κεκλιμένοι . πάλιν , ἐπεὶ ἡ ἀπὸ τοῦ Ψ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς | ||
ταπεινότατός ἐστιν . ἐπεὶ γὰρ ἡ ἀπὸ τοῦ Ϡ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς |
ἀδιάφορος οὖσα ὥσπερ καὶ ἡ κάθετος . διττὴ δὲ ἡ κάθετός ἐστιν , ἡ μὲν ἐπίπεδος , ἡ δὲ στερεά | ||
ὅλως τὸ τῆς ὀρθῆς εἶδος . σύμβολον γὰρ καὶ ἡ κάθετός ἐστιν ἀρρεψίας καὶ ἀχράντου καθαρότητος καὶ μέτρου θείου καὶ |
τὸ Ε , ἀφ ' οὗ ἡ ἐπὶ τὸ κέντρον ἐπιζευγνυμένη πρὸς ὀρθὰς τῇ ΓΔ , πρὸς δὲ τὴν ΑΒ | ||
κύκλων , ἡ ἄρα ἀπὸ τοῦ αʹ ἐπὶ τὸ εʹ ἐπιζευγνυμένη εὐθεῖα διάμετρός ἐστι τῆς σφαίρας : ἀλλὰ καὶ ἡ |
εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν | ||
ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων |
δεδομένῳ εὐθεῖα γραμμὴ ἀχθῇ δεδομένην ποιοῦσα γωνίαν , δέδοται ἡ ἀχθεῖσα τῇ θέσει . πρὸς θέσει γὰρ δεδομένῃ εὐθείᾳ τῇ | ||
, ἡ δὲ ἀπὸ τῆς τομῆς ἐπὶ τὴν δευτέραν διάμετρον ἀχθεῖσα παράλληλος τῇ διαμέτρῳ δυνήσεται χωρίον , πρὸς ὃ τὸ |
πολυχρονίως ἡ πανήγυρις τελεσθήσεται . ἄλλως : ἐν ταύτῃ πρῶτον ἀγομένῃ τῇ ἑορτῇ τῶν Ὀλυμπίων παρέστησαν αἱ Μοῖραι καὶ ὁ | ||
Ω κάθετος ἀγομένη ἴση ἐστὶ τῇ ἀπὸ τοῦ Χ καθέτῳ ἀγομένῃ ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον , τὰ Ω |
ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται ὡς ἐπὶ τὰ Ξ μέρη . καὶ ἐπεὶ | ||
, ΒΖ κοινῇ τομῇ . ἡ δὲ κοινὴ τομὴ τῶν ΞΚΟ , ΒΖ ἐστιν ἡ ἀπὸ τοῦ Ο σημείου διάμετρος |
διαγομένη εὐθεῖα μήτε τὴν τομὴν τέμνῃ κατὰ δύο σημεῖα μήτε παράλληλος ᾖ τῇ ἀσυμπτώτῳ , συμπεσεῖται μὲν τῇ ἀντικειμένῃ τομῇ | ||
κατὰ μῆκος τῆς φάλαγγος δεύτερον ζυγόν , καὶ ὁ τούτῳ παράλληλος ὑπ ' αὐτὸν τρίτον , καὶ τέταρτόν ἐστι τὸ |
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ | ||
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ . |
δὲ ἡ γῆ καὶ ὑποδέξεται τὴν Λαοδίκην ἤτοι ἐν φάραγγι πεσεῖται καὶ ἀποθανεῖται ἡ Λαοδίκη πότε ; ὅταν πορθῆται ἡ | ||
Α τῇ ΑΒ πρὸς ὀρθὰς ἀπ ' ἄκρας ἀγομένη ἐκτὸς πεσεῖται τοῦ κύκλου . Μὴ γάρ , ἀλλ ' εἰ |
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ | ||
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ |
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
δύναμιν θέσθαι τὴν ἡμετέραν σπουδάσωμεν καὶ ὥσπερ ὑπ ' ὄψιν ἀγάγωμεν . Δείκνυσι γάρ σου περιφανῶς τὴν ψυχήν , περὶ | ||
, καὶ γίνονται πεντάκις ε κε . ἐὰν τοίνυν διάμετρον ἀγάγωμεν ἐν τῷ τετραγώνῳ , ὅ ἐστι διαγώνιον , τὸ |
ἀπὸ δὲ τοῦ κέντρου τῆς σφαίρας ἐπ ' αὐτὸν κάθετος ἀχθῇ καὶ ἐκβληθῇ ἐπ ' ἀμφότερα τὰ μέρη , ἐπὶ | ||
' αὐτῆς σημεῖον ληφθῇ ὡς τὸ Γ , κάθετος δὲ ἀχθῇ ἡ ΓΔ , ἴσον εἶναι τὸ ὑπὸ Ρ , |
, κοινὴ προσκείσθω ἡ ΝΚΜ περιφέρεια : ὅλη ἄρα ἡ ΛΚΜ περιφέρεια ὅλῃ τῇ ΝΚΜΞ περιφερείᾳ ἐστὶν ἴση . ἡμικυκλίου | ||
, καὶ διὰ τοῦ Κ ἤχθω πλευρὰ τοῦ κυλίνδρου ἡ ΛΚΜ εὐθεῖα πίπτουσα ἐπὶ τὰς ΕΗ , ΖΘ περιφερείας ἐκβαλλομένη |
προσπέσῃ τοῖς τρήμασι , τότε διέλκονται καὶ διεκβάλλονται διὰ τοῦ ὀπισθίου διαπήγματος τετρημένου , ὥστε νῦν εἶναι ἐκθέτων κάλων ἀρχὰς | ||
σε εἰδέναι θέμις , ὡς μνήμης μὲν ἀπώλεια , τῆς ὀπισθίου κοιλίας πεπονθυίας τοῦ ἐγκεφάλου ἕπεται , ἤτοι ποιᾶς τινος |
τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ | ||
Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η |
δὲ ἐπὶ τῆς ἑτέρας αὐτὴν λαβόντες τοῦ παραλληλογράμμου πλευρᾶς τῆς παραλλήλου τῇ κοινῇ αὐτῶν βάσει τὸ αὐτὸ ἀποδείξομεν . δύο | ||
ἔρριψα . τὸ δὲ “ ἀνείλετο λαβοῦσα ” ἢ ἐκ παραλλήλου , ὡς τὸ “ ἁγνεύσας ἐκάθηρε ” καὶ “ |
ὀρθαῖς ἴσαι . ἐπ ' εὐθείας ἄρα ἐστὶν ἡ ΔΥ εὐθεῖα . Ἐν ἄλλῳ οὕτως : ἐὰν κύβου τῶν ἀπεναντίον | ||
ἀφ ' ὧν τὴν τῶν η ν ἑξηκοστῶν περιφέρειαν ὑποτείνει εὐθεῖα ἑξηκοστῶν θ ιε : λοιπὴν ἄρα τὴν τῶν μϚ |
τῶν πηγῶν τοῦ Ὤξου ποταμοῦ διὰ τῶν Καυκασίων ὀρῶν ἐκβαλλομένῃ μεσημβρινῇ γραμμῇ μέχρι πέρατος , οὗ ἡ θέσις ἐπέχει μοίρας | ||
μὴ [ πρὸς ] ὀρθὰς δὲ τῇ διὰ Κασπίων πυλῶν μεσημβρινῇ , οὐδὲν ἂν ἐγίνετο πλέον πρὸς τὸν συλλογισμόν . |
διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α | ||
ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα |
Α , καὶ τῇ ΓΔ παράλληλος ἤχθω ἐν τῇ ἑτέρᾳ τομῇ ἡ ΕΖ , καὶ τετμήσθω δίχα κατὰ τὸ Η | ||
τυχόντα σημεῖα , καὶ ἀπ ' αὐτῶν ἀχθῶσιν ἐν τῇ τομῇ παρὰ τὰς ἐφαπτομένας τέμνουσαι ἀλλήλας τε καὶ τὴν γραμμήν |
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ | ||
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν . |
ἐκβληθῇ , ἀπὸ δὲ τῆς κορυφῆς ἀναχθεῖσα εὐθεῖα παρὰ τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ | ||
τῇ ΑΓ . ἤχθω γὰρ ἀπὸ τοῦ Β παρὰ τεταγμένως κατηγμένην ἡ ΒΖ . ἔστιν ἄρα , ὡς τὸ ὑπὸ |
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ | ||
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν |
διὰ τοῦ Δ ἡμικύκλια , ἵνα ἡ ἐφαπτομένη ἑκάστου αὐτῶν προσεκβαλλομένη ἐπὶ τὴν τοῦ μείζονος ἡμικυκλίου περιφέρειαν τὴν μεταξὺ τῆς | ||
ἣν ἄγονται καὶ τῆς παρ ' ἣν δύνανται , καὶ προσεκβαλλομένη ἕως τοῦ ἑτέρου μέρους τῆς τομῆς δίχα τμηθήσεται ὑπὸ |
κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ | ||
τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς |
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
ἐξ οὗ φανερόν , ὅτι ἐν ἑνὶ ἐπιπέδῳ ἐστὶ τὸ ΗΘΚΛΜ πεντάγωνον . Δεῖ εἰδέναι ἡμᾶς , ὅτι , ἐάν | ||
ΘΝ , ἔχει δὲ καὶ τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΗΘΚΛΜ πολύγωνον διπλασίονα λόγον ἤπερ ἡ ΑΒ πρὸς τὴν ΗΘ |
, καὶ τῇ κοινῇ τομῇ αὐτῶν τῇ ΓΔ πρὸς ὀρθὰς ἦκται ἐν τῷ ΓΝΔ ἐπιπέδῳ ἡ ΟΦ , ἡ ΟΦ | ||
: τὸ μετεωρίζεσθαι καὶ ἐπαίρεσθαι καὶ γαυριᾶν : παρὰ τὸ ἦκται ἀκτός καὶ ῥῆμα ἀκτῶ , ἀφ ' οὗ ἀκταίνω |
ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς | ||
ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ |
ΔΓ , καὶ ἀπὸ τοῦ Δ ἐπὶ τὴν ΑΓ κάθετος ἤχθω ἡ ΔΖ . λέγω , ὅτι ἡ ΖΓ ἡμίσειά | ||
δὲ τοῦ Θ ὁποτέρᾳ τῶν ΑΒ , ΕΖ παράλληλος πάλιν ἤχθω ἡ ΚΜ , καὶ πάλιν διὰ τοῦ Α ὁποτέρᾳ |
δέδοται τῷ μεγέθει . δῆλον δ ' ὅτι καὶ ἡ συζυγὴς αὐτῇ : δέδοται γὰρ ὁ τῆς ΕΖ πλαγίας πρὸς | ||
οὖσα καὶ τὸν τῆς ὕλης λόγον ἀναδεδεγμένη , καὶ ἐπεὶ συζυγὴς οὖσα τῇ μονάδι δι ' ἐκείνην ἐκωλύθη τῆς εἰρημένης |
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν εὐθεῖα ἐκβληθῇ , ἀπὸ δὲ τῆς συμπτώσεως τῶν ἐφαπτομένων ἀχθεῖσα εὐθεῖα | ||
ΘΓ παράλληλον ἀγάγω τὴν ΕΞ , καὶ ἐπιζευχθεῖσα ἡ ΘΗ ἐκβληθῇ ἐπὶ τὸ Ξ , ὁ μὲν τῆς ΚΗ πρὸς |
τοῦ ἀπὸ τῆς τὰς ἁφὰς ἐπιζευγνυούσης τετραγώνου . ἔστω κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΓ καὶ ἐφαπτόμεναι αἱ ΑΔ | ||
ἐπίπεδα ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ , καὶ ἡ κοινὴ τομὴ αὐτῶν τῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται : καὶ ἡ |
. Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ | ||
τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου |
ἐστίν . μόνοι δὴ λοιπὸν δοκοῦσι καθικνεῖσθαι τῆς ἐννοίας τοῦ δεδομένου οἱ γνώριμον ἅμα καὶ πόριμον αὐτὸ εἶναι ἀποφηνάμενοι : | ||
ἐστὶ καὶ ἡ ὑπὸ τῶν ΑΕΓ γωνία . Ἐὰν κύκλου δεδομένου τῇ θέσει ἐπὶ τῆς περιφερείας δοθὲν σημεῖον ληφθῇ , |
τομῆς ἀγαγεῖν ἐφαπτομένην , ἥτις πρὸς τῇ διὰ τῆς ἁφῆς ἠγμένῃ διαμέτρῳ ἴσην περιέξει γωνίαν τῇ δοθείσῃ ὀξείᾳ . ἔστω | ||
τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς |
τὴν ἔγγιον τῆς ἀπωτέρω , ἐλαχίστην δὲ τὴν πρὸς τῇ ἐφαπτομένῃ , καθ ' ἣν ἡ μέση κίνησίς ἐστιν , | ||
συμπτώσει τῶν ἐφαπτομένων διαφέρει τῷ ἀπολαμβανομένῳ τριγώνῳ πρός τε τῇ ἐφαπτομένῃ καὶ τῇ διὰ τῆς ἁφῆς ἀγομένῃ διαμέτρῳ . ἔστωσαν |
ἐλάττονές εἰσιν , ἴση δὲ ἡ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΕΓ , αἱ ἄρα ὑπὸ ΑΒΓ , ΔΕΓ δύο ὀρθῶν | ||
ὑπὸ ΑΕΒ πρὸς τὸ ἀπὸ ΕΒ , οὕτως τὸ ὑπὸ ΔΕΓ πρὸς τὸ ἀπὸ ΕΓ . ἀλλὰ καὶ ὡς τὸ |
: ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
. Ταύρου θ νο α Ϛʹ τοῦ ἐν τῷ αὐχένι τετραπλεύρου τῆς προηγουμένης πλευρᾶς ὁ νοτιώτερος . . . . | ||
τῶν ἐν τῇ κεφαλῇ , καὶ τοῦ ἐν τᾷ Κήτει τετραπλεύρου ὁ νοτιώτερος τῶν ἑπομένων . Δύνει δὲ ὁ Ἰχθὺς |
γὰρ τῆς σφαίρας καὶ ἐπὶ τοῦ κατὰ τὸ ἡμικύκλιον ἑτέρου σημείου τὴν μοῖραν περιαγαγούσης , αἱ αὐταὶ ἔγγιστα καιρικαὶ ὧραι | ||
γίνεται δὲ τὰ ἀπ ' ἀρχῆς ἄχρι τέλους ἀπὸ τοῦ σημείου : καὶ αὔξεται ἀπὸ τῶν περιστατικῶν : πόθεν δὲ |
μίαν καὶ τὴν αὐτὴν εὐθεῖαν γίνεσθαι τὴν ἀπό τε τοῦ κέντρου τῆς γῆς καὶ τῆς ὄψεως τοῦ θεωροῦντος ἐπὶ τὸ | ||
τῷ κέντρῳ τριγώνου ἴσον ἔσται τῷ ἀπὸ τῆς ἐκ τοῦ κέντρου τριγώνῳ ὁμοίῳ τῷ ἀποτεμνομένῳ . ἔστω ὑπερβολὴ ἢ ἔλλειψις |
ὀξεῖα ἄρα ἐστὶν ἡ ἐπὶ τῆς μείζονος τοῦ τραπεζίου πλευρᾶς βεβηκυῖα γωνία . μεῖζον ἄρα ἡμικυκλίου ἐστὶ τὸ τμῆμα ἐν | ||
οἷον ἐκδεδυκέναι τὰς λειτουργίας : σεμνὴ γὰρ ἡ ἀνάπαυσις καὶ βεβηκυῖα : ἐμέλησε γὰρ τῷ ῥήτορι τοῦ μὴ διόλου καλλωπίζειν |
Ἀναγεγράφθω γὰρ ἀπὸ τῆς ΓΒ τετράγωνον τὸ ΓΕΖΒ , καὶ ἐπεζεύχθω ἡ ΒΕ , καὶ διὰ μὲν τοῦ Δ ὁποτέρᾳ | ||
τῆς τομῆς τῇ ΑΒ παράλληλος ἤχθω ἡ ΕΖ , καὶ ἐπεζεύχθω ἡ ΕΒ . δεικτέον , ὅτι ἡ ΖΕ πρὸς |
τούτῳ δ ' ἀκολουθεῖν τὸ ἀφεστάναι ἴσον τὰς Κασπίους πύλας Θαψάκου τε καὶ τοῦ Κασπίου : τοῦ δὲ Κασπίου πολὺ | ||
τεινούσης πλευρᾶς καὶ τῆς ἀπὸ Βαβυλῶνος καθέτου ἐπὶ τὴν διὰ Θαψάκου μεσημβρινὴν γραμμὴν ἠγμένης καὶ αὐτῆς τῆς διὰ Θαψάκου μεσημβρινῆς |
: ἐὰν δὲ ὡϲ ὑπὸ ϲκόλοποϲ ἐμπεπαρμένου ἢ ὡϲ ὑπὸ τρυπάνου τιτρᾶϲθαι νομίζῃ , παχέοϲ ἐντέρου τὸ εἶδοϲ τῆϲ ὀδύνηϲ | ||
καὶ τότε μᾶλλον ἡ ἐνέργεια ὀξυτέρα γινέσθω , στρεφομένου τοῦ τρυπάνου τῇ ἀρίδι , ἕως ὅτου καταβιβασθῇ ἡ ἀκμὴ εἰς |
ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον | ||
τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς |
τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ ἀπὸ τοῦ Ι ἐπὶ τὸ Α | ||
. ὑπερπιπτέτω οὖν , εἰ δύνατον , καὶ ἔστω ἡ ΚΙ , καὶ τετμήσθω ἡ ΖΗ τῇ ΒΓ ὁμοίως κατὰ |
Ἀνδρομέδας ἀστέρων καὶ ἐκ τοῦ παρακειμένου αὐτῷ ἀπ ' ἄρκτου Τριγώνου . λέγει γὰρ οὕτως περὶ αὐτοῦ : καὶ Κριοῖο | ||
ἐπιζευγνυμένη εὐθεῖα παρὰ τὴν λοιπὴν ἔσται τοῦ τριγώνου πλευράν . Τριγώνου γὰρ τοῦ ΑΒΓ παράλληλος μιᾷ τῶν πλευρῶν τῇ ΒΓ |
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
ἔσται τῷ εὐθυγράμμῳ τῷ συγκειμένῳ ἐκ τῶν τριῶν τριγώνων τῶν ΒΖΗ ΒΖΚ ΕΚΖ . τὰ γὰρ ἀπὸ τῶν εὐθειῶν ἐφ | ||
δὲ ὑπὸ ΒΑΕ ἴση ἐστὶν τῇ ἐκτὸς τετραπλεύρου τῇ ὑπὸ ΒΖΗ : καὶ ἡ ὑπὸ ΘΖΒ ἄρα γωνία ἴση ἐστὶν |
τοὺς τειχομαχοῦντας ἐξωθοῦσι τοῦ τόπου : καὶ ἐὰν τὰ ἄκρα ἐπιζευχθῇ τῶν δυοῖν κριῶν ξύλῳ , ὁμοῦ πολλοὺς ἀπώσεται προεστῶ | ||
σημείου ἐπὶ τὸ ἐν τῷ ἐπιπέδῳ πέρας τῆς εὐθείας εὐθεῖα ἐπιζευχθῇ , ἡ περιεχομένη γωνία ὑπὸ τῆς ἀχθείσης καὶ τῆς |
τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα | ||
παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν |
, ὅτι καὶ ὡς ἐπὶ τὰ Ζ , Β ἐκβαλλομένη συμπίπτει . ἡ ΓΔ ἄρα ἐκβαλλομένη ἐφ ' ἑκάτερα συμπεσεῖται | ||
' ἐκ παθημάτων τὸ στόμα τῆς κοιλίας στενόν ἐστι , συμπίπτει μὲν τὰ ὅμοια , λυομένων δὲ τῶν παθῶν ἀνὰ |
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
δὲ τὸ Γ , ἐφαπτομένη δὲ ἡ ΔΕ , καὶ ἐπιζευχθεῖσα - ἡ ΓΕ ἐκβεβλήσθω ἐφ ' ἑκάτερα , καὶ | ||
ἐπὶ τὸ τοῦ τριγώνου ἐπίπεδον κάθετος ἡ ΔΕ , καὶ ἐπιζευχθεῖσα ἡ ΑΕ ἐκβεβλήσθω : ὅτι ἡ ΑΕ τῆς ΕΖ |
, καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ | ||
ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ |
διατί καὶ ἐνταῦθα ἡ Ἀφροδίτη εὑρίσκεται συμπροπέμπουσα τὸν Ἀπόλλωνα καὶ ἐφαπτομένη τοῦ δίφρου . καὶ ἤτοι ὅτι μετέρχεται τὰ γαμήλια | ||
, καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ ΘΚ : ἡ ΘΚ ἄρα |
τι ἢ ἀπ ' ἄλλου τὸ αὐτό , οὐχ ἡ ἀντικειμένη , ἀλλ ' ἔσται ἐκείνης ἑτέρα , τοῦτο δέ | ||
φερόμενον : ἡ γὰρ ὅλη φορὰ οὐθὲν ἧττον ἑκατέρα ἑκατέρᾳ ἀντικειμένη ἐπ ' ἄπειρον νοεῖται . Καὶ μὴν καὶ ἰσοταχεῖς |
: τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ : | ||
κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου |
ἡ ΖΗ , καὶ προσαναπεπληρώσθω ὁ ΔΕΖΚ κύκλος , καὶ διήχθω ἡ ΕΒΚ , καὶ ἀπὸ τοῦ Η ἐπ ' | ||
πρὸς ὀρθὰς ἀλλήλαις διαμέτρων καὶ τοῦ ΕΖ ἄξονος , καὶ διήχθω τινὸς τῶν νοτιωτέρων τοῦ ἰσημερινοῦ μηνιαίων παραλλήλων διάμετρος ἡ |
διὰ τῶν ἐπιπέδων εὑρεῖν ἔστιν εὐθεῖαν ἴσην τῇ τοῦ κύκλου περιφερείᾳ χρησάμενον τοῖς ἐπὶ τῆς ἕλικος εἰρημένοις θεωρήμασιν . Σοφίας | ||
πάλιν , ἐπεὶ ὁμοία ἐστὶν ἡ ΘΗ περιφέρεια τῇ ΠΝ περιφερείᾳ , ἐν ᾧ ἄρα χρόνῳ τὸ Θ ἐπὶ τὸ |
ὑποτείνει ἡ τοῦ τετραγώνου πλευρὰ τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου . καὶ ἐπεὶ ἐν σφαίρᾳ δύο κύκλοι οἱ ΜΝΞ | ||
ὑποτείνει ἡ τοῦ τετραγώνου πλευρὰ τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου , ἴση περιφέρεια ἀπειλήφθω ἡ ΒΘ , καὶ πόλῳ |
τὸ Γ , καὶ εἰλήφθω τι σημεῖον ἐπὶ τῆς ΑΒ τομῆς τὸ Δ , καὶ δι ' αὐτοῦ ἤχθω παρὰ | ||
ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς . ἔστω γὰρ τὰ αὐτὰ , καὶ τὸ Δ |
. Ἐὰν ἐν ὑπερβολῇ ἢ ἐλλείψει ἢ κύκλου περιφερείᾳ εὐθεῖα καταχθῇ τεταγμένως ἐπὶ τὴν διάμετρον , καὶ ἀπό τε τῆς | ||
τῇ πλαγίᾳ τοῦ εἴδους πλευρᾷ , καὶ ἀπὸ τῆς ἁφῆς καταχθῇ εὐθεῖα τεταγμένως ἐπὶ τὴν διάμετρον , ἔσται ὡς ἡ |
κέντρου τῆς σφαίρας ἤπερ ὁ ΠΗΡ , μείζων ἄρα ὁ ΧΦΨ κύκλος τοῦ ΠΗΡ κύκλου . ἐπεὶ οὖν δύο κύκλοι | ||
Ε , Β μέρη . παράλληλος δὲ ὁ ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται |
τῆς Θ , Λ . λέγω , ὅτι ἡ ΒΚ ἀνακλωμένη οὔτε αὐτὴ δι ' ἑαυτῆς ἀνακλασθήσεται οὔτε ἐπὶ τὴν | ||
τοῖς ἐνόπτροις . ἡ ἄρα ἀπὸ τοῦ Β ὄμματος ὄψις ἀνακλωμένη καὶ προσπεσοῦσα πρὸς πάντα τὰ ἔνοπτρα ἥξει ἐπὶ τὸ |
τῆς συμπτώσεως τῶν ἐφαπτομένων ἀχθῇ εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν , διὰ δὲ τῆς διχοτομίας τῆς τὰς ἁφὰς ἐπιζευγνυούσης | ||
διὰ τῆς συμπτώσεως ἀχθῇ τις εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν συμπίπτουσα ἑκατέρᾳ τῶν τομῶν , ἀχθῇ δέ τις ἑτέρα |
τῆς σφαίρας ἐπ ' αὐτὸν κάθετος ἦκται ἡ ΗΘ καὶ ἐκβέβληται ἐπ ' ἀμφότερα τὰ μέρη καὶ συμπίπτει τῇ ἐπιφανείᾳ | ||
μεταστάσει ὀστέου : καὶ τούτων ἢ τέτρωται τὸ ὀστέον ἢ ἐκβέβληται μόνον ἢ ἐκστὰν μένει καὶ ἔξω καὶ ἐκβύρσωμα λέγεται |
ἑτέρωθι ἀνδρεῖός ἐστιν οὗτος ; πρὸς τοῖς “ θεσμοθέταις γραφὰς γραφόμενος , πρὸς τοῖς συνδίκοις ἀπογραφὰς ” ἀπογράφων . “ | ||
Δ διαστήματι δὲ ἑνὶ τῶν Ε , Ζ , Η γραφόμενος κύκλος τεμεῖ τὰς ΑΒ , ΒΓ , ΓΑ εὐθείας |
τρίγωνα ἰσόπλευρα εἶναι . ἔσται δὴ ἡ ΑΒΓΔΕ πυραμὶς μέρος εἰκοσαέδρου σχήματος . τετμήσθω μία πλευρὰ ἑνὸς τριγώνου ἡ ΖΓ | ||
, οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό τε τοῦ |
, τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν | ||
τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν |
. ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
γραφεισῶν περιφερειῶν αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι περιέξουσι τὴν λείπουσαν ὁμοίως εἰς τὰς δύο ὀρθὰς τῆς | ||
καὶ ἡ ὑπὸ ΓΗΔ ὀρθή . Τῶν αὐτῶν ὄντων αἱ ἐπιζευγνύμεναι ἴσας ποιοῦσι γωνίας πρὸς ταῖς ἐφαπτομέναις . τῶν γὰρ |
ὀστέῳ ὑπὸ τὴν ὀξεῖαν καὶ ἀποθραύειν σμιλίῳ ἢ τῇ τοῦ ἐκκοπέως ἀκμῇ , τῆς λαβῆς κρατουμένης καὶ πλησσομένης τῷ σφυρίῳ | ||
, ἵνα μὴ τοῦ ὀστέου ὅλου διακοπέντος ἡ τοῦ ἀντερηρεισμένου ἐκκοπέως ἀκμὴ κενεμβατήσασα διέλῃ τὴν μήνιγγα . τοιγαροῦν ὅταν τὰ |
ἡ ἀπὸ τοῦ Θ κάθετος ἐπὶ τὸ ΔΕΖ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΣΤΥ ἐπιπέδου . καί εἰσιν ἴσαι αἱ | ||
παραλληλογράμμου καὶ προσεκβαλλομένη μέχρι τοῦ ἑτέρου μέρους τῆς ἐπιφανείας δίχα τμηθήσεται ὑπὸ τοῦ παραλληλογράμμου . ἤχθω διὰ τοῦ Ε σημείου |
ΑΗΒ γωνία καθ ' ὑπόθεσιν ἴση ἐστὶν τῇ ὑπὸ ΔΘΕ γωνίᾳ : ὅμοιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ | ||
περιέχωσι , τὸ δὲ Δ σημεῖον ᾖ ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης , ἡ ἀπὸ τῆς |
ὑποθεμένῳ λόγον τ ' οὐθενὶ προθέντες ἐπικυροῦσι τὴν γνώμην . γραφέντος δὲ τοῦ δόγματος εὐθὺς ἐξ ἑκάστης πόλεως τοὺς ἐπιφανεστάτους | ||
ἡλίου περὶ τὴν ιʹ μοῖραν ὄντος τοῦ Καρκίνου , καὶ γραφέντος περὶ τὸ Θ τοῦ ΚΛ ἐπικύκλου ἤχθωσαν μὲν ἀπὸ |
Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ ἢ ἐν σώματι . ἐν γοῦν | ||
δὲ τῷ τρίτῳ τῶν γεωγραφικῶν καθιστάμενος τὸν τῆς οἰκουμένης πίνακα γραμμῇ τινι διαιρεῖ δίχα ἀπὸ δύσεως ἐπ ' ἀνατολὴν παραλλήλῳ |
, ὀρθότατος ἔσται πρὸς ἡμᾶς : ὅταν δὲ ἐπὶ τῆς διχοτομίας τοῦ ὑπὸ γῆν τμήματος τοῦ θερινοῦ τροπικοῦ , ταπεινότατος | ||
τυχὸν σημεῖον τὸ Γ . εἰ μὲν οὖν ἐπὶ τῆς διχοτομίας ἐστὶ τὸ Γ , φανερόν ἐστι τὸ ζητούμενον . |
ΓΑΔ . λέγω , ὅτι ἡ ΓΑΔ τῇ Β οὐ συμπεσεῖται . ἤχθω ἀπὸ τοῦ Α ἐφαπτομένη ἡ ΕΑΖ . | ||
Η σημεῖον κέντρον ἐστὶ τῆς ΑΒ τομῆς , ἡ ΓΖ συμπεσεῖται τῇ ΑΒ , εἴτε μή ἐστιν , ὑποκείσθω τὸ |
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω , | ||
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ |
ὑπὸ ΕΑΒ . ἐπεὶ οὖν δύο τρίγωνα τὰ ΖΕΒ , ΖΑΒ ἐπὶ μιᾶς βάσεως συνέστηκε , καὶ ἡ ἀπὸ τοῦ | ||
ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα , οὕτως ἡ ὑπὸ ΖΑΒ πρὸς τὴν ὑπὸ ΒΑΓ : καὶ ἡ ὑπὸ ΖΑΒ |
τὸν ἀναγιγνώσκοντα ἀναγράφεσθαι εἰς δέλτον τὰ δηλούμενα γράμματα ἐκ τῶν τρυπημάτων . Ἀνάπαλιν δὲ γίγνεται ἡ ἐξίεσις τῇ ἐνέρσει . | ||
ναυτῶν τὸν μισθὸν κερδαίνοιεν , ἐκ δὲ τῆς ὄψεως τῶν τρυπημάτων μὴ ἐλέγχωνται . γελοίως οὖν ἀμφοτέραις ταῖς χερσί φησιν |
δυσὶ ταῖς ΔΗ , ΗΖ ἴσαι εἰσίν , καὶ γωνίας ὀρθὰς περιέχουσιν , βάσις ἄρα ἡ ΑΘ βάσει τῇ ΖΔ | ||
καὶ διὰ τοῦ Ζ ἐπὶ τὰ ἐναντία τῇ ΗΘ πρὸς ὀρθὰς γωνίας τῇ ΑΓ εὐθεῖα ἡ ΖΜΝ , ἐφ ' |
. Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις | ||
ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς |
τὴν ἔνδειαν τῶν ζῴων εὐπειθεῖς ἔσχεν . Εὐρυσθεὺς δ ' ἀχθεισῶν πρὸς αὐτὸν τῶν ἵππων ταύτας μὲν ἱερὰς ἐποίησεν Ἥρας | ||
διάμετρον εὑρεῖν . γεγονέτω , καὶ ἔστω ἡ ΓΘ . ἀχθεισῶν δὴ τεταγμένως τῶν ΔΖ , ΕΘ καὶ ἐκβληθεισῶν ἔσται |
παραλλάξεων , ὅταν μὲν τὸ κατὰ κορυφὴν σημεῖον ἐπὶ τοῦ μεσημβρινοῦ βορειότερον ᾖ τοῦ τότε μεσουρανοῦντος τοῦ διὰ μέσων τῶν | ||
εὐλογωτέρας τε καὶ ἐμφατικωτέρας παρειλήφαμεν τὰς ἀφοριζομένας ὑπό τε τοῦ μεσημβρινοῦ καὶ τῶν τοῦ διὰ μέσων ἀνατολῶν τε καὶ δύσεων |
νόσους εἰκὸς εἶναι πολλάς . Τοῦ δὲ Ἅληκος ποταμοῦ τοῦ διορίζοντος τὴν Ῥηγίνην ἀπὸ τῆς Λοκρίδος βαθεῖαν φάραγγα διεξιόντος ἴδιόν | ||
ΓΔ . ἡ ΓΔ ἄρα διάμετρός ἐστι τοῦ κύκλου τοῦ διορίζοντος ἐν τῇ σελήνῃ τὸ σκιερὸν καὶ τὸ λαμπρόν . |
τῆς σκιᾶς καὶ οἱ τῆς σελήνης κύκλοι μέγιστοι . καὶ ἐκβεβλήσθω ἡ ΕΓ ἐπὶ τὴν περιφέρειαν τοῦ τῆς σκιᾶς κύκλου | ||
παράλληλος ἤχθω ἡ ΒΗ , καὶ ἐπεζεύχθω ἡ ΗΓ καὶ ἐκβεβλήσθω ἐπὶ τὸ Θ : ἴση ἄρα ἐστὶν ἡ ὑπὸ |
ἡ ΑΒ τῇ ΓΔ , ἀλλὰ καὶ γωνία ἡ ὑπὸ ΑΒΘ τῇ ὑπὸ ΔΓΚ ἐστιν ἴση . καὶ περιφέρεια ἄρα | ||
καὶ ἔστω ὡς ὁ ΒΑΘ : μέγιστος ἄρα ἐστὶν ὁ ΑΒΘ κύκλος : ἡ γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση |
ἐπὶ κλίνης τὰς φυσικὰς ἀνάγκας ἐπλήρου . Ἑνδεκάτῃ ἐπὶ τῇ ἐπιφανείᾳ τὸ παρυφιστάμενον ἐνήχετο λευκὸν μέν , ὑπόγλισχρον δὲ καὶ | ||
ὀρθὰς οὖσαν τῇ ΒΓ , καὶ πεποίηκε τομὴν ἐν τῇ ἐπιφανείᾳ τὴν ΔΕΖ , ἡ δὲ διάμετρος ἡ ΜΕ ἐκβαλλομένη |
ἑαυτοῦ οὔτε τινα τῶν γνωρίμων εὗρεν . Καὶ εἶπεν : Εὐλογητὸς κύριος , ὅτι μεγάλη ἔκστασις ἐπέπεσεν ἐπ ' ἐμὲ | ||
Ἀραβίας . . : Σούρων Σαλομῶνι βασιλεῖ μεγάλῳ χαίρειν . Εὐλογητὸς ὁ Θεὸς , ὃς τὸν οὐρανὸν καὶ τὴν γῆν |
ΓΕ ἴση ἡ ΔΖ , καὶ ἐπεζεύχθω ἡ ΓΖ : παράλ - ληλος ἄρα ἐστὶν τῇ ΔΕ , καὶ συμπίπτει | ||
ὑπὸ ἐπιπέδου τοῦ ΑΓ τέμνεται , αἱ κοιναὶ αὐτῶν τομαὶ παράλ - ληλοί εἰσιν . παράλληλος ἄρα ἐστὶν ἡ ΑΒ |
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ | ||
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ |
ἔλαττον ἡμισφαιρίου . Κυλίνδρου ὁπωσδηποτοῦν ὑπὸ ἑνὸς ὄμματος ὁρωμένου ἔλαττον ἡμικυλινδρίου ὀφθήσεται . ἔστω κύλινδρος , οὗ ἔστω κέντρον τῆς | ||
, ἐπὶ δὲ τῆς ΑΔ ἡμικύκλιον ὀρθὸν ἐν τῷ τοῦ ἡμικυλινδρίου παραλληλογράμμῳ κείμενον : τοῦτο δὴ τὸ ἡμικύκλιον περιαγόμενον ὡς |
συμπίπτουσα τῇ ΗΑ κατὰ τὸ Κ , ἡ δὲ ΗΛ συμπίπτουσα τῇ ΒΚ κατὰ τὸ Μ . ἐπεὶ οὖν ἴση | ||
ἀχθῇ πρὸς ὁποιανοῦν τῶν τομῶν , καὶ ταύτῃ παράλληλος ἀχθῇ συμπίπτουσα ταῖς ἐφεξῆς τρισὶ τομαῖς , τὸ περιεχόμενον ὑπὸ τῶν |
ΑΞ ἄρα ἴση τῇ ΤΓ . ἐπεὶ οὖν ὅλη ἡ ΑΧ ὅλῃ τῇ ΧΓ ἐστιν ἴση , ἐξ ὧν ἡ | ||
δύο , ὅπερ δὴ καὶ ὁρᾶται : ἔστι γὰρ τοῦ ΑΧ ὄντος δευτέρου ξου [ ͵γχου ] δύο ἑξηκοστά . |