[ ] ὀρθὴ ἔσται . Κείσθω πρὸς τῷ Δ γωνία ὀρθὴ [ ἡ ΑΔΕ ] : διάμετρος ἄρα ἡ ΑΕ | ||
καὶ θεωρίαν δοίημεν τῷ προβλήματι τούτῳ , ἔοικεν ἡ μὲν ὀρθὴ γωνία σύμβολον εἶναι ζωῆς κατ ' ἀρετὴν ἀνιούσης καὶ |
δὲ τοῦ ὀϲτέου καὶ τοῦ ὄνυχοϲ ἀπαθῶν μεινάντων ἡ ἐκτὸϲ γωνία τοῦ ὄνυχοϲ ὑποδυομένη καὶ νύττουϲα τὴν ἐπιπεφυκυῖαν αὐτῇ ϲάρκα | ||
βάσει τοῦ κυλίνδρου , καὶ ὑποκείσθω ἡ πρὸς τῷ Α γωνία ὀξεῖα , καὶ διὰ τοῦ Γ ἤχθω κάθετος ἐπὶ |
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ | ||
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ |
: τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ : | ||
κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου |
. ἔστιν δὲ καὶ ἡ τὰ δοθέντα ἐπιζευγνύουσα ἡ ΑΓ δοθεῖσα . ἐκ τριῶν οὖν τῶν ΑΒ ΑΓ ΓΒ τρίγωνον | ||
τὸ Α . ἔστιν δὲ καὶ τὸ Ε δοθέν : δοθεῖσα ἄρα ἐστὶν ἑκατέρα τῶν ΔΑ ΑΕ τῇ θέσει . |
τοῦ ἀπὸ τῆς τὰς ἁφὰς ἐπιζευγνυούσης τετραγώνου . ἔστω κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΓ καὶ ἐφαπτόμεναι αἱ ΑΔ | ||
ἐπίπεδα ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ , καὶ ἡ κοινὴ τομὴ αὐτῶν τῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται : καὶ ἡ |
, καὶ τῇ κοινῇ τομῇ αὐτῶν τῇ ΓΔ πρὸς ὀρθὰς ἦκται ἐν τῷ ΓΝΔ ἐπιπέδῳ ἡ ΟΦ , ἡ ΟΦ | ||
: τὸ μετεωρίζεσθαι καὶ ἐπαίρεσθαι καὶ γαυριᾶν : παρὰ τὸ ἦκται ἀκτός καὶ ῥῆμα ἀκτῶ , ἀφ ' οὗ ἀκταίνω |
ἐκκέντρου ὑπόκειται ξ . καὶ οἵων ἄρα ἐστὶν ἡ ΓΖ ὑποτείνουσα ρκ , τοιούτων καὶ ἡ μὲν ΖΛ ἔσται πδ | ||
ΒΝ εὐθεῖα τοιούτων ια μδ , οἵων ἐστὶν ἡ ΕΒ ὑποτείνουσα ρκ . καὶ οἵων ἐστὶν ἄρα ἡ μὲν ΕΒ |
ΒΓ διπλῆ , ἡ δὲ ΑΕ τῆς ΕΒ διπλῆ , λοιπὴ ἄρα ἡ ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ | ||
ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν ἴση . |
τὸ ΒΓ διὰ παντὸς φαίνεται τοῦ ὄμματος μεθισταμένου ἐπὶ τῆς ΒΓΔ περιφερείας . μγʹ . Ἔστι τις τόπος , οὗ | ||
τῇ ὑπὸ ΒΓΖ . δύο δὴ τρίπλευρά ἐστιν τό τε ΒΓΔ καὶ τὸ ΒΓΖ τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς |
κατὰ μέν τινας τὸ αὐτό : κατὰ δέ τινας ἡ ἄλογος καὶ καθ ' ὑπερβολὴν δαπάνη . ἔστι γὰρ λάπτω | ||
οὕτως τὸ μεῖζον πρὸς τὸ ἔλαττον . αὕτη δέ ἐστιν ἄλογος : οὐχ ὑποπίπτει γὰρ ἀριθμῷ . Τοῦτό ἐστι τὸ |
κειμένη τῷ Μαιάνδρῳ κατὰ τὸ πρὸς τῇ Φρυγίᾳ μέρος , ἐπέζευκται δὲ γέφυρα : χώραν δ ' ἔχει πολλὴν ἐφ | ||
σημεῖον , ἀπὸ δὲ τοῦ Α ἐπὶ τὸ κέντρον αὐτοῦ ἐπέζευκται ἡ ΑΒ , ἡ ΑΒ ἄρα κάθετός ἐστιν ἐπὶ |
τῇ ΒΖ κατὰ τὸ Θ , ἡ δὲ ΑΛ τῷ ΒΜΖ ἡμικυκλίῳ κατὰ τὸ Μ , ἐπεζεύχθωσαν δὲ καὶ αἱ | ||
αἱ ΚΔ ΜΙ ΜΘ . ἐπεὶ οὖν ἑκάτερον τῶν ΔΚΑ ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ |
. ] Ἀποστασίου : δίκη τίς ἐστι κατὰ τῶν ἀπελευθερωθέντων δεδομένη τοῖς ἀπελευθερώσασιν , ἐὰν ἀφιστῶνταί τε ἀπ ' αὐτῶν | ||
ἡ ὑπὸ ΕΒΞ δοθεῖσα , λοιπὴ ἄρα ἡ ὑπὸ ΒΝΕ δεδομένη ἔσται . καὶ τὸ ΕΝΞ τρίγωνον τῷ εἴδει . |
ἐν τῇ νυκτὶ περιφέρεια ἡ εκʹ , καὶ τῇ εκʹ ἴση ἀπειλήφθω ἡ δλʹ , καὶ κοινὴ ἡ λεʹ : | ||
. μείζων ἄρα ἡ ΓΔ τῆς ΑΒ φαίνεται . Τὰ ἴση μεγέθη καὶ παράλληλα ἄνισον διεστηκότα ἀπὸ τοῦ ὄμματος οὐκ |
, τὴν δὲ ΡΛ μοιρῶν νζ λ , τὴν δὲ ΡΚ μοιρῶν νε μ , τὴν δὲ ΡΘ , μοιρῶν | ||
τὴν ΚΝ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΝΡ , ΡΚ , ΝΣ , ΣΚ . οὐκοῦν αἱ ἀπὸ τοῦ |
οὖν παράλληλός ἐστιν ἡ ΑΔ τῇ ΕΓ , ἡ ὑπὸ ΑΔΓ γωνία τῇ ὑπὸ ΕΓΔ ἴση ἐστί . δοθεῖσα δὲ | ||
κέντρον τὸ Β διὰ τῶν Α Γ κύκλος γεγράφθω ὁ ΑΔΓ , καὶ ἐκβε - βλήσθω ἡ ΑΒ ἐπὶ τὸ |
δέδοται τῷ μεγέθει . δῆλον δ ' ὅτι καὶ ἡ συζυγὴς αὐτῇ : δέδοται γὰρ ὁ τῆς ΕΖ πλαγίας πρὸς | ||
οὖσα καὶ τὸν τῆς ὕλης λόγον ἀναδεδεγμένη , καὶ ἐπεὶ συζυγὴς οὖσα τῇ μονάδι δι ' ἐκείνην ἐκωλύθη τῆς εἰρημένης |
ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω , | ||
ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς |
τουτέστιν τῇ ὑπὸ ΖΗΕ . ἀλλ ' ἦν ἡ ὑπὸ ΖΗΕ μετὰ τῆς Α δυσὶν ὀρθαῖς ἴση : καὶ ἡ | ||
γωνίας : ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΖΗΔ , ΖΗΕ γωνιῶν . διὰ τὰ αὐτὰ δὴ καὶ ἑκατέρα τῶν |
ἡ ΒΕ βάσει τῇ ΑΓ ἴση ἐστίν , καὶ τὸ ΑΒΕ τρίγωνον τῷ ΑΒΓ τριγώνῳ ἴσον ἐστίν , καὶ αἱ | ||
πρὸς ὅλην καὶ ἀναστρέψαντι καὶ χωρίον χωρίῳ τὸ ἄρα ὑπὸ ΑΒΕ ἴσον ἐστὶν τῷ ὑπὸ ΓΒΔ . Φανερὸν δὲ ὅτι |
ΑΗΒ γωνία καθ ' ὑπόθεσιν ἴση ἐστὶν τῇ ὑπὸ ΔΘΕ γωνίᾳ : ὅμοιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ | ||
περιέχωσι , τὸ δὲ Δ σημεῖον ᾖ ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης , ἡ ἀπὸ τῆς |
ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας | ||
τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ |
ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ , | ||
ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη |
δυσὶν ὀρθαῖς ἴσαι εἰσίν : καὶ αἱ ὑπὸ ΑΓΕ , ΑΓΒ ἄρα δυσὶν ὀρθαῖς ἴσαι εἰσίν . πρὸς δή τινι | ||
: ἡ ἄρα ὑπὸ ΒΓΔ μετὰ τῶν ὑπὸ ΓΒΔ , ΑΓΒ οὐ μείζονές εἰσι δυεῖν ὀρθῶν , ὅ ἐστιν αἱ |
ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
τῇ ΟΛ καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ ΗΕΖ ἴση τῇ ὑπὸ ΛΟΝ . ἐπεὶ οὖν εὐθειῶν τῶν | ||
ὑπὸ ΘΕΖ ἴση ἐστίν . ὀρθὴ ἄρα ἑκατέρα τῶν ὑπὸ ΗΕΖ , ΘΕΖ γωνιῶν . ἡ ΖΕ ἄρα πρὸς τὴν |
τὸν αὐχένα κατὰ νῶτα δαφοινὸς καὶ γένεια καθιεὶς ὑπ ' ὀρθῇ καὶ πριονωτῇ τῇ λοφιᾷ βλέπων τε δεινῶς δεδορκὸς καὶ | ||
ποιεῖν ἐμφερὲϲ ταῖϲ τοῦ Κ δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ ϲημαίνουϲι δραχμήν , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
λοξὸν κύκλον περιφέρειαι , ἥ τε ΡΔ ἐστὶν καὶ ἡ ΡΕ : γωνίαι δὲ ἥ τε Ζ καὶ ἡ Η | ||
ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ , καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΕΞ , |
διαγομένη εὐθεῖα μήτε τὴν τομὴν τέμνῃ κατὰ δύο σημεῖα μήτε παράλληλος ᾖ τῇ ἀσυμπτώτῳ , συμπεσεῖται μὲν τῇ ἀντικειμένῃ τομῇ | ||
κατὰ μῆκος τῆς φάλαγγος δεύτερον ζυγόν , καὶ ὁ τούτῳ παράλληλος ὑπ ' αὐτὸν τρίτον , καὶ τέταρτόν ἐστι τὸ |
ἄρα ἐστὶν ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν | ||
ἡ μὲν ΠΟ τῆς ΟΚ , ἡ δὲ ΞΟ τῆς ΟΛ , ἴση ἐστὶ τῇ ΚΟ ἡ ΟΛ . διὰ |
ὀρθαῖς ἴσαι . ἐπ ' εὐθείας ἄρα ἐστὶν ἡ ΔΥ εὐθεῖα . Ἐν ἄλλῳ οὕτως : ἐὰν κύβου τῶν ἀπεναντίον | ||
ἀφ ' ὧν τὴν τῶν η ν ἑξηκοστῶν περιφέρειαν ὑποτείνει εὐθεῖα ἑξηκοστῶν θ ιε : λοιπὴν ἄρα τὴν τῶν μϚ |
δέδοται καὶ οὐχὶ ἡ ΕΖ καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς | ||
τὰ τρίγωνα , καὶ ἡγούμενα μὲν εἶναι τὰ ΑΒΕ , ΕΒΓ , ΕΓΔ , ἑπόμενα δὲ αὐτῶν τὰ ΖΗΛ , |
αὐτὸ κέντρον ἀμεταστάτως , ὃς καλείσθω ζῳδιακός . ἡ δὲ κλίσις τῶν ἐπιπέδων τούτων περιεχέτω γωνίαν τοιούτων κγ να κ | ||
τοῦ νεφεληγερέτης . Τούτων ἐστὶ καὶ ἡ διὰ τοῦ εως κλίσις τῶν ἀπὸ τοῦ αος εὐθειῶν ὀξυνομένων ἢ καὶ προπαροξυνομένων |
, κοινὴ προσκείσθω ἡ ΝΚΜ περιφέρεια : ὅλη ἄρα ἡ ΛΚΜ περιφέρεια ὅλῃ τῇ ΝΚΜΞ περιφερείᾳ ἐστὶν ἴση . ἡμικυκλίου | ||
, καὶ διὰ τοῦ Κ ἤχθω πλευρὰ τοῦ κυλίνδρου ἡ ΛΚΜ εὐθεῖα πίπτουσα ἐπὶ τὰς ΕΗ , ΖΘ περιφερείας ἐκβαλλομένη |
ἀπεδείχθη μοιρῶν ρνζ ι ἔγγιστα : καὶ λοιπὴ ἄρα ἡ ΛΒ τοῦ ἐπικύκλου περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ | ||
μείζων ἐστί , καί ἐστιν , ὡς ἡ ΕΛ πρὸς ΛΒ , οὕτως ἡ ΕΑ πρὸς ΑΒ , καὶ συνθέντι |
γωνία ὀρθή . καὶ λο πὴ ἡ ὑπὸ ΚΕΑ γωνία περιεχομένη ὑπὸ τοῦ ἑπομένου τμήματος τοῦ ζῳδιακοῦ καὶ τῆς βορείας | ||
παρὰ τῆς ἐπὶ τῆς βάσεως γωνίας , ὑπὸ τριῶν ἐπιπέδων περιεχομένη , τὴν κατὰ κορυφὴν ὑπὸ τεττάρων συγκλειομένη , ὥστε |
δ ' ἀφαιρουμένου τοῦ ΑΒΕ λοιπὸν τὸ ΔΑΕ λοιπῷ τῷ ΑΓΕ ἐστιν ἴσον καί ἐστιν ἐπὶ τῆς αὐτῆς βάσεως . | ||
ἡ ΓΒ πρὸς τὴν ΓΕ : τὸ ἄρα ὑπὸ τῶν ΑΓΕ ἴσον ἐστὶν τῷ ὑπὸ τῆς τῶν ΑΓ ΔΕ ὑπεροχῆς |
ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον | ||
τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς |
βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ | ||
Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς |
τὰ ηʹ πρὸς βʹ : καὶ τῆς ΘΚ ἄρα πρὸς ΘΣ λόγος ὃν ἔχει τὰ ηʹ πρὸς τὰ εʹ . | ||
δὲ ἡ ΘΠ τῆς ΠΝ . διπλῆ ἄρα καὶ ἡ ΘΣ τῆς ΝΒ . καὶ ἔστιν ὡς μὲν ἡ ΠΘ |
ἡ ΑΒ τῇ ΓΔ , ἀλλὰ καὶ γωνία ἡ ὑπὸ ΑΒΘ τῇ ὑπὸ ΔΓΚ ἐστιν ἴση . καὶ περιφέρεια ἄρα | ||
καὶ ἔστω ὡς ὁ ΒΑΘ : μέγιστος ἄρα ἐστὶν ὁ ΑΒΘ κύκλος : ἡ γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση |
ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς | ||
ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ |
ὁρίζοντι , ὅταν δὲ κατὰ τὸ Ο , δύνει τῷ ΔΒΓ ὁρίζοντι . Τὰ ἄρα ἀπλανῆ ἄστρα , ὅσα ἐστὶ | ||
ΠΞ : μεσημβρινὸς γάρ ἐστιν ὁ ΔΑΠ ἐν ἑκατέρῳ τῶν ΔΒΓ ΑΒΓ ὁριζόντων : λοιπὴ ἄρα ἡ ΜΝ ἴση ἐστὶν |
ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος | ||
μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν |
τῷ ΑΕΓ ἡμικυκλίῳ , ὁμοία ἐστὶν ἡ ΒΚΑ περιφέρεια τῇ ΘΖΕ περιφερείᾳ . Ἀλλ ' ἡ ΒΚΑ τῆς ΗΘΖ μείζων | ||
Καὶ εἰσὶ τοῦ αὐτοῦ κύκλου : μείζων ἄρα ἐστὶν ἡ ΘΖΕ περιφέρεια τῆς ΗΘΖ περιφερείας . Κοινὴ ἀφῃρήσθω ἡ ΘΖ |
ὑπὸ ΕΑΒ . ἐπεὶ οὖν δύο τρίγωνα τὰ ΖΕΒ , ΖΑΒ ἐπὶ μιᾶς βάσεως συνέστηκε , καὶ ἡ ἀπὸ τοῦ | ||
ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα , οὕτως ἡ ὑπὸ ΖΑΒ πρὸς τὴν ὑπὸ ΒΑΓ : καὶ ἡ ὑπὸ ΖΑΒ |
τὴν ΜΖ : καὶ περὶ ὀρθὰς γωνίας τὰς ὑπὸ τῶν ΔΚ , ΚΒ , ΜΝ , ΜΖ αἱ πλευραὶ ἀνάλογόν | ||
ΚΜΔ γωνίᾳ τῇ ὑπὸ ΒΜΔ ἴση : βάσις ἄρα ἡ ΔΚ βάσει τῇ ΔΒ ἴση ἐστίν . λέγω [ δή |
εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ βάσις ἡ ΑΔ βάσει τῇ ΕΗ ἴση ἐστί , γωνία ἄρα ἡ ὑπὸ ΑΒΔ γωνίᾳ | ||
τῆς ΔΗ ; ἢ διότι ἡ ΔΗ διπλασία ἐστὶ τῆς ΕΗ : δίχα γὰρ ἐτμήθη ἡ ΔΗ κατὰ τὸ Ε |
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου , | ||
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ |
καί ἐστι τὸ μὲν ὑπὸ τῶν ΓΖ , ΖΑ τὸ ΖΚ : ἴση γὰρ ἡ ΑΖ τῇ ΖΗ : τὸ | ||
ἄρα ἐστὶν ταῖς ΑΔ ΒΕ , καὶ ἴση ἐστὶν ἡ ΖΚ τῇ ΚΗ . ἐπεὶ δὲ τρεῖς εἰσιν παράλληλοι αἱ |
ὑπὸ ΑΕΒ ὀρθή ἐστιν . καὶ ἐπεὶ ἡ ὑπὸ ΗΕΖ ἡμίσειά ἐστιν ὀρθῆς , ὀρθὴ δὲ ἡ ὑπὸ ΕΗΖ : | ||
ΑΒΓ . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΒΑΔ ἡμίσειά ἐστιν ὀρθῆς . ὅλη ἄρα ἡ ὑπὸ ΔΑΓ γωνία |
ἡ Ζ γωνία τῇ Δ γωνίᾳ . Ἔστω ἡ τομὴ ὑπερβολή , καὶ γεγονέτω , καὶ ἔστω ἐφαπτομένη ἡ ΓΔ | ||
ἕν . ἔστωσαν ἀντικείμεναι αἱ ΑΒΓ , ΕΖΗ , καὶ ὑπερβολή τις ἡ ΔΑΓ ἐφαπτέσθω μὲν κατὰ τὸ Α , |
. τεμνέτωσαν ἀλλήλους κατὰ τὸ Ξ , καὶ ἐπεζεύχθωσαν αἱ ΞΑ , ΞΒ , ΞΗ , ΞΓ : ἡ μὲν | ||
ΕΑ πρὸς ΑΔ : διελόντι , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΕΔ πρὸς ΔΑ . ἐδείχθη δὲ καί |
ἐπ ' αὐτὴν κάθετος ἔσται [ . , ] . Μείζων ἄρα γωνία . , ] ἐπεὶ ὀρθογώνιά ἐστιν , | ||
ἀποστάσεις διὰ τὸ ἀπ ' ἀλλήλων ἀποσχισθῆναι οὐχ ἅψονται . Μείζων δὲ πλευρὰ ἡ ΒΖ . , ] μείζων εὐλόγως |
τοῦ Α παρὰ τὴν ΒΔ ἡ ΑΖ : τεταγμένως ἄρα κατῆκται . ἔσται δὴ ἐπὶ μὲν τῆς παραβολῆς ἴσον τὸ | ||
δὲ τὴν Ρ , καὶ ἀπό τινος σημείου τοῦ Σ κατῆκται ἡ ΣΟ , καὶ ἀναγέγραπται ἀπὸ μὲν τῆς ἐκ |
δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει . καὶ οὐδετέρα τῶν ΔΜ , ΜΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ | ||
πρὸς τὸ ἀπὸ τῆς ΔΖ , οὕτως ἡ ΕΔ πρὸς ΔΜ . ἀλλ ' ἦν ὡς τὸ ἀπὸ τῆς ΕΔ |
τοῦ κέντρου ἀναγραφῇ εἴδη παραλληλόγραμμα ἰσογώνια , ἔχῃ δὲ ἡ κατηγμένη πλευρὰ πρὸς τὴν λοιπὴν τοῦ εἴδους πλευρὰν τὸν συγκείμενον | ||
Ε παρὰ τὴν ΑΓ ἡ ΕΜ : τεταγμένως ἄρα ἔσται κατηγμένη ἐπὶ τὴν ΑΒ : καὶ ἔσται , ὡς ἡ |
ἐκείνῳ ὑπεράνω ὄντι ἀφώτιστος ἂν εἴη τῷ ἑτέρῳ ἡμισφαιρίῳ , λείπουσα δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν | ||
τῆς ΜΛ . τῆς ἄρα ὑπὸ ΜΚΛ γωνίας δοθείσης ἡ λείπουσα εἰς τὰς δύο ὀρθὰς ἡ κλίσις ἔσται τῶν ἐπιπέδων |
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι | ||
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ |
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
ὡς γὰρ ἡ διπλῆ πρὸς τὴν ὅλην , οὕτως ἡ ἁπλῆ πρὸς τὴν ἡμίσειαν τῆς ὅλης . ἔστω γὰρ λόγου | ||
ψυχῇ ὡς φάρμακα ὀφείλει τὴν φύσιν τῆς ψυχῆς διερευνᾶν πότερον ἁπλῆ ἢ σύνθετος , καὶ εἰ σύνθετος , ἐκ ποίων |
φθέγγεσθαι . τῶν μὲν οὖν καταφάσεων τῶν προσδιωρισμένων ἀναμφισβητήτως ἡ μερικὴ τῆς καθόλου χείρων , διόπερ ἀνάγκη τὴν ἀπροσδιόριστον κατάφασιν | ||
καθόλου ἀληθεύῃ , τότε καὶ ἡ ὑπ ' αὐτὴν τεταγμένη μερικὴ πρότασις ἀληθεύσει , ὡς οἷον μέρος αὐτῆς οὖσα καὶ |
τὸ ἐλεῶ τῆς πρώτης καὶ δευτέρας , καὶ ἡ χρῆσις διττή , ἡ μέντοι ἀναλογία τῆς δευτέρας αὐτὸ εἶναι βούλεται | ||
ῥινῶν , ἢ δι ' ἱδρώτων . ἡ δὲ χολέρα διττή ἐστι καθ ' Ἱπποκράτην , ἡ μὲν ὑγρὰ , |
πρὸς τῷ Β νοείσθω κατὰ τὸν τῆς διοπτείας χρόνον , φαινομένη πρὸς τῷ Κ σημείῳ . καὶ διὰ τῶν Ε | ||
πρὸς τῷ εʹ , τοῦ βʹ ἄστρου ἐστὶν ἡ ἑῴα φαινομένη δύσις . Καὶ ἐπεὶ πρότερον ὁ ἥλιος ἐπὶ τὸ |
μὲν δοθὲν εὐθύγραμμον τὸ ΑΒΓΔ , ἡ δὲ δοθεῖσα γωνία εὐθύγραμμος ἡ Ε : δεῖ δὴ τῷ ΑΒΓΔ εὐθυγράμμῳ ἴσον | ||
μὲν δοθὲν τρίγωνον τὸ ΑΒΓ , ἡ δὲ δοθεῖσα γωνία εὐθύγραμμος ἡ Δ : δεῖ δὴ τῷ ΑΒΓ τριγώνῳ ἴσον |
ὑποτείνουσα ν λγ . καὶ οἵων ἐστὶν ἄρα ρκ ἡ ΝΗ , τοιούτων καὶ ἡ μὲν ΝΧ ἔσται ιθ μβ | ||
, τμημάτων ρθ με ιβ . ἡ δὲ διπλῆ τῆς ΝΗ μοιρῶν ρπ : καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα |
καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ | ||
ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν |
διατί καὶ ἐνταῦθα ἡ Ἀφροδίτη εὑρίσκεται συμπροπέμπουσα τὸν Ἀπόλλωνα καὶ ἐφαπτομένη τοῦ δίφρου . καὶ ἤτοι ὅτι μετέρχεται τὰ γαμήλια | ||
, καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ ΘΚ : ἡ ΘΚ ἄρα |
δυσὶ ταῖς ΔΗ , ΗΖ ἴσαι εἰσίν , καὶ γωνίας ὀρθὰς περιέχουσιν , βάσις ἄρα ἡ ΑΘ βάσει τῇ ΖΔ | ||
καὶ διὰ τοῦ Ζ ἐπὶ τὰ ἐναντία τῇ ΗΘ πρὸς ὀρθὰς γωνίας τῇ ΑΓ εὐθεῖα ἡ ΖΜΝ , ἐφ ' |
ἴση δὲ ἡ μὲν ΩΦ τῇ ΨΧ , ἡ δὲ ΦΧ τῇ ΧΠ , ἔστιν ἄρα ὡς ἡ ΨΧ πρὸς | ||
, ἡ δὲ ΧΒ ὅλη διὰ τὸ ἴσην εἶναι τὴν ΦΧ τῇ ΦΘ τοιούτων ξδ κζ , οἵων καὶ ἡ |
τῇ ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΒΓ , ΒΔ , ΒΖ , ΒΚ , ἔστω δὲ πρότερον ἡ ΒΑ τῆς | ||
' ἡ ΖΒ τετραπλασία τῆς ΒΘ : καὶ ἔστιν τῆς ΒΖ διπλασίων ἡ ΖΓ : λόγος ἄρα τῆς ΖΓ πρὸς |
τῇ ΑΕ : μείζων ἄρα ἐστὶν καὶ ἡ ΑΕ τῆς ΑΝ : ὅπερ ἀδύνατον . οὐκ ἄρα τὸ κέντρον τῆς | ||
ἐστίν . ὀρθὴ ἄρα ἡ ὑπὸ ΒΝΑ γωνία : ἡ ΑΝ ἄρα ὕψος ἐστὶ τοῦ διὰ τοῦ ἄξονος τριγώνου , |
κεκλιμένοι . πάλιν , ἐπεὶ ἡ ἀπὸ τοῦ Ψ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς | ||
ταπεινότατός ἐστιν . ἐπεὶ γὰρ ἡ ἀπὸ τοῦ Ϡ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς |
ὀρθὰς ἤχθωσαν αἱ ΓΕ , ΔΖ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΖΒ , ΕΒ . καὶ ἐπεὶ διπλῆ ἐστιν | ||
ὡς δὲ ἡ ΑΓ πρὸς τὴν ΓΒ , οὕτως ἡ ΑΖ πρὸς τὴν ΖΕ , δι ' ἴσου ἄρα ἐστὶν |
εἶναι , οἷον καὶ τὰ κοινά . δηλοῖ γὰρ ὅτι κοινή τίς ἐστιν αἰτία , ἡ τοῦ ἀέρος ἀλλοίωσις , | ||
διαβολὴ πονηρίας καὶ τοῦ κακόν τινα εἶναι , ὁ δὲ κοινή τις πρὸς μὲν τὰ βέλτιστα προτροπὴ , τῶν δὲ |
ἔσται τῷ εὐθυγράμμῳ τῷ συγκειμένῳ ἐκ τῶν τριῶν τριγώνων τῶν ΒΖΗ ΒΖΚ ΕΚΖ . τὰ γὰρ ἀπὸ τῶν εὐθειῶν ἐφ | ||
δὲ ὑπὸ ΒΑΕ ἴση ἐστὶν τῇ ἐκτὸς τετραπλεύρου τῇ ὑπὸ ΒΖΗ : καὶ ἡ ὑπὸ ΘΖΒ ἄρα γωνία ἴση ἐστὶν |
ἡ ὑπὸ ΚΡΓ , καὶ λοιπὴ ἄρα ἡ ὑπὸ ΡΑΚ ζητουμένη γωνία δοθεῖσά ἐστιν . κατὰ τὰ αὐτὰ δὲ δοθεῖσά | ||
παρὰ τῶν ἐπιτρόπων οὐδὲν πέπρακται , ἀλλὰ φήμη ἐστὶν ἡ ζητουμένη , καὶ οἱ μὲν ἀληθῆ εἶναι κατασκευάζουσιν , οἱ |
ὅλης τῆς ἐπιδέσεως τελαμωνιδίου ὡς διδακτυλιαίου καὶ ποσὸν στενοτέρου ἡ μεσότης τῇ ῥινὶ προστίθεται , οὗ τὰ χαλάσματα δι ' | ||
ἐν ταῖς λύπαις . περὶ δὲ τὰς ἐν σώματι ἡδονὰς μεσότης μὲν σωφροσύνη , ὑπερβολὴ δὲ ἀκολασία , ἔλλειψις δέ |
. ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ | ||
τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς |
? [ ] [ ] ΧΕ [ ] [ ] ΕΡ ? ? ! [ ] [ ] ΓΟ [ | ||
. τίς ἄρα ὁ τῆς ΕΠ πρὸς ΠΤ τῷ τῆς ΕΡ πρὸς ΡΤ ; ἀλλ ' ὁ τῆς ΕΡ πρὸς |
ιη με , ἡ δὲ λοιπὴ εἰς τὸ τεταρτημόριον ἡ ΘΑ τῶν αὐτῶν οα ιε . ἐπειδὴ οὖν κατὰ τὰ | ||
τετράγωνον Μβ ͵εωμε νε , τὸ δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ |
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων | ||
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου |
, ὅτι μεῖζον φανήσεται τοῦ ΓΔ . Διὰ τὸ τὴν ΛΓ ὑποτείνειν καὶ τὴν Μ μείζονα οὖσαν καὶ τῆς ΛΚ | ||
ΞΝ πρὸς τὴν ΝΛ , οὕτως ἡ ΝΛ πρὸς τὴν ΛΓ . ἀλλ ' ἡ ΝΛ πρὸς τὴν ΛΓ μείζονα |
δοθέντι τριγώνῳ τῷ ΑΒΓ ἴσον παραλληλό - γραμμον συνέσταται τὸ ΖΕΓΗ ἐν γωνίᾳ τῇ ὑπὸ ΓΕΖ , ἥτις ἐστὶν ἴση | ||
ταῖς αὐταῖς ἐστιν αὐτῷ παραλλήλοις : ἴσον ἄρα ἐστὶ τὸ ΖΕΓΗ παραλληλόγραμμον τῷ ΑΒΓ τριγώνῳ . καὶ ἔχει τὴν ὑπὸ |
γραμματεῖ . εὐτραπελίας . εὐτραπελία ἐστὶν ἕξις τις ἐν μεσότητι θεωρουμένη βωμολοχίας καὶ ἀγροικίας : ἔστι δὲ περὶ σκώμματα ἣ | ||
, ὅτι ἡ ἀνωμαλία τῶν ἐνιαυσίων χρόνων πρὸς τὸν μέσον θεωρουμένη οὐ μείζονα περιέχει διαφορὰν ∠ ʹ καὶ δʹ μέρους |
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
ἴσον ἐστὶ τὸ ΓΘ τῷ ΕΗ , ἔστι δὲ καὶ ἰσογώνιον , τῶν ΓΘ , ΕΗ ἄρα ἀντιπεπόνθασιν αἱ πλευραὶ | ||
μονὰς κορυφή , ἀλλ ' ἐπίπεδον αὐτῇ τὸ πέρας γίνεται ἰσογώνιον τῇ βάσει : ἐὰν δὲ πρὸς τῷ μὴ εἰς |
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς | ||
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε |
ὅμως ἐν τῷ μονοειδεῖ θεωρητέον . Οὐδὲ γὰρ ἕνωσις ἡ ἀντίθετος τῇ πληθύι λέγοιτο ἂν ἐκεῖ , συνέσται γὰρ αὐτῇ | ||
; εἰ μὲν γὰρ κίνησις ἡ ζωή , τίς ἡ ἀντίθετος τῇ κινήσει στάσις ; ἢ γὰρ ὁ νοῦς καὶ |
τὸ τρίγωνον τὸ ΑΖΕ κύκλος περιγεγράφθω , καὶ ἐκβεβλήσθωσαν ἡ ΑΛ καὶ ἡ ΑΚ . εἴτε δὲ ὀξεῖα εἴη ἡ | ||
τῆς ΔΑ πρὸς ΑΖ δοθήσεται καὶ ὁ τῆς ΖΑ πρὸς ΑΛ , διὰ δὲ τοῦτο καὶ ἥ τε ὑπὸ ΑΖΔ |
. μία μὲν γάρ ἐστι ἡ ὁλοσχερέστερον πρὸς τὰ τεταρτημόρια νοουμένη , καθ ' ἣν τηρεῖν ὡς ἔφαμεν δεήσει τὰς | ||
ἀκαταλλήλου , σαφὲς ἂν γένοιτο , εἰ ἡ ἐν τρίτῳ νοουμένη εὐθεῖα κατὰ τὴν ὑπαρκτικὴν σύνταξιν τῶν ῥημάτων ἐπινοηθείη καὶ |
ΓΕΝ ! καὶ ΟΥ ! [ ] [ καθάπερ ] ΠΡΑ ! ! [ ] [ ] ΚΕΙΝΠΑ ! [ | ||
ΡΑΞ γωνία τῆς ὑπὸ ΠΑΝ . ὅτι δὲ ἡ ὑπὸ ΠΡΑ γωνία ἀμβλεῖά ἐστιν , ἐκδηλότερον οὕτω δειχθήσεται : ἐπεὶ |
ἀλλήλων οἱ κύκλοι : ἐφάψεται ἄρα ὁ ΑΒ κύκλος τοῦ ΕΒΖ κύκλου . διὰ ἄρα τοῦ δοθέντος σημείου τοῦ Β | ||
τὸ ΓΑΔ πρὸς τὸ ΕΚΖ . εἶχε δὲ καὶ τὸ ΕΒΖ πρὸς τὸ ΕΚΖ διπλασίονα λόγον ἤπερ τὸ ΓΑΔ πρὸς |
δ ' ἡ Θρᾴκη σύμπασα ἐκ δυεῖν καὶ εἴκοσιν ἐθνῶν συνεστῶσα : δύναται δὲ στέλλειν καίπερ οὖσα περισσῶς ἐκπεπονημένη μυρίους | ||
συναλείφουσα τὰ δύο συλλαβή , ἐξ ἀφώνου τε καὶ δυεῖν συνεστῶσα φωνηέντων : εἰ γοῦν τις αὐτῆς ἀφέλοι τὸ τ |
, καὶ τέτμηται δίχα ἡ γωνία ἡ ὑπὸ ΚΗΑ τῇ ΗΛΜ εὐθείᾳ , βάσις ἄρα ἡ ΚΛ τῇ ΛΑ ἴση | ||
αἱ ΝΞΗΟΠΡ , ΚΣΤ , παρὰ δὲ τὴν ΑΓ αἱ ΗΛΜ , ΚΟΦΙΧΨΩ . λέγω , ὅτι ἐστίν , ὡς |
τρίγωνον τῷ ΑΛΣ τριγώνῳ ἴσον ἔσται , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' ἃς | ||
ἐπειδὴ δεδομέναι μέν εἰσιν αἱ ὑπὸ ΑΕΚ καὶ ὑπὸ ΒΕΞ γωνίαι , δέδοται δὲ καὶ ὁ τῆς ὑπὸ ΓΕΚ πρὸς |
ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων . | ||
ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες , |
δὲ τῇ τοῦ τετραγώνου πλευρᾷ γεγράφθω μεγίστου κύκλου τμῆμα τὸ ΖΗΘ . καὶ προσαναπεπληρώσθω τό τε ΕΓΗ τεταρτημόριον καὶ τὸ | ||
πρὸς τὸν ΖΗΘ κύκλον καὶ ἐξ οὗ ὃν ἔχει ὁ ΖΗΘ κύκλος πρὸς τὸ ὑπὸ τῶν ΖΒΘ εὐθειῶν καὶ τῆς |
ὅτι παράλληλός ἐστιν ἡ ΘΗ τῇ ΧΕ , αἱ δὲ ΗΟ , ΕΞ συζυγεῖς εἰσι διάμετροι . ἤχθωσαν γὰρ τεταγμένως | ||
τὸ παρὰ τὴν ΕΞ εἶδος . αἱ ἄρα ΕΞ , ΗΟ συζυγεῖς εἰσι διάμετροι τῶν Α , Β , Γ |