| γωνία ὀρθή . καὶ λο πὴ ἡ ὑπὸ ΚΕΑ γωνία περιεχομένη ὑπὸ τοῦ ἑπομένου τμήματος τοῦ ζῳδιακοῦ καὶ τῆς βορείας | ||
| παρὰ τῆς ἐπὶ τῆς βάσεως γωνίας , ὑπὸ τριῶν ἐπιπέδων περιεχομένη , τὴν κατὰ κορυφὴν ὑπὸ τεττάρων συγκλειομένη , ὥστε |
| δ ' ἡ Θρᾴκη σύμπασα ἐκ δυεῖν καὶ εἴκοσιν ἐθνῶν συνεστῶσα : δύναται δὲ στέλλειν καίπερ οὖσα περισσῶς ἐκπεπονημένη μυρίους | ||
| συναλείφουσα τὰ δύο συλλαβή , ἐξ ἀφώνου τε καὶ δυεῖν συνεστῶσα φωνηέντων : εἰ γοῦν τις αὐτῆς ἀφέλοι τὸ τ |
| ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
| ' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
| ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ | ||
| . στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ |
| ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
| ' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
| ὑπὸ κακοχυμίας , ἤτοι ἐξ ἥπατος εἰς αὐτὴν καταρρεούσης ἢ περιεχομένης ἐν τοῖς χιτῶσιν αὐτῆς . γεννᾶται δ ' ἐξ | ||
| ἐπεὶ γὰρ τὸ Δ ἐντός ἐστι τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης γωνίας , δυνατὸν ἀπὸ τοῦ Δ δύο ἐφαπτομένας ἀγαγεῖν |
| [ κἂν ἡμίσειαν ὀρθῆς ] , ἄλογος ἔσται ἡ ὑπὸ ΔΒΖ . νβʹ . Τῆς ὑπὸ Ἀρχιμήδους ἐν τῷ περὶ | ||
| ἡ ΔΖ τῇ ΓΑ ἴση : γωνία ἄρα ἡ ὑπὸ ΔΒΖ γωνίᾳ τῇ ὑπὸ ΓΒΑ ἴση ἐστίν . τὰ δὲ |
| . λέγω , ὅτι ὀρθὴ ἔσται ἡ πρὸς τῷ Α συνισταμένη γωνία . ἐκβεβλήσθω γὰρ ἡ ΓΒ ἐπὶ τὸ Δ | ||
| . ” ὁ δὲ Ἀπίων , σύμφορος ἡ ἐκ πολλῶν συνισταμένη . σύνθεο ἐπὶ τοῦ ἀντὶ τοῦ συνθηκοποίησον . καὶ |
| δὲ τοῦ ὀϲτέου καὶ τοῦ ὄνυχοϲ ἀπαθῶν μεινάντων ἡ ἐκτὸϲ γωνία τοῦ ὄνυχοϲ ὑποδυομένη καὶ νύττουϲα τὴν ἐπιπεφυκυῖαν αὐτῇ ϲάρκα | ||
| βάσει τοῦ κυλίνδρου , καὶ ὑποκείσθω ἡ πρὸς τῷ Α γωνία ὀξεῖα , καὶ διὰ τοῦ Γ ἤχθω κάθετος ἐπὶ |
| ἑκάτερον τῶν λίθων ἓξ ὀνόματα ἐγγλύφεται , διότι καὶ τῶν ἡμισφαιρίων ἑκάτερον δίχα τέμνον τὸν ζῳοφόρον ἓξ ἐναπολαμβάνει ζῴδια . | ||
| οὐδὲν γὰρ τούτων περιφορὰ τοῦ παντὸς οὐρανοῦ , ἀλλὰ τῶν ἡμισφαιρίων καὶ μέρος τῆς ὅλης περιφορᾶς . πρὸς τούτοις δὲ |
| ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς | ||
| ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ |
| τὸ τοῦ ἀστέρος λόγον ἔχειν , ὃν ἡ τοῦ ἡλίου μέση πάροδος , τουτέστιν ἥ τε κατὰ μῆκος καὶ ἡ | ||
| Ἶρόν φησι Μερμέρου παῖδα . . . : Χαονία , μέση τῆς Ἠπείρου . Οἱ οἰκήτορες Χάονες . Ἑλλάνικος Ἱερειῶν |
| ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
| , ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
| καὶ συγχυθῇ : ἔστι δὲ καὶ αὐτὸ ἀνίατον . Ἡ σύμπτωσις ἐναντία ἐστὶ τῇ πλατυκορίᾳ , ὅταν συμπίπτῃ καὶ στενῶται | ||
| πένω . Πότμος . ὁ θάνατος , καὶ ἡ ἐσχάτη σύμπτωσις τοῦ βίου . ἀπὸ τοῦ πεσεῖν . ἐπὶ δὲ |
| ὀξεῖα ἄρα ἐστὶν ἡ ἐπὶ τῆς μείζονος τοῦ τραπεζίου πλευρᾶς βεβηκυῖα γωνία . μεῖζον ἄρα ἡμικυκλίου ἐστὶ τὸ τμῆμα ἐν | ||
| οἷον ἐκδεδυκέναι τὰς λειτουργίας : σεμνὴ γὰρ ἡ ἀνάπαυσις καὶ βεβηκυῖα : ἐμέλησε γὰρ τῷ ῥήτορι τοῦ μὴ διόλου καλλωπίζειν |
| Θρᾷττα ταινιόπωλις , τὴν ἐπὶ τῶν ὑφασμάτων λέγει καὶ τῶν ζωνῶν , αἷς αἱ γυναῖκες περιδέονται . ΤΡΑΧΟΥΡΟΙ . τούτων | ||
| εὑρήσεις καὶ τὸν κύριον τοῦ μηνὸς οὕτως , τῇ τῶν ζωνῶν διαθέσει ἀνωφερῶς χρώμενος . οἷον ὁ Θὼθ ἔσται Ἄρεως |
| τις μικρὰ καλεῖται εὐωδεστέρα οὖσα , ἡ δὲ μείζων , ὑπερέχουσα τῷ θάμνῳ καὶ τοῖς φύλλοις , πλατυτέρα καὶ βαρύοσμος | ||
| καὶ τῶν οἱστισινοῦν πρὸς ἀλλήλους καθ ' ἑταιρίαν γενομένων παμπληθὲς ὑπερέχουσα . ἀνθ ' ὧν αὖ καὶ πρώτη πόλεων ἥδε |
| μείζους , αἱ λοιπαὶ αἱ ὑπὸ ΒΖΗ , ΔΗΖ δύο ὀρθῶν ἐλάσσους . ἀλλὰ καὶ δύο ὀρθῶν μείζους αἱ αὐταί | ||
| ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δύο ὀρθῶν ἐλάσσονας ποιῇ , ἐκβαλλομένας τὰς δύο εὐθείας ἐπ ' |
| ἀνδρείως ὑπομένει τὸν κίνδυνον ὅτε ἡ τοῦ νικᾶν ἐλπίς ἐστιν ὑποκειμένη : ὁ δὲ προειδὼς ἑαυτὸν ἡττηθησόμενον ἐν τῷ δρασμῷ | ||
| μόνον : λαιμὸν διὰ τὸ ἀπολαυστικὸν εἶναι . Ἡ δὲ ὑποκειμένη τῷ λάρυγγι ἀρτηρία τραχεῖα ὠνόμασται , ἐκ τοῦ πνεύμονος |
| τὸ ΒΓ διὰ παντὸς φαίνεται τοῦ ὄμματος μεθισταμένου ἐπὶ τῆς ΒΓΔ περιφερείας . μγʹ . Ἔστι τις τόπος , οὗ | ||
| τῇ ὑπὸ ΒΓΖ . δύο δὴ τρίπλευρά ἐστιν τό τε ΒΓΔ καὶ τὸ ΒΓΖ τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς |
| : ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου , | ||
| τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ |
| γὰρ εἰκοσάεδρον καὶ τὸ ὀκτάεδρον καὶ ἡ πυραμὶς ἐκ τῶν ἰσοπλεύρων σύγκειται τριγώνων , ὁ δὲ κύβος ἐκ τῶν τετραγώνων | ||
| ἡ τοῦ ὅλου γένεσις κατὰ Πλάτωνα : ἐκ μὲν γὰρ ἰσοπλεύρων τριγώνων τρία σχήματα συνίσταται , πυραμὶς ὀκτάεδρον εἰκοσάεδρον , |
| χάριν τοῦ σαφοῦς τὸ περιγραφὲν τετράγωνον ὀκτάπουν , ὁ δὲ περιεχόμενος ὑπ ' αὐτοῦ κύκλος ἑξάπους , τὸ δὲ ἐγγεγραμμένον | ||
| γε καὶ ὅστις ἂν ἐν κοίλῳ χωρίῳ πανταχόθεν ὄρεσιν ὑψηλοῖς περιεχόμενος μηδεμίαν αὖραν δέχηται . Ἀραιοῦν εἰώθασιν αἱ πυρίαι τὸ |
| , ὁ δὲ διὰ τοῦ νοτιωτάτου : ἐπὶ γὰρ τῶν ἀνωμάλων σχημάτων , ἐφ ' ὧν πλευραῖς οὐ δυνατὸν ἀφορίσαι | ||
| μὲν γὰρ ἄλλαι πόλεις ἐκ παντοδαπῶν κατεσκευασμέναι ἀνθρώπων εἰσὶ καὶ ἀνωμάλων , ὥστε αὐτῶν ἀνώμαλοι καὶ αἱ πολιτεῖαι , τυραννίδες |
| δὲ ἕνεκα εἴλη ἡ Γαλατικὴ παριππευέτω ἐπὶ ἕνα στοῖχον ἑκατέρωθεν τεταγμένη καὶ οἱ τῶν Ἰταλῶν ἱππεῖς . ὁ δὲ εἰλάρχης | ||
| ἑκατοντάρχαι . ἐπὶ δ ὡσαύτως καὶ ἥδε ἡ φάλαγξ ἴτω τεταγμένη . ἐπὶ δὲ τῶι ὁπλιτικῶι τετάχθω τὸ συμμαχικόν , |
| Ἤπειρος τόπος ἐν τῇ Ἀσίᾳ οὕτω καλούμενος , ἤγουν ἡ Λυκαονία , ὥσπερ καὶ ἐν τῇ Ἑλλάδι . . τοὺς | ||
| καὶ Λύκειον τὸ γυμνάσιον καὶ Λύκειος ὁ Ἀπόλλων . ] Λυκαονία , χώρα Λυκίας τε καὶ Ἰσαυρίας . τὸ ἐθνικὸν |
| τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
| πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
| τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ | ||
| ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ |
| γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν | ||
| τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον |
| ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
| ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
| ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται , | ||
| : ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ |
| τοῦ ἀπὸ ΑΘ πρὸς τὸ ἀπὸ ΑΕ ἴση ἐστὶν τῷ περιεχομένῳ ὀρθογωνίῳ ὑπό τε τῆς ΕΘ καὶ τῆς ὑπεροχῆς ᾗ | ||
| ἀσυμπτώτων πρὸς τῷ κέντρῳ τῆς τομῆς εὐθείας ἴσον περιεχούσας τῷ περιεχομένῳ ὑπὸ τῶν ἀποτεμνομένων εὐθειῶν ὑπὸ τῆς ἐφαπτομένης κατὰ τὴν |
| κοινῆς θεωρίας τὸ ζητούμενον δείκνυσιν . διττῶν δὲ ὄντων τῶν ὀρθογωνίων τριγώνων , τῶν μὲν ἰσοσκελῶν , τῶν δὲ σκαληνῶν | ||
| ἀποφαίνεται : τὸ μὲν πῦρ ὑπὸ τεσσάρων καὶ εἴκοσι τριγώνων ὀρθογωνίων συμπληροῦται τέσσαρσιν ἰσοπλεύροις περιεχόμενον . ἕκαστον δὲ ἰσόπλευρον σύγκειται |
| τῆς ἁφῆς ἐπὶ τὴν διάμετρον καταχθῇ εὐθεῖα τεταγμένως , ἡ ἀπολαμβανομένη εὐθεῖα ὑπὸ τῆς κατηγμένης πρὸς τῷ κέντρῳ τῆς τομῆς | ||
| καθόλου τε , ὅτι , ὃν ἂν ἔχῃ λόγον ἡ ἀπολαμβανομένη περιφέρεια πρὸς τὸν γραφέντα κύκλον , καθ ' ὃν |
| ΑΓ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΑ , ΑΔ περιεχομένῳ ὀρθογωνίῳ . Ἐπεὶ γὰρ εὐθεῖα ἡ ΓΑ τέτμηται , ὡς | ||
| ὀρθογώνιον ἴσον ἐστὶν τῷ ὑπὸ τῶν ΛΔ , ΔΜ περιεχομένῳ ὀρθογωνίῳ , ἕξομεν καὶ τὸ ὑπὸ τῶν ΛΔ , ΔΜ |
| διαστήσῃ , τὸ τοιοῦτον ἔμβολον καλεῖται . ἐπὰν δὲ ἀντίστομος διφαλαγγία τὰ μὲν ἑπόμενα πέρατα συνάψῃ , τὰ δὲ ἡγούμενα | ||
| εὐωνύμῳ , τοὺς δὲ οὐραγοὺς ἔσω τεταγμένους : ἀντίστομος δὲ διφαλαγγία , ἣ τοὺς μὲν ἡγεμόνας ἔχει μέσους τεταγμένους , |
| τῶν πεντακισχιλίων σταδίων οὐ μείζων καὶ τοῖς ἄκροις τοῖς ἀντικειμένοις ἀφοριζομένη . ἀντίκειται γὰρ ἀλλήλοις τά τε ἑῶια ἄκρα τοῖς | ||
| ἡ μὲν τῶν πολλῶν δόξα ἡ τὸ πέρας τοῦ περιέχοντος ἀφοριζομένη τόπον , καθ ' ὅσον ἐστὶ διαστατόν , τὸ |
| , διὰ δὲ τῆς συμπτώσεως ἀχθῇ εὐθεῖα παρά τινα τῶν ἀσυμπτώτων τέμνουσα τήν τε τομὴν καὶ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν | ||
| ἀσύμπτωτόν ἐστι τῷ ΛΔΤΥ ἡμικυκλίῳ : αἱ ἄρα μεταξὺ τῶν ἀσυμπτώτων ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι |
| μεῖζον ἄρα τὸ ὑπὸ ΛΘ καὶ τῆς περιμέτρου τοῦ ΔΕΖ περιεχόμενον ὀρθογώνιον τοῦ ὑπὸ τῆς ΚΗ καὶ τῆς περιμέτρου τοῦ | ||
| ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ |
| ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος | ||
| μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν |
| ὀρθὰς τῷ κύκλῳ διὰ τοῦ ἄξονος τριγώνου βάσις ἔστω ἡ ΓΒΔ , καὶ ἤχθωσαν τῇ ΓΔ πρὸς ὀρθὰς ἐν τῷ | ||
| τῷ κύκλῳ τριγώνου διὰ τοῦ ἄξονος ἠγμένου βάσις ἔστω ἡ ΓΒΔ , καὶ ἡ ὑπὸ ΑΒΔ γωνία ἐλάττων ἔστω ὀρθῆς |
| , ἡ δὲ ἐπ ' εὐθείας αὐτῇ ἐκτός . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον , | ||
| ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ κῶνος ἔσται . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον , |
| γραμματεῖ . εὐτραπελίας . εὐτραπελία ἐστὶν ἕξις τις ἐν μεσότητι θεωρουμένη βωμολοχίας καὶ ἀγροικίας : ἔστι δὲ περὶ σκώμματα ἣ | ||
| , ὅτι ἡ ἀνωμαλία τῶν ἐνιαυσίων χρόνων πρὸς τὸν μέσον θεωρουμένη οὐ μείζονα περιέχει διαφορὰν ∠ ʹ καὶ δʹ μέρους |
| Ἑκάτης κέντρον πεφορῆσθαι . Δεξιτερῆς μὲν γὰρ λαγόνος περὶ χήραμα χόνδρων πολλὴ ἅδην βλύζει ψυχῆς λιβὰς ἀρχιγενέθλου ἄρδην ἐμψυχοῦσα φάος | ||
| ἢ λάρυγξ . συνέστηκε δὲ ὁ πᾶς πόρος , ἐκ χόνδρων οἷον κρικοειδῶν , ἢ κυκλοτερῶν , ἵνα ἀσύμπτωτος μένῃ |
| τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
| . Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
| οἶδα , ἐὰν ἡ γωνία ἡ περιεχομένη ὑπὸ τῶν δύο εὐθειῶν ἐστιν ὀρθή , καὶ ποῦ τεθήσονται αἱ μετὰ τῶν | ||
| ὑπό τε τῆς ΒΑ εὐθείας καὶ τῆς ΓΘΑ περιφερείας ὑπὸ εὐθειῶν περιεχομένην , ἐλάττονα δὲ τῆς περιεχομένης ὑπό τε τῆς |
| μὲν τῶν ὅρων Ζεὺς ὅριος καὶ στήλη ἐφορία καὶ ποταμὸς μεθόριος , καὶ ὅμορος πόλις καὶ πρόσορος τόπος καὶ ἐνόριος | ||
| Φιλιππουπόλεως . Τὴν Φιλιππούπολιν , ἔστι δὲ ἡ πόλις αὕτη μεθόριος μὲν τῆς Θρᾳκῶν καὶ Μακεδόνων γῆς , κεῖται δὲ |
| , τοῖς δ ' ὀκτὼ τοῖς λοιποῖς ἐκ τῶν δεξιῶν παρατέταται , δι ' ἃς εἶπον αἰτίας : ὅταν δὲ | ||
| μικρὸν δάκτυλον πέρας αὐτῆς ὀστῷ τινι συναρθροῦται κυβοειδεῖ προσαγορευομένῳ . παρατέταται δ ' ἐκ τῶν ἐντὸς μερῶν τῷ σκαφοειδεῖ , |
| οἱ Γ Δ Ε , ὧν ἕκαστος ἐλάσσων μὲν ἑκατοντάδος μετρούμενος δὲ ὑπὸ δεκάδος , καὶ ἄλλοι πάλιν ὁσοιδηποτοῦν ἀριθμοὶ | ||
| μετρούμενοι κοινῷ μέτρῳ . Σύνθετος ἀριθμός ἐστιν ὁ ἀριθμῷ τινι μετρούμενος . Σύνθετοι δὲ πρὸς ἀλλήλους ἀριθμοί εἰσιν οἱ ἀριθμῷ |
| τοιούτῳ ἀναπλασσομένῳ Ἑρμῇ . ἐπεὶ δὲ μονάδος ἀνὰ μέσον καὶ ἑβδομάδος κυβικῶν χωρίων κυβικὸς ὁ δʹ , εἰκότως , κρισίμου | ||
| λοιπάζονται πρὸς τὸ ἕβδομον ἀριθμόν εἰσιν ἀπὸ τῶν ἡμερῶν τῆς ἑβδομάδος . ἔπειτα ἵνα ἐπιδώσεις ἑνὶ ἑκάστῳ ἀστέρι μίαν περίοδον |
| τὰ παρακείμενα ὀρθογώνια παρὰ τὴν ἑτέραν εὐθεῖαν πλάτος ἔχοντα τὴν ἀπολαμβανομένην ὑπ ' αὐτῶν πρὸς τῇ κορυφῇ τῆς τομῆς ἐλλείποντα | ||
| ἀνάλογον πλάτος ἔχον τὴν ὑπ ' αὐτῆς τῆς τεταγμένως ἀχθείσης ἀπολαμβανομένην πρὸς τῇ τομῇ ἐλλεῖπον εἴδει ὁμοίῳ τῷ περιεχομένῳ ὑπὸ |
| αὐτὸν τρόπον καὶ ἡ συλλαβὴ ἡ ἐκ φωνήεντος καὶ συμφώνου συνεστηκυῖα δίφθογγος καλεῖται . Καὶ λέγομεν , ὅτι διὰ τοῦτο | ||
| ψυχρὸν ἀθροίζει : συνηθροισμένον δὲ πᾶν ἰσχυρόν . ὅλως δὲ συνεστηκυῖα καὶ ἀθρόος ἡ δύναμις ἅπαντος ἰσχυροτέρα καθάπερ τοῦ βάρους |
| τοῦτ ' ἔστι κοινὴν ἔννοιαν : χαρακτηρίζει γὰρ τὴν αἵρεσιν συμφωνία μετὰ διαφωνίας , καὶ οὐκ ἐν τοῖς τυχοῦσιν ἀνθρώποις | ||
| ὑπ ' αὐτῶν λόγον . καθόλου γὰρ ἡ διὰ πασῶν συμφωνία , τῶν ποιούντων αὐτὴν φθόγγων ἀδιαφορούντων κατὰ τὴν δύναμιν |
| δευτέρων , οὐκ ἔστι ῥητή . ἔστι δὲ ἴδιον τῶν συμμέτρων τὸ τὸ ἔλασσον τοῦ μείζονος ἤτοι μέρος εἶναι ἢ | ||
| τὸ δὲ ΖΓ μέσον ὡς ὑπὸ δύο ῥητῶν δυνάμει μόνον συμμέτρων περιεχόμενον . ὡς οὖν ἡ ΛΞ πρὸς ΞΟ : |
| ὅπερ ἔδει δεῖξαι [ καὶ ἔτι τῆς βάσεως καὶ ἑνὸς ὁποιουοῦν τῶν τμημάτων ἡ πρὸς τῷ τμήματι πλευρὰ μέση ἀνάλογόν | ||
| . Εἰ δὲ ἓν ἕκαστον αὐτῶν ἐστι , συντεθέντος ἑνὸς ὁποιουοῦν ᾑτινιοῦν συζυγίᾳ οὐ τρία γίγνεται τὰ πάντα ; Ναί |
| ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
| ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
| ἔκστασιν ἐπὶ τὸν Ἀδὰμ καὶ ὕπνωσιν καὶ ἔλαβεν μίαν τῶν πλευρῶν αὐτοῦ καὶ ἀνεπλήρωσεν σάρκα ἀντ ' αὐτῆς . καὶ | ||
| τοῦ ἀπὸ τῆς γδ . τὰ ἄρα ἀπὸ τῶν τριῶν πλευρῶν τετράγωνα τῆς τε αγ καὶ γδ καὶ δβ ἐλάττονά |
| μὲν γὰρ ὁ λόγος μόνον καὶ ἡ σχέσις θεωρεῖται τῶν πεπερασμένων μεγεθῶν κατὰ τὸ μεῖζον καὶ ἔλαττον , ὅπου δὲ | ||
| δὲ καὶ ἄπειρα , ἡ δὲ ἐπιστήμη ἀιδίων τε καὶ πεπερασμένων ἐστὶ γνῶσις , ἀνήγαγον ἑαυτοὺς ἀπὸ τῶν κατὰ μέρος |
| : τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ : | ||
| κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου |
| μὴ τοῦτο πάθωμεν , αἰεὶ τὴν ἐκκειμένην εὐθεῖαν μίαν τῶν περιεχουσῶν ποιητέον , τὴν δ ' ἑτέραν τῶν περιεχουσῶν , | ||
| ὑποτεινούσης πλευρᾶς ἴσον ἐστὶ τοῖς ἀπὸ τῶν τὴν ὀρθὴν γωνίαν περιεχουσῶν πλευρῶν , καὶ διὰ τοῦτο τὸ ἀπὸ τῆς ΑΒ |
| τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
| διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
| κράσει σώματός τι ἐνδιδοῦσα ἐπιθυμεῖν ἢ ὀργίζεσθαι ἠνάγκασται ἢ πενίαις ταπεινὴ ἢ πλούτοις χαῦνος ἢ δυνάμεσι τύραννος : ἡ δὲ | ||
| πανυπερτάτη εἰν ἁλὶ κεῖται . ” χθαμαλὴ μὲν γὰρ ἡ ταπεινὴ καὶ χαμηλή , πανυπερτάτη δὲ ἡ ὑψηλή , οἵαν |
| τὸ Τυανίτης διὰ τὴν Αἰγυπτίων χώραν . Τύδερτα , πόλις Τυρρηνική , οὐδετέρως . τὸ ἐθνικὸν Τυδερτῖνος . Τυῆνις , | ||
| καὶ ψωθία . Τίς τῶν λυχνείων ἡ ' ργασία ; Τυρρηνική . Οὐδεὶς γὰρ ἐδέχετ ' οὐδ ' ἀνεῴγει μοι |
| δοθείσῃ τετμημένῃ ὁμοίως τεμεῖν . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἄτμητος ἡ ΑΒ , ἡ δὲ τετμημένη ἡ ΑΓ κατὰ | ||
| τὸ Ῥηματικὸν αὑτοῦ . . . . . ἄτμητος : ἄτμητος : τὸ τμητὸς καὶ ἄτμητος οὐ πεποίηται ἀπὸ τῶν |
| ποιότητος καὶ ὁ κατὰ σύγχυσιν . τὰ μὲν οὖν ἐκ διεστηκότων , αἰπόλια , βουκόλια , χοροί , στρατεύματα , | ||
| καὶ τῶν φρενῶν , ἄνω μὲν ἡνωμένων , κάτω δὲ διεστηκότων , σφιγγόμενα τὰ μεταξὺ θλίβει τε καὶ ὠθεῖ τὰ |
| ἓν ἀσωματότητα , ὅτι ἡ μὲν ὕλης ἐστὶν εἰκών , διαιρουμένη καὶ τεμνομένη καθάπερ ἐκείνη , τριὰς δὲ στερεοῦ σώματος | ||
| καὶ γὰρ τότε εἰ ἔχεις καὶ ἕτερον , ἡ ἔξοδος διαιρουμένη εἰς δύο τῶν παίδων ζημίαν σοι ποιεῖ : οὕτως |
| οὖν παράλληλός ἐστιν ἡ ΑΔ τῇ ΕΓ , ἡ ὑπὸ ΑΔΓ γωνία τῇ ὑπὸ ΕΓΔ ἴση ἐστί . δοθεῖσα δὲ | ||
| κέντρον τὸ Β διὰ τῶν Α Γ κύκλος γεγράφθω ὁ ΑΔΓ , καὶ ἐκβε - βλήσθω ἡ ΑΒ ἐπὶ τὸ |
| δγ . καὶ ἐπεὶ ὁ δὶς ἐκ τῶν αδ , δβ μετὰ τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν αδ , | ||
| δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , αἱ ἄρα ὑπὸ δαε , δβε ὀρθαί εἰσιν |
| χρόνους ἧκόν τινες ἀπὸ Σικελίας ἀπόστασιν ἀγγέλλοντες οἰκετῶν εἰς πολλὰς ἀριθμουμένων μυριάδας . οὗ προσαγγελθέντος , ἐν πολλῇ περιστάσει τὸ | ||
| : ὅ ἐστιν : οὐκ εἰς τὸ ἀκριβὲς ἦλθεν ὥστε ἀριθμουμένων τῶν ψήφων εἰς τὸ βραχὺ ἐλθεῖν καὶ εἰς ἰσοψηφίαν |
| πενταγώνοις οἱ τρίγωνοι προστιθοῖντο τῇ αὐτῇ τάξει , τοὺς εὐτάκτους γεννήσουσιν ἑξαγώνους καὶ πάλιν ἐκείνοις οἱ αὐτοὶ προσπλεκόμενοι τοὺς ἐν | ||
| , δεικνύτωσαν , πῶς ἀλλήλας καταλήψονται ἢ πῶς συμπλακήσονται καὶ γεννήσουσιν ἕτερον . ὅτι μὲν οὖν ἀναιρεῖ κίνησιν μᾶλλον τὸ |
| Ὀδυσσείᾳ κήδετο οἰκήων οὓς κτήσατο δῖος Ὀδυσσεύς . οἰκίζεται καὶ συνοικίζεται διαφέρει . οἰκίζεται μὲν γὰρ πόλις ὑπὸ τῆς πρώτης | ||
| πόλις ὑπὸ τῆς πρώτης τῶν συνοικητόρων ἀθροίσεως καὶ καθιδρύσεως , συνοικίζεται δὲ ἡ ἐκ πολλῶν πόλεων εἰς μίαν συναγομένη ὑπὲρ |
| μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
| ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
| ὅταν διιστῆται , ποτὲ μὲν μία ἡ ἐπιφάνεια καὶ ἡ γραμμὴ καὶ τὸ σημεῖόν ἐστιν ἀθρόως : ὅταν γὰρ ἅπτωνται | ||
| σημείου τοῦ Ν ἐπὶ θέσει δεδομένην εὐθεῖαν τὴν ΓΔ εὐθεῖα γραμμὴ ἦκται ἡ ΝΜ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ ΝΜΔ |
| . Τῇ μετὰ ῥητοῦ μέσον τὸ ὅλον ποιούσῃ μία μόνον προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ , μετὰ δὲ | ||
| . ὁμοίως δὴ δείξομεν , ὅτι καὶ ἡ ΘΝ αὐτῇ προσαρμόζει : τῇ ἄρα ἀποτομῇ ἄλλη καὶ ἄλλη προσαρμόζει εὐθεῖα |
| ναῦν ἐπαγαγεῖν ἢ [ Ποσειδῶνος ] δεξιὰ ἀνέμοις ἁμιλλᾶσθαι ; πάρισος τίς εἷς τοσούτῳ πληρώματι ; συναπάξει σε ἡ ναῦς | ||
| ποταμὸς διέξεισι τὸ πεδίον Θερμώδων καλούμενος : ἄλλος δὲ τούτῳ πάρισος ῥέων ἐκ τῆς καλουμένης Φαναροίας τὸ αὐτὸ διέξεισι πεδίον |
| τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ | ||
| ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί |
| ἐπὶ τῆϲ κεφαλῆϲ φύονται . πολλῷ μὲν οὖϲι θερμοτέροιϲ τῶν εὐκράτων μέλαιναί τε καὶ πολλαὶ καὶ οὖλαι καὶ ἰϲχυραί , | ||
| ἐκκενοῦϲθαί τι τῶν ἔνδον περιττωμάτων . ἀλλὰ γὰρ ἀπὸ τῶν εὐκράτων ἀρκτέον . διὰ παντὸϲ μὲν οὖν ὑγραίνει τὰ εὔκρατα |
| Μήδου υἱοῦ Μηδείας . . Ὑώπη : πόλις Ματιηνῶν , προσεχὴς τοῖς Γορδίοις . Ἑκαταῖος Ἀσίαι : ἐν δὲ πόλις | ||
| τε Συρακουσῶν μεμνῆσθαι καὶ τῆς Ὀρτυγίας : αὕτη δέ ἐστι προσεχὴς ταῖς Συρακούσαις νῆσος καὶ ἀχώματος . ὁ δὲ Δίδυμος |
| τὸν κζ λόγον , ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμὸν τετραγώνων ἀμφοτέρων ὄντων καὶ τοῦ λϚ καὶ τοῦ κζ ; | ||
| τῆς ΑΓ ἔλαττόν ἐστι τῶν ἀπὸ τῶν ΓΒ , ΒΑ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΒ , ΒΔ περιεχομένῳ ὀρθογωνίῳ |
| ΑΗΒ γωνία καθ ' ὑπόθεσιν ἴση ἐστὶν τῇ ὑπὸ ΔΘΕ γωνίᾳ : ὅμοιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ | ||
| περιέχωσι , τὸ δὲ Δ σημεῖον ᾖ ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης , ἡ ἀπὸ τῆς |
| , τρίτον τὴν διαίρεσιν αὐτῆς , τέταρτον τὴν τάξιν τῶν διαιρεθέντων εἰδῶν , ὧν ἡ παροῦσα πρᾶξις δύο τὰ πρῶτα | ||
| ποιωδῶν εἰπεῖν : τοῦτο γάρ ἐστι λοιπὸν τῶν ἐξ ἀρχῆς διαιρεθέντων γενῶν , ἐν ᾧ συμπεριλαμβάνονταί πως τὸ λαχανηρὸν καὶ |
| ἀορτήν , τὰ δὲ ἔλαττον ὀλιγεκτοῦσαν καθ ' ἑκάτερον : πλεονεκτοῦσα δὲ γωνία ἡ ἀμβλεῖά ἐστι , τὸν ἰσότατον λόγον | ||
| λείπεσθαι χωρὶς παρυφισταμένων τελεῖν τὰ ἐνουρούμενα . Ὅπη γὰρ τύχῃ πλεονεκτοῦσα θερμότης ἄμετρος , ἐκεῖ που καὶ οἱ πλείους τῶν |
| φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται | ||
| καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν |
| καὶ τῆς Κελτικῆς . ἔστι δ ' ἔνθεν μὲν εἰς Νάρβωνα μίλια ἑξήκοντα τρία , ἐκεῖθεν δὲ εἰς Νέμαυσον ὀγδοήκοντα | ||
| ἐκ δὲ θατέρου τῇ τε Ἰβηρικῇ καὶ τῇ Κελτικῇ κατὰ Νάρβωνα καὶ Μασσαλίαν , καὶ μετὰ ταῦτα τῇ Λιγυστικῇ , |
| ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
| καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
| ἀντίπορθμον : ἀντίπορθμον εἶπεν ἐπειδὴ ἡ μὲν Κρῖσα ὥς φασιν ἀνατολική οὐ γὰρ εἶδον αὐτήν ἡ δὲ Κροτώνη δυτική . | ||
| ἀντίπορθμον : ἀντίπορθμον εἶπεν ἐπειδὴ ἡ μὲν Κρῖσα ὥς φασιν ἀνατολική οὐ γὰρ εἶδον αὐτήν ἡ δὲ Κροτώνη δυτική . |
| [ ] ὀρθὴ ἔσται . Κείσθω πρὸς τῷ Δ γωνία ὀρθὴ [ ἡ ΑΔΕ ] : διάμετρος ἄρα ἡ ΑΕ | ||
| καὶ θεωρίαν δοίημεν τῷ προβλήματι τούτῳ , ἔοικεν ἡ μὲν ὀρθὴ γωνία σύμβολον εἶναι ζωῆς κατ ' ἀρετὴν ἀνιούσης καὶ |
| μὲν καθόλου ληφθέντος τοῦ δὲ ἐπὶ μέρους καὶ ἐν τούτῳ περιεχομένου . δέδεικται γάρ , ὅτι , εἰ εἴη συλλογισμός | ||
| τῶν ἱερῶν ἀφυλάκτων ὄντων ἤδη καὶ συμφέρον . φυσικῶς οὖν περιεχομένου τῷ συμφέροντι τοῦ δυνατοῦ , ἀναγκαίως καὶ ὑποτέτακται αὐτῷ |
| χωρίζεται ταῦτα ; ὥστ ' εἴπερ ἀδύνατον ἐξ ἁφῶν ἢ στιγμῶν εἶναι τὰ μεγέθη , ἀνάγκη εἶναι σώματα ἀδιαίρετα καὶ | ||
| καὶ ἐξ ὧν τὸ σῶμα μονάδες τῶν ψυχικῶν μονάδων καὶ στιγμῶν , ἑνοῦται δὲ ψυχὴ σώματι , ἀνάγκη καὶ ταύτας |
| ἐν θεοῖς ὁλοτελής ἐστι , πάντα ἐν ἑαυτῇ καὶ αὐτὴ περιέχουσα κατὰ τὸ ἑαυτῆς ἰδίωμα . Ἡ μὲν γὰρ ἐν | ||
| ἀριθμόν : ἡ γὰρ ὑστάτη τελειότης αὐτὸς ἦν ἡ πᾶν περιέχουσα ἐν ἑαυτῇ . τοῦ δὲ κενοῦ παράδειγμα μὲν ἐν |
| πάντως δὲ ἀφθονία βουλευμάτων πάλαι μὲν ποθουμένη , νῦν δὲ ἥκουσα . σὺ δή μοι τὸν Μέγιστον ἐκκλέψας ἄφες : | ||
| ἐπιστέλλειν . ἡ δ ' αὖ πρὸ ταύτης ἐκ Μακεδονίας ἥκουσα κατηγορίαν εἶχεν ὡς οὐ γράφοιμί σοι . καὶ ἦν |
| μεγάλων εἰς ἐλάχιστα διαδιδόμενα : ἔχει δὲ καὶ ἐκφύσεις ἡ προειρημένη ἀρτηρία προσηνωμένας τῇ καρδίᾳ , ἰνώδεις καὶ χονδρώδεις καὶ | ||
| [ ὃ ] τὴν τοιαύτην σχέσιν ἕξει [ ; ] προειρημένη [ ] σύστημα ? ? ⌈ ⌉ ἔχουσα α |
| γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε μηδαμῇ δύνασθαι μηχανὰς προσάγειν : ἔχει | ||
| χολῶν , ὅταν ϲκευάζῃϲ φάρμακον ἐν ᾧ καὶ χολῆϲ τι περιέχεται . γίγνεται δὲ καὶ παρὰ τὸ χρώμενον τῇ χολῇ |
| τελευτᾷ δ ' εἰς τὸ Αἰγύπτιον πέλαγος . τῶν δὲ Σύρτεων ἡ μὲν ἐλάττων ἐστὶν ὅσον χιλίων καὶ ἑξακοσίων σταδίων | ||
| οὔτε τοῦθ ' ὁμολογεῖται δὲ τὸ διάστημα οὔτε τὸ μέχρι Σύρτεων . Καὶ Καρχηδὼν δὲ ἐπὶ χερρονήσου τινὸς ἵδρυται , |
| ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν , καὶ ἀπ ' αὐτῶν μέχρι Συήνης . , φησὶ δὴ [ . Ἵππαρχος ] τοῖς | ||
| τοῦ οἰκείου κύκλου . Δεῖ οὖν ἀναγκαίως καὶ τὸ ἀπὸ Συήνης εἰς Ἀλεξάνδρειαν διάστημα πεντηκοστὸν εἶναι μέρος τοῦ μεγίστου τῆς |
| . δῆλον δὲ τοῦτο ἐντεῦθεν : ἐὰν γὰρ ἀνακλάσεως οὔσης ἡλιακῶν ἀκτίνων ἀφ ' ὕδατος ἢ ὅλως ἀπό τινος τῶν | ||
| χαρίεν πρὸς τὴν τῶν ἰχθύων ἀπάτην : ἵστανται γὰρ τῶν ἡλιακῶν ἀκτίνων ἀπεναντίον , ὡς μὴ τὴν σκιὰν αὐτῶν τοὺς |
| καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους , | ||
| δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα |
| ἐλαίῳ . Ἡ δὲ δι ' ἐχιδνῶν θηριακὴ Ἀνδρομάχου συνεχῶς λαμβανομένη ἐν τοῖς διαλείμμασι , δυσαλώτους ἀποδείξει ἐν τοῖς παροξυσμοῖς | ||
| οὖσα ἔδεσμα , καὶ ὡς ἐν φαρμάκου χρήσει τὸ πλέον λαμβανομένη : ἄλλως δὲ ἄθετος , πάνυ τε ὀλιγότροφος οὖσα |
| . ἰστέον δὲ ὅτι ἐπὶ τῶν τριῶν ὁρισμῶν τρεῖς σχέσεις νοοῦνται : οἱ μὲν γὰρ δύο πρῶτοι τὴν ἀπὸ τοῦ | ||
| ἔχει καὶ αὐτὸ λόγον , πλὴν ὡς συνεχῶν ποσῶν τμημάτων νοοῦνται καὶ οὐχ ὡς διῃρημέναι μονάδες . Τοῦτο ἴδιον τῶν |
| Γίνεται δὲ καὶ σχήματα τοῦ αὐτοῦ μεγέθους ἐκ τῶν αὐτῶν ἀσυνθέτων συγκείμενα καὶ ἀριθμοῦ , εἰ ἡ τάξις αὐτῶν ἀλλοίωσιν | ||
| καὶ διὰ τί οὐχ ἁπλῶς δείκνυται , ὅτι ἐκ τοσούτων ἀσυνθέτων ἕκαστον τῶν γενῶν συνέστηκεν ὅσα ἐστὶν ἐν τῷ διὰ |
| ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
| πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |