τοὺς τειχομαχοῦντας ἐξωθοῦσι τοῦ τόπου : καὶ ἐὰν τὰ ἄκρα ἐπιζευχθῇ τῶν δυοῖν κριῶν ξύλῳ , ὁμοῦ πολλοὺς ἀπώσεται προεστῶ | ||
σημείου ἐπὶ τὸ ἐν τῷ ἐπιπέδῳ πέρας τῆς εὐθείας εὐθεῖα ἐπιζευχθῇ , ἡ περιεχομένη γωνία ὑπὸ τῆς ἀχθείσης καὶ τῆς |
. ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
καὶ ἅμα τῇ τῆς γῆς θερμότητι : ὅταν δὲ μετέωροι ληφθῶσι τό τε πνεῦμα μᾶλλον ἰσχύει καὶ οὐδαμόθεν ἐχόντων σκέπην | ||
τὸν ἀπὸ τῶν μηχανῶν κίνδυνον , μὴ τοῦ τείχους καταρριφθέντος ληφθῶσι βίᾳ τοῖς ὅπλοις καὶ περὶ τὸ ζῆν κινδυνεύσωσι , |
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ | ||
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ |
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα | ||
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ |
ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
: ὅπερ ἄτοπον . οὐκ ἄρα αἱ ΔΕΒ , ΔΖΒ εὐθεῖαί εἰσιν . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλη | ||
ἐγκεφάλου γνωρίϲματα περιττώματα πλείω κατὰ τὰϲ οἰκείαϲ ἐκροὰϲ καὶ τρίχεϲ εὐθεῖαί τε καὶ πυρραὶ καὶ μόνιμοι : καὶ ῥᾳδίωϲ ὑπὸ |
συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
, καὶ τότε σφιγγέσθω , ἵνα μὴ τῇ εἰκαίᾳ σφίγξει συμπέσῃ . ἐᾶται δὲ ξηρανθῆναι τὸ ἰπωτήριον , ἕως οὗ | ||
θεωρητῶν ἀραιωμάτων ἀποτελεῖται . ὅταν οὖν ἡ μύσις εἰς μῆκος συμπέσῃ , ἐπεκτείνεται τὸ παρεθὲν μέρος : συνέρχεται δέ , |
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν εὐθεῖα ἐκβληθῇ , ἀπὸ δὲ τῆς συμπτώσεως τῶν ἐφαπτομένων ἀχθεῖσα εὐθεῖα | ||
ΘΓ παράλληλον ἀγάγω τὴν ΕΞ , καὶ ἐπιζευχθεῖσα ἡ ΘΗ ἐκβληθῇ ἐπὶ τὸ Ξ , ὁ μὲν τῆς ΚΗ πρὸς |
γραφεισῶν περιφερειῶν αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι περιέξουσι τὴν λείπουσαν ὁμοίως εἰς τὰς δύο ὀρθὰς τῆς | ||
καὶ ἡ ὑπὸ ΓΗΔ ὀρθή . Τῶν αὐτῶν ὄντων αἱ ἐπιζευγνύμεναι ἴσας ποιοῦσι γωνίας πρὸς ταῖς ἐφαπτομέναις . τῶν γὰρ |
δὲ φθαρῇ τὰ τῶν ὀστέων πέρατα ἑκατέρωθεν , περιτιτράσθω καὶ ἐκκοπτέσθω . ἐκ πληγῆς δὲ τῆς διαστάσεως γεγενημένης , ἀνυπερθέτως | ||
, ἑκατέρωθεν περιτιτράσθω τῷ τρυπάνῳ τὸ τῆς κεφαλῆς ὀστοῦν καὶ ἐκκοπτέσθω , καὶ τῇ πυοποιῷ ἀγωγῇ θεραπευέσθω , ὡς ἐπὶ |
ἀπὸ δὲ τῆς κορυφῆς εὐθεῖα ἀναχθῇ παρὰ τεταγμένως κατηγμένην καὶ συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ εὐθείᾳ | ||
ἕν . εἰ δὲ ἡ ΒΓ τῇ Δ τομῇ μὴ συμπίπτῃ , ὡς ἐπὶ τοῦ τρίτου σχήματος , διὰ μὲν |
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |
ἦκται ἡ ΑΒ : ὅπερ ἔδει ποιῆσαι . Ἐὰν κύκλου ἐφάπτηταί τις εὐθεῖα , ἀπὸ δὲ τοῦ κέντρου ἐπὶ τὴν | ||
ὀρθαὶ αἱ πρὸς τῷ Κ ; ἐπεὶ κύκλου τοῦ ΑΓΒΔ ἐφάπτηταί τις εὐθεῖα ἡ ΗΘ , ἀπὸ δὲ τοῦ κέντρου |
ἀπὸ ΑΔ ] . Ἐὰν μιᾶς τῶν ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς | ||
τῶν Α , Β , Γ , Δ σημείων ἤχθωσαν ἐφαπτόμεναι τοῦ ΑΒΓΔ κύκλου αἱ ΖΗ , ΗΘ , ΘΚ |
εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν | ||
ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων |
ἐπεί ἐστιν , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΓΠ πρὸς ΑΟ , καί ἐστιν ἡ μὲν ΓΠ τῆς | ||
δευτέρας καταγραφῆς , καὶ ἐπεζεύχθωσαν αἱ ΒΞ , ΞΓ , ΓΠ . ἐπεὶ οὖν αἱ ΒΞΓ τῆς ΒΓ μείζους εἰσίν |
τερηδὼν τότε μάλιστα γινώσκεται , ὅταν ἡ τῶν σωμάτων γένηται ἀναστολή . ἀπαγορευέσθω δὲ τερηδὼν ἡ δι ' ὅλου τοῦ | ||
. ὅταν δέ τι ἀντιβαίνῃ τῇ κολλήσει , διαμοτούσθω ἡ ἀναστολή , καὶ δι ' ὅλου ἡ πυοποιὸς ἐπιμέλεια ἐγκρινέσθω |
Α , καὶ τῇ ΓΔ παράλληλος ἤχθω ἐν τῇ ἑτέρᾳ τομῇ ἡ ΕΖ , καὶ τετμήσθω δίχα κατὰ τὸ Η | ||
τυχόντα σημεῖα , καὶ ἀπ ' αὐτῶν ἀχθῶσιν ἐν τῇ τομῇ παρὰ τὰς ἐφαπτομένας τέμνουσαι ἀλλήλας τε καὶ τὴν γραμμήν |
: ἐὰν δὲ φθαρῇ τὰ τῶν ὀστέων πέρατα ἑκατέρωθεν , περιτιτράσθω καὶ ἐκκοπτέσθω . ἐκ πληγῆς δὲ τῆς διαστάσεως γεγενημένης | ||
καὶ μετὰ τὴν τοῦ πύου ἔκκρισιν ἑκατέρωθεν ὡς ἐπὶ ῥωγμῆς περιτιτράσθω τὰ τῆς ῥαφῆς πέρατα καὶ ἐκκοπτέσθω . Ἐπὶ τῶν |
κεκλιμένοι . πάλιν , ἐπεὶ ἡ ἀπὸ τοῦ Ψ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς | ||
ταπεινότατός ἐστιν . ἐπεὶ γὰρ ἡ ἀπὸ τοῦ Ϡ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς |
ἀλλ ' Ἀθήναζε παρέχειν ἀνέπαφα ἡμῖν , ἕως ἂν ἡμεῖς ἀπολάβωμεν τὰ χρήματα ὅσα ἐδανείσαμεν . καί μοι ἀναγίγνωσκε τὴν | ||
δὴ κἂν τὴν ΞΡ ἴσην ἑκατέρᾳ τῶν ΞΟ , ΞΠ ἀπολάβωμεν καὶ ἐπιζεύξωμεν τὴν ΟΡ , δείξομεν , ὅτι καὶ |
ἀλλήλαις , ἀχθῶσι δὲ διὰ τῶν ἁφῶν διάμετροι συμπίπτουσαι ταῖς ἐφαπτομέναις , ἴσα ἔσται τὰ πρὸς ταῖς ἐφαπτομέναις τρίγωνα . | ||
τι σημεῖον , καὶ ἀπ ' αὐτοῦ παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις συμπίπτουσαι ταῖς τε ἐφαπτομέναις καὶ ταῖς διαμέτροις , τὸ |
. Ἐὰν ἐν ὑπερβολῇ ἢ ἐλλείψει ἢ κύκλου περιφερείᾳ εὐθεῖα καταχθῇ τεταγμένως ἐπὶ τὴν διάμετρον , καὶ ἀπό τε τῆς | ||
τῇ πλαγίᾳ τοῦ εἴδους πλευρᾷ , καὶ ἀπὸ τῆς ἁφῆς καταχθῇ εὐθεῖα τεταγμένως ἐπὶ τὴν διάμετρον , ἔσται ὡς ἡ |
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ | ||
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς |
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
ἡ δευτέρα διάμετρος ἡ αὐτὴ οὖσα καὶ πᾶσαι αἱ τεταγμένως ἀγόμεναι . τέτμηται ἄρα καὶ ὁ κῶνος τῇ αὐτῇ ἐλλείψει | ||
κέντρου τῆς σφαίρας : πᾶσαι γὰρ αἱ ἀπὸ τοῦ Σ ἀγόμεναι ἐπὶ τὰς πλευρὰς κάθετοι , ὡς αἱ ΣΜ , |
, καὶ διὰ τοῦ Η ταῖς ΕΔ , ΔΖ παράλληλοι ἤχθωσαν αἱ ΗΘ , ΗΚ . λέγω , ὅτι ἴσον | ||
διάμετρος ἡ ΒΓ , καὶ ἀπὸ τῶν Β , Γ ἤχθωσαν πρὸς ὀρθὰς αἱ ΒΖ , ΓΛ , καὶ ἀπὸ |
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ | ||
ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι |
Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις | ||
ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων |
ἀπὸ δὲ τοῦ κέντρου τῆς σφαίρας ἐπ ' αὐτὸν κάθετος ἀχθῇ καὶ ἐκβληθῇ ἐπ ' ἀμφότερα τὰ μέρη , ἐπὶ | ||
' αὐτῆς σημεῖον ληφθῇ ὡς τὸ Γ , κάθετος δὲ ἀχθῇ ἡ ΓΔ , ἴσον εἶναι τὸ ὑπὸ Ρ , |
τριγώνου πλευράς : καὶ ἐὰν αἱ τοῦ τριγώνου πλευραὶ ἀνάλογον τμηθῶσιν , ἡ ἐπὶ τὰς τομὰς ἐπιζευγνυμένη εὐθεῖα παρὰ τὴν | ||
οὕτως ἡ ΛΔ πρὸς τὴν ΔΗ . ἐὰν τριγώνου ἀνάλογον τμηθῶσιν αἱ πλευραί , ἡ ἐπὶ τὰς τομὰς ἐπιζευγνυμένη εὐθεῖα |
ἡ ΚΛ τῆς ὅλης περιφερείας , τὸ αὐτὸ καὶ ἡ ΘΟ τῆς ΘΟΛ . καὶ ἔστιν ἴση ἡ ΘΟΛ τῇ | ||
ΜΒ τῇ ΒΝ καὶ ἡ ΚΟ τῇ ΟΛ καὶ ἡ ΘΟ τῇ ΟΞ καὶ ἡ ΚΘ τῇ ΞΛ . ἐπεὶ |
τὴν ἔγγιον τῆς ἀπωτέρω , ἐλαχίστην δὲ τὴν πρὸς τῇ ἐφαπτομένῃ , καθ ' ἣν ἡ μέση κίνησίς ἐστιν , | ||
συμπτώσει τῶν ἐφαπτομένων διαφέρει τῷ ἀπολαμβανομένῳ τριγώνῳ πρός τε τῇ ἐφαπτομένῃ καὶ τῇ διὰ τῆς ἁφῆς ἀγομένῃ διαμέτρῳ . ἔστωσαν |
τε ἐν τοῖς ἀνίσοις κύκλοις τὰς ἴσας εὐθείας ἀνίσους καὶ ἀνομοίας ὑποτείνειν περιφερείας καὶ τὰ δύο ἀντίστροφα . καὶ τὸ | ||
καὶ πυκνάς . μάλιστα δὲ ἔχουσιν αἱ σύνοδοι τῆς γῆς ἀνομοίας τὰς συμφύσεις . δεῖ δὲ καὶ τὰς πέτρας εἶναι |
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ | ||
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ |
αἱ ἀπὸ τοῦ κέντρου αὐτῆς πρὸς τὴν ἐπιφάνειαν προσπίπτουσαι ἴσαι ὑπάρχωσι * * * τὸ δὲ εἶδος ἐντιθέμενον ἐν τῇ | ||
ἐπὶ τῶν ἁπλῶς εἰδῶν , κἂν ὑπάρχωσιν ἰδέαι κἂν μὴ ὑπάρχωσι διὰ τὰ προειρημένα . Ἐντεῦθεν πρὸς τοὺς τὰς ἰδέας |
ἐπιψαύωσι , καθ ' ἕτερον σημεῖον οὐ συμπεσοῦνται . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΓΔ καὶ ἕτεραι αἱ ΑΓ , | ||
μέν εἰσιν ὑπερτελεῖς , οἱ δὲ ἐλλιπεῖς , καθάπερ ἀκρότητες ἀντικείμεναι ἀλλήλαις , οἱ δὲ ἀνὰ μέσον ἀμφοτέρων , οἳ |
διὰ τῶν ἐπιπέδων εὑρεῖν ἔστιν εὐθεῖαν ἴσην τῇ τοῦ κύκλου περιφερείᾳ χρησάμενον τοῖς ἐπὶ τῆς ἕλικος εἰρημένοις θεωρήμασιν . Σοφίας | ||
πάλιν , ἐπεὶ ὁμοία ἐστὶν ἡ ΘΗ περιφέρεια τῇ ΠΝ περιφερείᾳ , ἐν ᾧ ἄρα χρόνῳ τὸ Θ ἐπὶ τὸ |
ἅτινά εἰσι ῥητὰ τῇ πλευρᾷ τῇ οὔσῃ ε μδ μ ἐκβαλλομένων τῶν πλειόνων ἀπὸ τῶν ἐλαττόνων . παρ ' ἣν | ||
πεπερασμένη γενήσεται , τῶν ξπ ορ ἀκτίνων ἐπ ' εὐθείας ἐκβαλλομένων καὶ συμπιπτουσῶν ἀλλήλαις κατὰ τὸ σ σημεῖον , ἐπειδὴ |
δὲ τὸ Γ , ἐφαπτομένη δὲ ἡ ΔΕ , καὶ ἐπιζευχθεῖσα - ἡ ΓΕ ἐκβεβλήσθω ἐφ ' ἑκάτερα , καὶ | ||
ἐπὶ τὸ τοῦ τριγώνου ἐπίπεδον κάθετος ἡ ΔΕ , καὶ ἐπιζευχθεῖσα ἡ ΑΕ ἐκβεβλήσθω : ὅτι ἡ ΑΕ τῆς ΕΖ |
διαγομένη εὐθεῖα μήτε τὴν τομὴν τέμνῃ κατὰ δύο σημεῖα μήτε παράλληλος ᾖ τῇ ἀσυμπτώτῳ , συμπεσεῖται μὲν τῇ ἀντικειμένῃ τομῇ | ||
κατὰ μῆκος τῆς φάλαγγος δεύτερον ζυγόν , καὶ ὁ τούτῳ παράλληλος ὑπ ' αὐτὸν τρίτον , καὶ τέταρτόν ἐστι τὸ |
τι ἢ ἀπ ' ἄλλου τὸ αὐτό , οὐχ ἡ ἀντικειμένη , ἀλλ ' ἔσται ἐκείνης ἑτέρα , τοῦτο δέ | ||
φερόμενον : ἡ γὰρ ὅλη φορὰ οὐθὲν ἧττον ἑκατέρα ἑκατέρᾳ ἀντικειμένη ἐπ ' ἄπειρον νοεῖται . Καὶ μὴν καὶ ἰσοταχεῖς |
τὰ μὲν οὖν πλεῖστα τούτων φύσει ἔχουσι , τὰ δὲ ἠγμέναι ἀνεπιστημόνως δύσχρηστοί εἰσιν : αἱ τοιαῦται μὲν οὖν κύνες | ||
καὶ ἐπεὶ ἐν κύκλῳ τῷ ΑΒΓΔ [ ] δύο παράλληλοι ἠγμέναι εἰσὶν αἱ ΕΖ , ΓΔ , ἴση ἄρα ἐστὶν |
ἡμικυκλίῳ ἡμέραι αἱ προγεγενημέναι τοῦ ἡλίου πορευομένου ἀπὸ τροπῶν χειμερινῶν μακρότεραι ἔσονται τῶν ἐν τῷ ΕΗΔ ἡμικυκλίῳ ἡμερῶν , νύκτες | ||
, ὡς ἔν τισιν , ἔχει τὸν τρόπον τοῦτον : μακρότεραι τέρψιες ἕψονται ἐρίτιμοί τ ' ἀοιδαί . εἰ δὲ |
: ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
θύμα , θύμβραν . Ὡς ἡ ποτ ' αὐτὸν ἢν κάμῃ τις , εὐθέως ἐρεῖ [ πρὸς αὐτὸν ] , | ||
κῦμ ' ἀλεείνων πάντοθεν ἐσσύμενον στυγερῇ ὑπὸ χείματος ὥρῃ χεῖρα κάμῃ καὶ θυμόν , ὑποβρυχίης δ ' ἄρα νηὸς ὀλλυμένης |
ἡ ὑπὸ ΒΑΞ τῇ ὑπὸ ΕΔΖ ἴση , ἡ δὲ ΞΟ τῇ ΘΚ , ἡ δὲ ΟΠ τῇ ΜΝ . | ||
περὶ διάμετρον τὴν ΚΝ κύκλος γραφόμενος ὀρθὸς ὢν πρὸς τὴν ΞΟ ὁρίζων ἐστὶ τοῖς πρὸς τῷ Ε οἰκοῦσιν . Ἐπεὶ |
τῆς γῆς κατὰ σύμπτωσιν τῶν εὐθειῶν , αἳ ἀπὸ τῶν ὡρολογίων ἤχθησαν ἐπὶ τὸ κέντρον τῆς γῆς , γινομένη , | ||
ἔχοντα παραλλαγὴν πρὸς τὰς χειμερινὰς τροπάς , καὶ αἱ τῶν ὡρολογίων καταγραφαὶ ἐκδήλους ποιοῦσι τὰς κατὰ ἀλήθειαν γινομένας τροπάς , |
τομῆς ἀγαγεῖν ἐφαπτομένην , ἥτις πρὸς τῇ διὰ τῆς ἁφῆς ἠγμένῃ διαμέτρῳ ἴσην περιέξει γωνίαν τῇ δοθείσῃ ὀξείᾳ . ἔστω | ||
τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς |
ὀρθὰς ἤχθω ἡ ΥΞΧ , καὶ ἐπεζεύχθωσαν αἱ ΝΥ , ΥΜ , καὶ τετμήσθω δίχα ἡ ΜΝ κατὰ τὸ Τ | ||
ἡ ΥΜ περιφέρεια τῇ ΩΞ περιφερείᾳ . Ἀλλ ' ἡ ΥΜ τῇ ΣΟ ἐστὶν ὁμοία : καὶ ἡ ΣΟ ἄρα |
. Ἢ πόντου μέγα κῦμα καταντία κυμαίνοντος δείκελον ἰνδάλλοιτο πυριφλεγέθοντος ἐσόπτρου πᾶσα μὲν ἥδε πέριξ πυρὶ λάμπεται , ἐν δ | ||
εἴρηκεν ᾗ πόντου μέγα κῦμα καταντία κυμαίνοντος δείκελον ἰνδάλλοιτο πυριφλεγέθοντος ἐσόπτρου . : οὐκ ἀγνοῶ δὲ καὶ τοὺς ἰχθυοφάγους παῖδας |
τῆς αὐτῆς βάσεως τῆς ΑΒ στερεὰ παραλληλεπίπεδα τὰ ΓΜ , ΓΝ ὑπὸ τὸ αὐτὸ ὕψος , ὧν αἱ ἐφεστῶσαι αἱ | ||
ὧν αὐτὸ ἔσται βαρύτατον , τὰ ΑΒ καὶ ΒΓ καὶ ΓΝ . Ὅτι μὲν οὖν παρακειμένης τοῖς διεζευγμένοις τελείοις συστήμασι |
κῶνοι πρὸς ἀλλήλους διπλασίονα λόγον ἔχωσιν ἤπερ τὰ διὰ τῶν ἀξόνων τρίγωνα , ἰσοϋψεῖς ἔσονται οἱ κῶνοι . καταγεγράφθωσαν οἱ | ||
καὶ ἐπεὶ τῶν ΚΗΓΔ , ΒΘΕΖ κώνων τὰ διὰ τῶν ἀξόνων τρίγωνα τὰ ΚΓΔ , ΒΕΖ ἴσα ἀλλήλοις ἐστίν , |
γὰρ ὄντος τοῦ ΑΕΓ , οὗ διάμετρος ἡ ΑΓ , διχοτομία δὲ τὸ Ε , καὶ κέντρον τὸ Ζ , | ||
λαιὸν εὐώνυμον λέγεται κέρας καὶ οὐρά . αὕτη δὲ ἡ διχοτομία τοῦ μήκους ὀμφαλὸς προσαγορεύεται καὶ στόμα καὶ ἀραρός . |
πρηνὴς ἐπὶ τοῦ βάθρου , ἵνα αἱ τῶν βρόχων ἀρχαὶ κατάλληλοι γίνοιντο τοῖς ἄξοσιν , περιτιθέσθωσαν δὲ τῇ ῥάχει ἤτοι | ||
τοῦ ἄξονος μὴ προστρίβωνται ἐκθέτοις οὔσαις ταῖς γωνίαις , ἀλλὰ κατάλληλοι ἐπ ' αὐτὸν ἄγωνται . τοιοῦτος καὶ ὁ Ἡρόδοτος |
καὶ ἀπὸ τοῦ Ρ ἐπὶ μὲν τὰς ΘΟ , ΚΠ κάθετοι ἤχθωσαν αἱ ΡΝ , ΡΞ , ἐπὶ μὲν τὴν | ||
, καὶ ἀπὸ τοῦ Ε ἐπὶ τὰς ΑΒ , ΓΔ κάθετοι ἤχθωσαν αἱ ΕΖ , ΕΗ , καὶ ἐπεζεύχθωσαν αἱ |
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ | ||
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ |
, καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ | ||
ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ |
ἁφῶν πρὸς τὸ αὐτὸ σημεῖον τῆς ἑτέρας τομῆς ἀχθῶσιν εὐθεῖαι τέμνουσαι τὰς παραλλήλους , τὸ περιεχόμενον ὀρθογώνιον ὑπὸ τῶν ἀποτεμνομένων | ||
εὐθεῖαι ἐφαπτόμεναι συμπίπτωσιν , ἀχθῶσι δὲ παράλληλοι ταῖς ἐφαπτομέναις ἀλλήλας τέμνουσαι καὶ τὴν τομήν , ἔσται , ὡς τὰ ἀπὸ |
ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω , | ||
ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς |
ἐν τῷ δευτέρῳ σχήματι , ὅταν ἀμφότεραι αἱ προτάσεις καταφατικαὶ ληφθῶσιν : ἀλλ ' οὐχ οὕτως ἔδει ταύτας λαβεῖν , | ||
καὶ μέχρι γήρως τοῦ ἐσχάτου : ὁκόσοι δ ' ἂν ληφθῶσιν ὑπὸ νουσήματός τινος ὑπὲρ τεσσαράκοντα ἔτεα , οὐ μάλα |
δύναμιν θέσθαι τὴν ἡμετέραν σπουδάσωμεν καὶ ὥσπερ ὑπ ' ὄψιν ἀγάγωμεν . Δείκνυσι γάρ σου περιφανῶς τὴν ψυχήν , περὶ | ||
, καὶ γίνονται πεντάκις ε κε . ἐὰν τοίνυν διάμετρον ἀγάγωμεν ἐν τῷ τετραγώνῳ , ὅ ἐστι διαγώνιον , τὸ |
, διὰ δὲ τῆς συμπτώσεως ἀχθῇ εὐθεῖα παρά τινα τῶν ἀσυμπτώτων τέμνουσα τήν τε τομὴν καὶ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν | ||
ἀσύμπτωτόν ἐστι τῷ ΛΔΤΥ ἡμικυκλίῳ : αἱ ἄρα μεταξὺ τῶν ἀσυμπτώτων ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι |
πολυχρονίως ἡ πανήγυρις τελεσθήσεται . ἄλλως : ἐν ταύτῃ πρῶτον ἀγομένῃ τῇ ἑορτῇ τῶν Ὀλυμπίων παρέστησαν αἱ Μοῖραι καὶ ὁ | ||
Ω κάθετος ἀγομένη ἴση ἐστὶ τῇ ἀπὸ τοῦ Χ καθέτῳ ἀγομένῃ ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον , τὰ Ω |
ΓΑΔ . λέγω , ὅτι ἡ ΓΑΔ τῇ Β οὐ συμπεσεῖται . ἤχθω ἀπὸ τοῦ Α ἐφαπτομένη ἡ ΕΑΖ . | ||
Η σημεῖον κέντρον ἐστὶ τῆς ΑΒ τομῆς , ἡ ΓΖ συμπεσεῖται τῇ ΑΒ , εἴτε μή ἐστιν , ὑποκείσθω τὸ |
τοῦ μέσου ἐκκέντρου ὑποτείνουσι μὴ δεδομένας , ἐὰν δ ' ἐπιζεύξωμεν τὰς ΝΣΕ καὶ ΝΤΖ καὶ ΝΗΥ , πάλιν τὰς | ||
Κ . Φανερὸν οὖν , ὅτι . , ] ἐὰν ἐπιζεύξωμεν ἀπὸ τοῦ Θ ἐπὶ τὸ Γ καὶ ἐπὶ τὸ |
ἀπεναντίον ἐπιπέδοις , ἔστιν ὡς ἡ ΩΤ βάσις πρὸς τὴν ΤΔ βάσιν , οὕτως τὸ ΩΨ στερεὸν πρὸς τὸ ΡΙ | ||
δὴ δειχθήσεται καὶ ἡ ΜΤ ἴση τῇ ΤΔ καὶ ἡ ΤΔ τῇ . . . . . . . ‖ |
ΓΔΛ : ὥστε καὶ τῷ ΓΛΘ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , ἡ διὰ τῆς ἁφῆς παράλληλος | ||
εὐθεῖα . Ἐὰν ὑπερβολῆς ἢ ἐλλείψεως ἢ κύκλου περιφερείας εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς ἐπὶ |
τῆς δευτέρας συζυγοῦς διαμέτρου , ὡς δὲ τὸ ὑπὸ τῶν ΠΣ , ΣΑ , τουτέστι τὸ ὑπὸ τῶν ΓΣ , | ||
δύσις ἡ Ρ , καὶ κείσθω τῇ ΡΝ ἴση ἡ ΠΣ [ καθ ' ὑπόθεσιν , καὶ ἔστω ἐπὶ τοῦ |
εἰλῆφθαι ταῖς προτάσεσιν ἢ τῇ λέξει μόνον , οἷον ἂν ληφθῇ τὸ χρῶμα κατὰ παντὸς λευκοῦ , τὸ λευκὸν κατὰ | ||
δεῖξαι . Ἐὰν δύο κύκλοι ἐφάπτωνται ἀλλήλων ἐντός , καὶ ληφθῇ αὐτῶν τὰ κέντρα , ἡ ἐπὶ τὰ κέντρα αὐτῶν |
τὸ δὲ μέλαν , τοσαῦται ἔσονται διαφοραὶ ὅσαι καὶ αἱ τομαὶ τοῦ πράγματος ὑπάρχουσιν . ὥστε φανερὸν ὅτι ὁρισμὸς οὐδέν | ||
τῆς ἐκ τοῦ κέντρου τετραγώνῳ . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι τομαὶ αἱ Α , Β , Γ , Δ , |
ΑΗΘ . Ἐὰν μιᾶς τῶν κατὰ συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ | ||
ἐπὶ ταὐτὰ τῷ κέντρῳ . Ἐὰν ἑκατέρᾳ τῶν ἀντικειμένων εὐθεῖαι συμπίπτωσι καθ ' ἓν ἐφαπτόμεναι ἢ κατὰ δύο τέμνουσαι , |
ἡμῶν τῷ μὲν ἡμετέρῳ τρόπῳ ξυνήθη τέ ἐστι καὶ οὐκ ἀνάρμοστοι πρὸς ἕκαστον αὐτῶν ἐσόμεθα : οἱ δ ' , | ||
γεννήματα αἱ ὁλόκληροι ἀρεταί , τὰ δὲ συγγενῆ φαύλων αἱ ἀνάρμοστοι κακίαι . μάθε δ ' , εἰ θέλεις , |
χρόνω δύνουσιν . ὁμοίως δὴ δείξομεν , ὅτι καὶ αἱ ΜΓ , ΑΗ περιφέρειαι ἐν ἴσῳ χρόνῳ δύνουσιν . καὶ | ||
τοῦ ζῳδιακοῦ κύκλου ] . δεῖ δὲ τὴν ἴσην τῇ ΜΓ ἀνατέλλουσαν μεταξὺ πάλιν εἶναι τῶν αὐτῶν παραλλήλων , διότι |
καὶ συναναιρεῖν τὰ κατὰ φύσιν τῷ παρὰ φύσιν . ἀνατρήσεως δοκιμασθείσης ἡ ἀκόλουθος ἐπιμέλεια ἐγκρινέσθω ἡ ῥηθησομένη ἐν τῷ περὶ | ||
μετὰ τὴν παντελῆ τοῦ ὑγροῦ ἔκκρισιν , τῆς ἀκολούθου ἀγωγῆς δοκιμασθείσης , συναρμογῶσιν αἱ ῥαφαί , ἀσμενίζειν δεῖ : ἐὰν |
ΨΣ , κοινὴ δὲ ἡ ΨΟ , βάσις δὲ ἡ ΒΟ βάσεως τῆς ΣΟ μείζων ἐστίν , καὶ γωνία ἡ | ||
ἐστὶ τῷ ΜΠ . καὶ κοινοῦ προστεθέντος ἢ ἀφαιρουμένου τοῦ ΒΟ τὸ ΒΠ ἴσον ἐστὶ τῷ ΞΣ . Ἐὰν ἐν |
ἐκβληθῇ , ἀπὸ δὲ τῆς κορυφῆς ἀναχθεῖσα εὐθεῖα παρὰ τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ | ||
τῇ ΑΓ . ἤχθω γὰρ ἀπὸ τοῦ Β παρὰ τεταγμένως κατηγμένην ἡ ΒΖ . ἔστιν ἄρα , ὡς τὸ ὑπὸ |
ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι αἱ ΚΡΛ , ΕΞΖ , ΑΝΒ , ΗΟΘ , ΓΠΔ περιφέρειαί | ||
ΚΡΛ , ΕΞΖ , ΑΝΒ ὅμοιαί εἰσι καὶ ἔτι αἱ ΚΡΛ , ΗΟΘ , ΓΠΔ ὅμοιαι ἀλλήλαις εἰσίν , αἱ |
ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται ὡς ἐπὶ τὰ Ξ μέρη . καὶ ἐπεὶ | ||
, ΒΖ κοινῇ τομῇ . ἡ δὲ κοινὴ τομὴ τῶν ΞΚΟ , ΒΖ ἐστιν ἡ ἀπὸ τοῦ Ο σημείου διάμετρος |
δ ' ὥσπερ ἡγεῖται σχεδόν . τὸ γὰρ παραθεῖναι κἀφελεῖν τεταγμένως ἕκαστα , καὶ τὸν καιρὸν ἐπὶ τούτοις ἰδεῖν , | ||
ἔφασαν , τίνος ἕνεκα τοὺς παῖδας συνεθίζομεν προσφέρεσθαι τὴν τροφὴν τεταγμένως τε καὶ συμμέτρως , καὶ τὴν μὲν τάξιν καὶ |
τί μὴ καὶ ταύτας ; λέγομεν οὖν ὅτι εἰ καὶ εὑρεθῶσιν ἐπὶ τούτων τῶν προτάσεων ἀληθεῖς τινες προτάσεις , ὡς | ||
καὶ μεθέξει δὴ παντός : ἐὰν δὲ ἐν ἑνὶ ζῳδίῳ εὑρεθῶσιν γʹ ἢ δʹ ἀστέρες , ἐν ἑτέρῳ δὲ εἷς |
ἐπιγίνεται , καὶ ἄνεμος μέγας πνεῖ . Ἐν δὲ τῇ ιζῃ Εὐδόξῳ Σκορπίος ἀκρόνυχος ὅλος δύνει . Καλλίππῳ Χηλαὶ ἄρχονται | ||
δὲ τῇ ιϚῃ ἡμέρᾳ Εὐδόξῳ ἐπισημαίνει . Ἐν δὲ τῇ ιζῃ Εὐκτήμονι Λύρα δύεται : καὶ ἔτι ὕει : καὶ |
στραγγουρία : ἐὰν δὲ κατὰ τὰ καλούμενα πλευρὰ γίγνηται ἡ οἴδησις . . . . . . . . . | ||
, ἰσχίων ὀδύνη , ὀφθαλμῶν διαστροφαὶ , τύφλωσις , ὀρχίων οἴδησις , μαζῶν ἄρσις . Ἢν , πυρετοῦ ἔχοντος , |
ΥΦ . ὁμοίως δὴ δειχθήσεται , ὅτι καὶ ἑκάστη τῶν ΒΧ , ΧΓ , ΓΦ ἑκατέρᾳ τῶν ΒΥ , ΥΦ | ||
ἄρα ἡ ΧΑ πρὸς ΑΞ , οὕτως ἡ ΞΒ πρὸς ΒΧ . καὶ διελόντι ὡς ἡ ΧΞ πρὸς ΞΑ , |
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ | ||
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς |
ἰαθῆναι : ἢν δ ' ἐν ᾧ τοῦτο ὁρᾶται , κρατηθῇ διὰ τὸ βραδέως αὐτὸν ἐπὶ τὸν θεραπεύσοντα ἐλθεῖν , | ||
τὴν πάθην οὐκ ἔλαβεν εὐπετὲς ὄργανον , ἵνα μὴ πάμπαν κρατηθῇ ὑπὸ τοῦ ἐσιόντος . Λοιπός ἐστιν ὁ λόγος ὁ |
, ἔπειτα διακοπτέσθω τὰ μεταξὺ τῶν τρημάτων διαστήματα τοῖς σμιλιωτοῖς ἐκκοπεῦσιν . μετὰ δὲ τὴν τοῦ ὀστέου ἀναίρεσιν ἡ ξύσις | ||
δὲ τῆς βάσεως , ὅλος ὁ παραπεφυκὼς δάκτυλος τοῖς σμιλιωτοῖς ἐκκοπεῦσιν ἐκκοπτέσθω , καὶ τότε ἡ ὑποκειμένη σκυταλὶς ξυστῆρι λειοποιείσθω |
ἐπεὶ δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΚΘ , ΘΛ ἴσαι εἰσίν , καὶ γωνία ἡ πρὸς τῷ Β | ||
καὶ ὡς ἡ ΕΘ πρὸς τὴν ΓΗ , οὕτως ἡ ΘΛ πρὸς τὴν ΗΚ : ἴσων μὲν ἄρα οὐσῶν τῶν |
καὶ συγχυθῇ : ἔστι δὲ καὶ αὐτὸ ἀνίατον . Ἡ σύμπτωσις ἐναντία ἐστὶ τῇ πλατυκορίᾳ , ὅταν συμπίπτῃ καὶ στενῶται | ||
πένω . Πότμος . ὁ θάνατος , καὶ ἡ ἐσχάτη σύμπτωσις τοῦ βίου . ἀπὸ τοῦ πεσεῖν . ἐπὶ δὲ |
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
. ιζ . Εὑρεῖν τέσσαρας ἀριθμοὺς ὅπως σὺν τρεῖς συντιθέμενοι ποιῶσι τοὺς ἐπιταχθέντας ἀριθμούς . Δεῖ δὴ τῶν τεσσάρων τὸ | ||
αὐτῶν ἀφιεῖσι πληγάς : ἀλλ ' ὡς ἂν αὐτοὺς ἐνδιατρίβειν ποιῶσι τοῖς ἀλγεινοῖς , τὰ πρὸς τὸν νῶτον μέρη καὶ |
ἐπὶ κλίνης τὰς φυσικὰς ἀνάγκας ἐπλήρου . Ἑνδεκάτῃ ἐπὶ τῇ ἐπιφανείᾳ τὸ παρυφιστάμενον ἐνήχετο λευκὸν μέν , ὑπόγλισχρον δὲ καὶ | ||
ὀρθὰς οὖσαν τῇ ΒΓ , καὶ πεποίηκε τομὴν ἐν τῇ ἐπιφανείᾳ τὴν ΔΕΖ , ἡ δὲ διάμετρος ἡ ΜΕ ἐκβαλλομένη |
ἐγκύμων λίθου ὑπάρχων , κατόχιον ἐμβρύων ἐϲτίν , ὅταν ὀλιϲθηραὶ ὦϲιν αἱ μῆτραι , περιαπτόμενοϲ ἀριϲτερῷ βραχίονι . ἐν δὲ | ||
ἔνιοι , ὥϲ τιναϲ αὐτῶν μὴ νοϲεῖν ϲυνεχῶϲ , ὅταν ὦϲιν εὐδιάπνευϲτοι , τὴν μὲν δὴ τοιαύτην φύϲιν ϲώματοϲ οὐ |
, καὶ ἐπιζευχθεῖσα ἡ ΚΔ ἐκβεβλήσθω καὶ συμπιπτέτω τῇ ΒΑ ἐκβληθείσῃ κατὰ τὸ Μ : λέγω ὅτι ἐστὶν ὡς ἡ | ||
καὶ ἐπιζευχθεῖσα μὲν ἡ ΔΛ ἐκβεβλήσθω καὶ συμπιπτέτω τῇ ΓΒ ἐκβληθείσῃ κατὰ τὸ Η , τῇ δὲ ΒΓ πρὸς ὀρθὰς |
ΖΕ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ . καὶ βάσις ἡ ΒΕ βάσει τῇ ΕΔ ἐστιν ἴση : τὸ γὰρ Ε σημεῖον | ||
ὑπὸ ΔΗΖ ἴση : καὶ βάσις μὲν ἄρα ἡ ΒΖ βάσει τῇ ΔΖ ἴση ἐστίν , γωνία δὲ ἡ ὑπὸ |
καὶ ΔΛ , κάθετοι δ ' ἤχθωσαν ἐπὶ μὲν τὴν ΓΖΘ ἐκβληθεῖσαν ἀπὸ τῶν Η καὶ Δ ἥ τε ΗΜ | ||
καὶ τῷ μεγέθει ἡ ΓΠ , καὶ διηγμέναι αἱ ΠΖΚ ΓΖΘ , ὥστε παράλληλον εἶναι τῇ ΓΠ τὴν ΚΘ , |
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |