὶ τῆς βάσεως γωνίας , ὑπὸ τριῶν ἐπιπέδων περιεχομένη , τὴν κατὰ κορυφὴν ὑπὸ τεττάρων συγκλειομένη , ὥστε |
| , τὸ δὲ μεῖζον ὑπὸ γῆν . Ἡ δ ' ἀνισότης τῶν τμημάτων τὴν αὐτὴν παραλλαγὴν ἔχει ἐπὶ πάντων τῶν | ||
| κεφαλὴν προωθούμενος . ἐν δὲ τοῖς ἀνάντεσιν ἡ τῶν ποδῶν ἀνισότης κατὰ τὴν ἀνωμαλότητα τὴν τῶν τόπων ἀπισοῖ τὸ σῶμα |
| οἱ ἐν τῷ λογιστικῷ . τρίγωνα μὲν γὰρ καὶ τετράγωνα διαστατά , ἀνθρώπου δὲ λόγος καὶ ζώου ἀμερῆ . καὶ | ||
| ὀνομαζόμενα : σώματα δὲ τὰ αἰσθήσει ὑποπίπτοντα , τὰ τριχῇ διαστατά : πράγματα δὲ τὰ διανοίᾳ ληπτά : κοινὸν δὲ |
| ὀργάνων . . . . ἀπήορος : ὁ ἀπηρτημένος καὶ διεστώς : παρὰ τὸ ἀείρω ἀερῶ . . . . | ||
| . ἀπήορος , , : ἀπήορος : ὁ ἀπηρτισμένος καὶ διεστώς . παρὰ τὸ ἀείρω ἀπάορος καὶ ἀπήορος . Φιλόξενος |
| ὕστερον δὲ γλαφυρώτατα δείξει ὅτι καὶ ἡ ἰσότης προτέρα τῆς ἀνισότητος . δείκνυσιν οὖν ὅτι τὸ πολλαπλάσιον πρῶτόν ἐστι τῶν | ||
| πόλοι ἐπὶ τοῦ ὁρίζοντος πίπτουσιν , ἀναιρουμένου τοῦ αἰτίου τῆς ἀνισότητος τῶν ἡμερῶν , τοῦτο δὲ ἦν τὸ ἔγκλιμα , |
| δ ' ἡ Θρᾴκη σύμπασα ἐκ δυεῖν καὶ εἴκοσιν ἐθνῶν συνεστῶσα : δύναται δὲ στέλλειν καίπερ οὖσα περισσῶς ἐκπεπονημένη μυρίους | ||
| συναλείφουσα τὰ δύο συλλαβή , ἐξ ἀφώνου τε καὶ δυεῖν συνεστῶσα φωνηέντων : εἰ γοῦν τις αὐτῆς ἀφέλοι τὸ τ |
| εἶναι ἑπόμενον ταῖς ὑποθέσεσιν ἔχουσιν . ἐπεὶ δὲ καὶ ἡ ἄτομος οὐσία , ᾗ καὶ κυρίως τὸ τόδε πρόσεστι , | ||
| ἐφαρμόσει † καὶ οὐκ ἔστιν ἰδέα , ὥστε οὐκέτι ἔσται ἄτομος ἰδέα . διὸ ἐπήγαγε λέγων ὅτι γένοιτο γὰρ ἂν |
| ἔπειτα δὲ οὐδὲ πάντα ἀπὸ τῶν αἰσθητῶν δύναται λαμβάνειν ἡ γεωμετρία : πολλὰ γὰρ σχήματα καὶ πάθη θεωρεῖ σχημάτων , | ||
| σχεδὸν δὲ αἱ αὐταὶ καὶ ἀκριβεῖς καὶ αὐτάρκεις , οἷον γεωμετρία καὶ ἀριθμητική : τῶν γὰρ τοιούτων καὶ ὥρισται τὰ |
| τὰς τάξεις τάσσειν , ἵνα μὴ ὡς κονδότεραι καὶ ὀλίγον διάστημα κρατοῦσαι μὴ δύνανται εὐκόλως τὰ κυνήγια περιλαμβάνειν , μήτε | ||
| οἷόν τε ὑπὸ ὄντος κατέχεσθαι μὴ κατεχόμενον δέ , ἢ διάστημα ἔρημον σώματος , ἢ διάστημα ἀκαθεκτούμενον ὑπὸ σώματος , |
| ἐν δευτέρῳ τῶν Φυσικῶν καὶ Ἀπολλόδωρος . γίνεσθαι μέντοι τὸ κωνοειδὲς τοῦ ἀέρος πρὸς τῇ ὄψει , τὴν δὲ βάσιν | ||
| τοῦ ἡμίσους λάμπεται , ἵνα καὶ τὸ ἀπορρέον αὐτῆς σκίασμα κωνοειδὲς ἀποτελῆται , τὸ δὲ ἐπὶ θάτερα ἀντεκβαλλόμενον ἐπ ' |
| ὀρθαῖς ἴσαι . ἐπ ' εὐθείας ἄρα ἐστὶν ἡ ΔΥ εὐθεῖα . Ἐν ἄλλῳ οὕτως : ἐὰν κύβου τῶν ἀπεναντίον | ||
| ἀφ ' ὧν τὴν τῶν η ν ἑξηκοστῶν περιφέρειαν ὑποτείνει εὐθεῖα ἑξηκοστῶν θ ιε : λοιπὴν ἄρα τὴν τῶν μϚ |
| στοιχείων τὸ ἄπειρον , ὅπως μὴ δι ' ἑνὸς ὄντος ἀπείρου τὰ λοιπὰ φθείρηται αὐτῷ ὑπὸ τῆς ἐν τῷ ἀπείρῳ | ||
| ἀέρα ἢ ὕδωρ , ὡς μὴ τἆλλα φθείρηται ὑπὸ τοῦ ἀπείρου αὐτῶν : ἔχουσι γὰρ πρὸς ἄλληλα ἐναντίωσιν , οἷον |
| ὅτι δὲ ταῦτα οὐ μοναχῶς ἀλλ ' ὀλίγου δέω λέγειν ἀπειραχῶς ἐν τοῖς οὖσιν ἔστι , πάλαι καὶ πρόπαλαι θεολόγων | ||
| ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ . Ἔστω δὴ νῦν ἰσοσκελὲς τὸ ΑΒΓ |
| οὐ περιπατεῖ . καὶ τὸ μὲν καθ ' ἕκαστα ὑποκείμενον ἀδιαίρετον μένει τὸ δὲ καθόλου διαιρεῖται εἴς τε τὸ ἀπροσδιόριστον | ||
| ' ἐκείνων ναστὰ καὶ ἀδιαίρετα δὴ κληθέντα ἄτομα προσηγόρευσεν . ἀδιαίρετον δὲ καὶ ἄτομον καὶ ναστὸν οἱ μὲν διὰ τὸ |
| . Τὸ μὲν ὕψος λαμβάνει πήχεις Ϙ , τὸ δὲ πλάτος πήχεις μη . Γίνεται δὲ τῷ σχήματι πυργοειδής : | ||
| . Ἀλλ ' ὁ λόγος νῦν οὐ περὶ τῆς κατὰ πλάτος ἐπινοουμένης ὑγείας διέξεισιν , ἀλλὰ τῆς οἷον ἀμέμπτου πάντῃ |