ἑτέρωθι ἀνδρεῖός ἐστιν οὗτος ; πρὸς τοῖς “ θεσμοθέταις γραφὰς γραφόμενος , πρὸς τοῖς συνδίκοις ἀπογραφὰς ” ἀπογράφων . “ | ||
Δ διαστήματι δὲ ἑνὶ τῶν Ε , Ζ , Η γραφόμενος κύκλος τεμεῖ τὰς ΑΒ , ΒΓ , ΓΑ εὐθείας |
Βυζαντίου τῷ διὰ Μασσαλίας , ὁ δ ' αὐτὸς καὶ μεσημβρινός ἐστιν ὁ διὰ Βυζαντίου τῷ διὰ Βορυσθένους , ὅπερ | ||
καὶ ἐὰν μεταξὺ μύριοι στάδιοι ὑπάρχωσιν , ὁ αὐτὸς μένει μεσημβρινός , κατὰ δὲ τὴν ἀπ ' ἀνατολῆς πρὸς δύσιν |
ᾖ , μείζων φαίνεται ἡ ΔΚ τῆς ΓΖ . Ἔστω κύκλος , οὗ κέντρον τὸ Α , ὄμμα δὲ τὸ | ||
ἄρα χρόνῳ ἀνατέλλει τὰ ΜΔΝ , ΕΒΖ ἡμικύκλια . ἔστω κύκλος ὁρίζων ὁ ΑΒΔΓ , καὶ θερινὸς μὲν τροπικὸς ὁ |
τῶν ζῳδίων κύκλου τὸ Ε , καὶ κέντρῳ τῷ Β γεγράφθω ὁ ἐπίκυκλος τῆς σελήνης ὁ ΖΗΘ , περιαγέσθω δ | ||
πάλιν κέντρῳ τῷ Γ , διαστήματι δὲ τῷ ΓΒ κύκλος γεγράφθω ὁ ΔΚΒ , καὶ πάλιν κέντρῳ τῷ Α , |
μείζων ἐστὶν ἡ ΓΕ περιφέρεια τῆς ΕΔ περιφερείας . ὁ πόλῳ γὰρ τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος | ||
φανερὸς μὲν ἀεὶ κύκλος γίνεται ὁ πόλῳ μὲν τῷ βορείῳ πόλῳ τοῦ ἰσημερινοῦ , διαστήματι δὲ τῷ τοῦ πόλου ἐξάρματι |
διαγομένη εὐθεῖα μήτε τὴν τομὴν τέμνῃ κατὰ δύο σημεῖα μήτε παράλληλος ᾖ τῇ ἀσυμπτώτῳ , συμπεσεῖται μὲν τῇ ἀντικειμένῃ τομῇ | ||
κατὰ μῆκος τῆς φάλαγγος δεύτερον ζυγόν , καὶ ὁ τούτῳ παράλληλος ὑπ ' αὐτὸν τρίτον , καὶ τέταρτόν ἐστι τὸ |
, τουτέστιν καθ ' ἣν ὁ βόρειος πόλος τοῦ ὁρίζοντος ἐξῆρται μοίρας λϚ , τὴν ἀρχὴν τοῦ Καρκίνου λόγου χάριν | ||
ἀρκτικὸς αὐτοῖς κέκρυπται κύκλος , ὁ δ ' ἐναντίος ἴσον ἐξῆρται . Τούτων δὲ οὕτως ἐχόντων , ὁ ἥλιος , |
ὁ μέσος γὰρ ὁ ἐν αὐτῇ στέφανος τῇ ἀράχνῃ ὁ ζῳδιακὸς προσκέκληται κύκλος ὁ ἐν τῷ πόλῳ , μεμέρισται εἰς | ||
ΜΓ . ὅταν μὲν δὴ ἡ ΜΓ ἀνατέλλῃ , ὁ ζῳδιακὸς ἕξει θέσιν τινά : ἐχέτω τὴν ΠΝΞ . ὅταν |
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ | ||
γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ |
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ | ||
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν . |
, οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον | ||
. ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ |
. περὶ τῶν πρὸς τὸν αὐτὸν κύκλον τοῦ διὰ τῶν πόλων τοῦ ὁρίζοντος γινομένων γωνιῶν καὶ περιφερειῶν . ιγʹ . | ||
, ἐπειδὴ κατὰ τὰς τοιαύτας σχέσεις οἵ τε διὰ τῶν πόλων τοῦ ὁρίζοντος καὶ τοῦ κέντρου τῆς σελήνης γραφόμενοι μέγιστοι |
λαβεῖν , ὅτι οἱ ἔχοντες ἀρκτικὸν τὸν τροπικὸν ὑποπεπτώκασι τῷ γραφομένῳ κύκλῳ ὑπὸ τοῦ πόλου τοῦ ζωδιακοῦ κατὰ τὴν τοῦ | ||
ἔχοντι , ὑπὸ δὲ τοῦ πρώτου νοῦ τελειουμένῳ καὶ ἐντελεχείᾳ γραφομένῳ . τὸ γὰρ ἀμέριστον καὶ ἡνωμένον τῆς τελειότητος ἐκεῖθεν |
καὶ δεξιός ἐστιν ὁ τόπος κατὰ τρίγωνον στάσιν τῷ μεσουρανοῦντι κέντρῳ . σημαίνει δὲ ὁ τόπος τὰ πρὸς ὑπηρεσίαν συντείνοντα | ||
ἔλλοπος δὲ τοῦ ἰχθύος τουτέστι τῆς τρυγόνος : τῷ γὰρ κέντρῳ αὐτῆς χρώμενος ἀντὶ δόρατος ὁ Τηλέγονος ἀνεῖλε τὸν πατέρα |
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
δὲ πρὸς μεσημβρίαν δι ' ἐλάσσονος . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος | ||
σφαίρᾳ μέγιστος κύκλος τῶν αὐτῶν ἅπτηται , ὧν καὶ ὁ ὁρίζων ἅπτεται , στρεφομένης τῆς σφαίρας ἐφαρμόσει ἐπὶ τὸν ὁρίζοντα |
δὲ τῆς τοῦ Ἄρεως σφαίρας νοείσθω κατὰ τὰ αὐτὰ κύκλος ὁμόκεντρος τῷ ζῳδιακῷ φερόμενος ἐν τῷ ἐπιπέδῳ αὐτοῦ καὶ περὶ | ||
τξ καλείσθω τὰ τμήματα ἰδίως χρόνοι . ἔπειτα ἕτερος κύκλος ὁμόκεντρος αὐτῷ περιφερέσθω ἐν τῷ αὐτῷ ἐπιπέδῳ καὶ περὶ τὸ |
οὖν παράλληλός ἐστιν ἡ ΑΔ τῇ ΕΓ , ἡ ὑπὸ ΑΔΓ γωνία τῇ ὑπὸ ΕΓΔ ἴση ἐστί . δοθεῖσα δὲ | ||
κέντρον τὸ Β διὰ τῶν Α Γ κύκλος γεγράφθω ὁ ΑΔΓ , καὶ ἐκβε - βλήσθω ἡ ΑΒ ἐπὶ τὸ |
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
ΘΚΛ . λέγω , ὅτι ἡ μὲν ΕΗ περιφέρεια τῆς ΚΛ περιφερείας μείζων ἐστὶν ἢ ὁμοία , ἡ δὲ ΘΚ | ||
ἐπεζεύχθω ἡ ΗΚ : ἐπ ' εὐθείας ἄρα ἐστὶν τῇ ΚΛ πλευρᾷ τοῦ ἑξαγώνου , διὰ τὸ διμοίρου μὲν εἶναι |
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος γραφόμενος μὴ ἐρχέσθω διὰ τοῦ Γ , ἀλλ ' ὑπερπιπτέτω αὐτό : | ||
ἤτοι διὰ τοῦ ἑτέρου αὐτῶν ἢ δι ' οὐδετέρου . ἐρχέσθω πρότερον διὰ τοῦ Κ καὶ τεμνέτω τὴν ΖΗ κατὰ |
σημείῳ τότε τὴν σελήνην γινομένην ἐν τῷ δι ' Ἀλεξανδρείας παραλλήλῳ , καθ ' ὃν ἐποιούμεθα τὰς τηρήσεις , τὴν | ||
οὕτως ἐστὶν τὸ ἀπὸ ΑΔ πρὸς τὸ ἀπὸ ΘΚ ἐν παραλλήλῳ : ὁ ἄρα μοναχὸς καὶ μέγιστος λόγος ἐστὶν ὁ |
ὑποθεμένῳ λόγον τ ' οὐθενὶ προθέντες ἐπικυροῦσι τὴν γνώμην . γραφέντος δὲ τοῦ δόγματος εὐθὺς ἐξ ἑκάστης πόλεως τοὺς ἐπιφανεστάτους | ||
ἡλίου περὶ τὴν ιʹ μοῖραν ὄντος τοῦ Καρκίνου , καὶ γραφέντος περὶ τὸ Θ τοῦ ΚΛ ἐπικύκλου ἤχθωσαν μὲν ἀπὸ |
κεκλιμένοι . πάλιν , ἐπεὶ ἡ ἀπὸ τοῦ Ψ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς | ||
ταπεινότατός ἐστιν . ἐπεὶ γὰρ ἡ ἀπὸ τοῦ Ϡ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς |
ἔσται τῷ εὐθυγράμμῳ τῷ συγκειμένῳ ἐκ τῶν τριῶν τριγώνων τῶν ΒΖΗ ΒΖΚ ΕΚΖ . τὰ γὰρ ἀπὸ τῶν εὐθειῶν ἐφ | ||
δὲ ὑπὸ ΒΑΕ ἴση ἐστὶν τῇ ἐκτὸς τετραπλεύρου τῇ ὑπὸ ΒΖΗ : καὶ ἡ ὑπὸ ΘΖΒ ἄρα γωνία ἴση ἐστὶν |
κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ | ||
τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς |
. Τὸ δέ γε τοιοῦτον ἐκ πολλῶν μερῶν ὂν οὐ συμφωνήσει τῷ [ ὅλῳ ] λόγῳ . Μανθάνω . Πότερον | ||
καὶ φανερὸν ὡς καθ ' ἑκατέραν τὴν ὑπόθεσιν τὰ αὐτὰ συμφωνήσει μέγιστα καὶ πάλιν ἐλάχιστα καὶ μέσα εἶναι ἀποστήματα . |
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
: ποιήσει δὴ τομὴν κύκλον . Ἔστω αὐτοῦ ἡμικύκλιον τὸ αγβʹ : ἐὰν δὴ μενούσης τῆς αβʹ εὐθείας περιενεχθὲν τὸ | ||
συμπεριενεχθήσεται αὐτῷ καὶ ἡ γδʹ εὐθεῖα κατὰ πᾶσαν μετακίνησιν τοῦ αγβʹ ἡμικυκλίου διαμένουσα τῇ αβʹ εὐθείᾳ πρὸς ὀρθάς , καὶ |
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
[ ] καὶ | κωνικῶν ? [ ] καὶ | πλινθίων ? [ ] τὸ | πυραμοειδὲς [ ] | | ||
δὴ γνησίοις παισίν . οἱ κατατεταγμένοι ἔσονται κανόνες τῶν βʹ πλινθίων : πάλιν ἐν ἴσῳ διαστήματι τοῦ πλάτους συνηρμόσθησαν , |
ὁρίζοντι , ὅταν δὲ κατὰ τὸ Ο , δύνει τῷ ΔΒΓ ὁρίζοντι . Τὰ ἄρα ἀπλανῆ ἄστρα , ὅσα ἐστὶ | ||
ΠΞ : μεσημβρινὸς γάρ ἐστιν ὁ ΔΑΠ ἐν ἑκατέρῳ τῶν ΔΒΓ ΑΒΓ ὁριζόντων : λοιπὴ ἄρα ἡ ΜΝ ἴση ἐστὶν |
ἀστήρ . γεγράφθω γὰρ μείζων μέν , ὡς ἔφαμεν , ἔκκεντρος ὁ ΗΘ περὶ κέντρον ἐπὶ τῆς ΑΓ τὸ Κ | ||
σωματικούς τις ἐν ἐκκέντρῳ κατάγῃ ζῳδίῳ ἢ καὶ ὁ κύριος ἔκκεντρος τύχῃ ὑπὸ κακοποιῶν μαρτυρούμενος , ἐν ἀσθενείᾳ γενήσεται καὶ |
, ὥστε παραλλάξει τυχούσῃ ἅμα ἓξ ζῴδια καὶ δύσεται καὶ ἀνατελεῖ . Τοῖς ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν ὁ μεσημβρινὸς δίχα | ||
πρὸς τῷ Ε οἰκοῦσι πάντα τὰ ἄστρα καὶ δύσεται καὶ ἀνατελεῖ καὶ τὸν ἴσον χρόνον ἐνεχθήσεται ὑπέρ τε τὸν ὁρίζοντα |
ἡ ΓΖ , καὶ ὁ ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΖΕΗ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΒ τῇ ΒΓ | ||
τῶν Ε Γ ἀνεστάτωσαν ὀρθαὶ τῷ ἐπιπέδῳ τοῦ κύκλου αἱ ΖΕΗ ΓΛ , καὶ ἑκατέρα μὲν τῶν ΕΘ ΓΛ ἑξαγώνου |
μοῖρα μέρος τὸ δῦνον : οὗτος δ ' ἀνακυκλούμενος ὁ πόλος ἅπας πάλιν προσενυψοῖ τὴν πρώτιστον τὴν τοῦ Κριοῦ μοιρίτζαν | ||
κέντρον ἐστὶ τοῦ ΑΒΓ , τὸ δὲ Ζ ὁ ἕτερος πόλος . Ἐὰν ᾖ ἐν σφαίρᾳ κύκλος , ἡ διὰ |
καὶ Ὅμηρος : πέπλος δ ' ὅστις τοι χαριέστατος ἠδὲ μέγιστος . ὁ μέντοι ὀκτάσημος ῥυθμὸς οὗτος πολύς ἐστιν ἐν | ||
ἡ ΖΕ περιφέρεια τῇ ΕΗ περιφερείᾳ . Ἐὰν ἐν σφαίρᾳ μέγιστος κύκλος κύκλου τινὸς τῶν ἐν τῇ σφαίρᾳ ἐφάπτηται , |
δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω | ||
τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα |
δὲ τῇ τοῦ τετραγώνου πλευρᾷ γεγράφθω μεγίστου κύκλου τμῆμα τὸ ΖΗΘ . καὶ προσαναπεπληρώσθω τό τε ΕΓΗ τεταρτημόριον καὶ τὸ | ||
πρὸς τὸν ΖΗΘ κύκλον καὶ ἐξ οὗ ὃν ἔχει ὁ ΖΗΘ κύκλος πρὸς τὸ ὑπὸ τῶν ΖΒΘ εὐθειῶν καὶ τῆς |
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
δύο δοθεισῶν εὐθειῶν πρὸς ὀρθὰς ἀλλήλαις τῶν ΑΓ , ΓΛ γεγράφθωσαν ἀντικείμεναι αἱ ΖΑΗ , ΘΓΚ , ὧν διάμετρος μὲν | ||
διὰ τοῦ Α καὶ ἑκατέρου τῶν Μ Ν μέγιστοι κύκλοι γεγράφθωσαν : ἥξουσιν δὴ καὶ διὰ τοῦ ἑτέρου πόλου . |
, καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ | ||
ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ |
Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ . | ||
. ἀλλὰ καὶ διὰ τὸ τρεῖς εἶναι παραλλήλους τὰς ΔΕ ΛΜ ΗΘ ἴση γίνεται ἡ ΕΜ τῇ ΜΚ . εἴη |
τέσσαρσι τῆς οἰκουμένης μέρεσι , βορείῳ λέγω καὶ νοτίῳ καὶ ἑσπερίῳ καὶ ἑώῳ . Εἶτα γραμμῇ διελόντες τὴν ὅλην οἰκουμένην | ||
, νηπίη , ἥ ῥ ' ἐπίθησεν ὀιζυρῷ περ Ὀνείρῳ ἑσπερίῳ , ὃς φῦλα πολυτλήτων ἀνθρώπων θέλγει ἐνὶ λεχέεσσιν ἄδην |
μὲν αβ τοῦ γδ διπλάσιον , τὸ δὲ γδ τοῦ εζ τριπλάσιον . ἐπεὶ οὖν τὸ μὲν γδ τοῦ εζ | ||
γδ λόγου πηλικότης πολλαπλασιασθῇ ἐπὶ τὴν τοῦ γδ πρὸς τὸ εζ λόγου πηλικότητα , ποιεῖ τὴν τοῦ αβ πρὸς εζ |
ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
ἀπὸ τοῦ νότου . Καλοῖτο δ ' ἂν ἡ γραμμὴ ἰσημερινὸς , ὡς ἐπὶ ταύτῃ ἀεὶ ἰσημερίας γινομένης , καὶ | ||
δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν ΖΕΗ , ἰσημερινὸς δὲ κύκλος ἔστω ὁ ΖΘΗ : τὸ ἄρα ἀπολαμβανόμενον |
ἐπὶ τῶν ΑΒ ΓΔ , καὶ ἤχθωσαν κάθετοι αἱ ΕΖΗ ΘΚΛ , ἔστω δὲ ὡς ἡ ΕΗ πρὸς ΗΖ , | ||
δύο ὀρθῶν καὶ αὐταὶ κἀκεῖναι ] : ἔσται δὴ τὸ ΘΚΛ ἐπίπεδον κεκλιμένον πρὸς τὸ ΑΒΓΔ ἐν τῇ ὑπὸ ΘΓΑ |
ἡ περιφέρεια τῇ περιφερείᾳ ἴση , καὶ ὁ τομεὺς τῷ τομεῖ ἴσος . λέγω δή , ὅτι καί , ἐὰν | ||
ΕΘΝ τομεῖ . ἀλλὰ ὁ ΕΘΝ ἴσος ὑπετέθη τῷ ΒΗΛ τομεῖ . ὥστε καὶ ὁ ΒΗΛ τομεὺς ἴσος τῷ ΒΗΚ |
ὡς ἄρα τὸ ΑΒΕ πρὸς τὸ ΖΗΛ , οὕτως τὸ ΒΕΓ πρὸς τὸ ΗΛΘ καὶ τὸ ΕΓΔ πρὸς τὸ ΛΘΚ | ||
ὑπὸ τῶν ΑΕΔ τῷ ὑπὸ τῶν ΑΓΔ καὶ τῷ ὑπὸ ΒΕΓ . Τετμήσθω ἡ ΒΓ δίχα κατὰ τὸ Ζ σημεῖον |
τότε τὸ πέρας αὐτοῦ διεκβάλλεται διὰ τοῦ ὀπισθίου διαπήγματος μέσου τετρημένου . τί δὴ νῦν γίνεται ; πρός τινος τοῦ | ||
, καὶ τὸν ἀσκὸν κρεμάσας αἰωροίη , οὐδὲν διὰ τοῦ τετρημένου πνεῦμα χωρήσει , ἀλλ ' ὕδωρ , οὐ γὰρ |
ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ | ||
ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ |
προσπέσῃ τοῖς τρήμασι , τότε διέλκονται καὶ διεκβάλλονται διὰ τοῦ ὀπισθίου διαπήγματος τετρημένου , ὥστε νῦν εἶναι ἐκθέτων κάλων ἀρχὰς | ||
σε εἰδέναι θέμις , ὡς μνήμης μὲν ἀπώλεια , τῆς ὀπισθίου κοιλίας πεπονθυίας τοῦ ἐγκεφάλου ἕπεται , ἤτοι ποιᾶς τινος |
ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν , καὶ ἀπ ' αὐτῶν μέχρι Συήνης . , φησὶ δὴ [ . Ἵππαρχος ] τοῖς | ||
τοῦ οἰκείου κύκλου . Δεῖ οὖν ἀναγκαίως καὶ τὸ ἀπὸ Συήνης εἰς Ἀλεξάνδρειαν διάστημα πεντηκοστὸν εἶναι μέρος τοῦ μεγίστου τῆς |
ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον | ||
τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς |
: ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ | ||
χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου |
ἐστιν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΞΒ πρὸς ΒΧ : καὶ ὡς ἄρα ἡ ΧΑ πρὸς | ||
ἄρα ἴση ἐστὶν τῇ ΛΜ . ἔστι δὲ καὶ ἡ ΞΒ ἴση τῇ ΒΛ , διὰ τὸ τὸ Β σημεῖον |
ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας | ||
τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ |
μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ ὀξύ , τῷ δὲ | ||
, ὁ χρόνος ἐστίν , ἐν ᾧ προανατέλλει τῷ ΑΔΓ ὁρίζοντι , ὁ δὲ χρόνος , ἐν ᾧ τὴν ΛΒ |
, τοιούτων # λγ . τοσούτων ἐστὶν ἄρα καὶ ἡ ΛΤ τοῦ ζῳδιακοῦ περιφέρεια . ἐπεὶ οὖν καὶ ἐπὶ τῆς | ||
δὴ ἡ μὲν ΙΤ παρὰ τὴν ΔΠ , αἱ δὲ ΛΤ , ΜΥ παρὰ τὰς ΑΠ , ΟΡ . καὶ |
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
τῆς ἀληθείας ἐμμέτρως ἐπιβεβόηκέ σοι , εἰπὼν οὔτως : Εἰδωλοποιὲ Μάρκε , καὶ τερατοσκόπε , ἀστρολογικῆς ἔμπειρε καὶ μαγικῆς τεχνῆς | ||
τὴν δ ' ἐξουσίαν τοῦ κωλύειν τοὺς ἀκοσμοῦντας , ὦ Μάρκε Ὁράτιε , παρὰ τοῦ δήμου λαβόντες ἔχομεν , ὅτε |
σημεῖον στῇ καὶ ἡ εὐθεῖα , τότε νοουμένων αὐτῶν ἐν ἐπιπέδῳ δυνατὸν ἀπὸ τοῦ σημείου ἐπὶ τὴν εὐθεῖαν κάθετον ἀγαγεῖν | ||
ΨΧ καὶ ἡ ΒΓ τέμνουσιν ἀλλήλας , ἐν ἑνί εἰσιν ἐπιπέδῳ διὰ τὸ δεύτερον τοῦ ιαʹ : ἐν δὲ τῷ |
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
καὶ ὡς ἡ ΤΒ πρὸς τὴν ΒΛ , οὕτως ἡ ΟΖ πρὸς τὴν ΖΝ . δι ' ἴσου ἄρα ὡς | ||
τὸ ὑπὸ ΓΞΑ μετὰ τοῦ ἀπὸ ΑΕ καὶ τοῦ ἀπὸ ΟΖ , τουτέστι τοῦ ἀπὸ ΕΘ , πρὸς τὸ ὑπὸ |
ἡ ΤΠ τῇ ΠΕ ; ἀλλ ' ἡ ΠΕ τῇ ΠΗ ἴση : ἔχει δὴ σύγκρισιν : ἔστιν γὰρ μείζων | ||
ΛΚ ἄξων τῷ ΚΜ ἄξονι , ἴσος ἐστὶ καὶ ὁ ΠΗ κύλινδρος τῷ ΗΧ κυλίνδρῳ , εἰ δὲ μείζων ἐστὶν |
τοῦ τροπικοῦ , ὁ δὲ ἀριστερὸς τρίτῳ μέρει ἑνὸς ζῳδίου νοτιώτερός ἐστι τοῦ τροπικοῦ : ὁ μὲν γὰρ δεξιὸς ὦμος | ||
ἀλεκτρυόνες ὑπεράγαν οὐκ ᾄδουσιν ἐν τοῖς ὑγροῖς χωρίοις καὶ ἔνθα νοτιώτερός ἐστιν ὁ ἀήρ . ψυχροὶ δὲ ἄρα ὄντες τὴν |
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων | ||
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου |
κοινὴ τομὴ ἡ ΖΘ , τοῦ δὲ ΕΖΗΘ καὶ τοῦ ΕΚΗ κοινὴ τομὴ ἡ ΕΗ . καὶ ἐπεὶ ἐν σφαίρᾳ | ||
' οὗ ΕΚΒΗ περιλήψεται κύκλος . : τὸ μὲν γὰρ ΕΚΗ τρίγωνον περιλήψεται κύκλος : ἔχομεν γὰρ ἐν τῷ πέμπτῳ |
τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς | ||
πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως |
, κοινὴ προσκείσθω ἡ ΝΚΜ περιφέρεια : ὅλη ἄρα ἡ ΛΚΜ περιφέρεια ὅλῃ τῇ ΝΚΜΞ περιφερείᾳ ἐστὶν ἴση . ἡμικυκλίου | ||
, καὶ διὰ τοῦ Κ ἤχθω πλευρὰ τοῦ κυλίνδρου ἡ ΛΚΜ εὐθεῖα πίπτουσα ἐπὶ τὰς ΕΗ , ΖΘ περιφερείας ἐκβαλλομένη |
ἀέρι διὰ παντὸς φαινόμενος , διὰ δὲ τὴν λευκόχροιαν ὀνομαζόμενος γαλαξίας . καὶ τῶν Πυθαγορείων τινὲς ἀστέρος εἶναι διάκαυσιν ἐκπεσόντος | ||
μὲν γράφονται πρὸς αἴσθησιν , ὅ τε ζωιδιακὸς καὶ ὁ γαλαξίας , οἱ δὲ ὁρίζοντες ἐπινοίαι μόνον λαμβάνονται , τῶν |
μέγιστον κύκλον . ποιείτω τὸν ΕΓΔΖ , ἐν δὲ τῷ κώνῳ εὐθείας τὰς ΑΓ , ΑΔ , ΔΓ : ὁ | ||
, ΒΕΖ τρίγωνα ἴσα ἀλλήλοις ἐστίν . ἔστω τῷ ΑΗΓΔ κώνῳ ἰσοϋψὴς ὁ ΚΘΕΖ κῶνος . ἐπεὶ οὖν , ὡς |
ἀναφερομένης : ἡλίκη γάρ ἐστιν ἡ μεταξὺ τῶν μερῶν τούτων περιφέρεια τούτου ἐπὶ τοῦ ὁρίζοντος , τηλικαύτη ἐστὶν ἡ κατὰ | ||
νβ , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς ΒΛ περιφέρεια τοιούτων β νβ , οἵων ἐστὶν ὁ περὶ τὸ |
γὰρ ὄντος τοῦ ΑΕΓ , οὗ διάμετρος ἡ ΑΓ , διχοτομία δὲ τὸ Ε , καὶ κέντρον τὸ Ζ , | ||
λαιὸν εὐώνυμον λέγεται κέρας καὶ οὐρά . αὕτη δὲ ἡ διχοτομία τοῦ μήκους ὀμφαλὸς προσαγορεύεται καὶ στόμα καὶ ἀραρός . |
' οὗ γραφήσεται ὁ ἀφορίζων τὸ βόρειον πέρας καὶ διὰ Θούλης τῆς νήσου πίπτων . Καὶ δὴ προσεκβαλόντες τὴν ἐπ | ||
Εἶτα ὁ εἰκοστὸς πρῶτος ὁ βορειότερος , ὁ καὶ διὰ Θούλης γραφόμενος , οὗ βορειότερον οὐδὲν ἐγνωρίσθη παρὰ ἀνθρώπων , |
δγ . καὶ ἐπεὶ ὁ δὶς ἐκ τῶν αδ , δβ μετὰ τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν αδ , | ||
δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , αἱ ἄρα ὑπὸ δαε , δβε ὀρθαί εἰσιν |
λ , ἡ δὲ ΔΕ ρκ , τοιούτων ἐστὶν ἡ ΓΕ εὐθεῖα α κ κγ . τῶν δὲ αὐτῶν ἐδείχθη | ||
τῆς παρούσης καταγραφῆς τὸ ἕτερον εἶδός ἐστιν : ἡ γὰρ ΓΕ ἴση ἐστὶ τῇ ΔΒ . τέμνουσαν ἔλαβεν ὁ στοιχειωτὴς |
ἔχρῃζον : τὸ γὰρ ὅμως ἐναντιωτικὸν ὂν παρίστησι τὸν Ταλθύβιον πολοῦ τὴν ζωὴν τιμώμενον , ὅσα καὶ φίλαυτον γέροντα : | ||
ἐν ἱεροῖς βλασφημούντων . Ῥωπικὸν ὤνιον : ἐπὶ τῶν εὐτελῶν πολοῦ πιπρασκομένων . Σαλαμινία ναῦς : ἐπὶ τῶν ταχέων : |
ἐπὶ τὸ εʹ παραγενόμενος τὴν ἑῴαν ἀνατολὴν ποιεῖ τῷ δʹ ἄστρῳ καὶ διὰ ἡμερῶν τριάκοντα : ἑνὸς γὰρ ζῳδίου δίεισιν | ||
τι τῶν ἀπλανῶν ἀνατελλέτω τὸ δʹ : τῷ ἄρα δʹ ἄστρῳ ἀληθινή ἐστιν ἑῴα ἐπιτολή : λέγω ὅτι τοῦ δʹ |
λοξὸν κύκλον περιφέρειαι , ἥ τε ΡΔ ἐστὶν καὶ ἡ ΡΕ : γωνίαι δὲ ἥ τε Ζ καὶ ἡ Η | ||
ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ , καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΕΞ , |
. καὶ διὰ τοῦ Θ καὶ τοῦ Ζ πόλου λοξοῦ κύκλου γεγράφθω μεγίστου κύκλου περιφέρεια ἡ ΖΘΗ . τὸ ἄρα | ||
κατὰ τὸν τοῦ ὁρίζοντος πόλον ὑποκειμένου , καὶ τοῦ ΑΒΓ κύκλου ζῳδιακοῦ πρὸς ὀρθὰς τῷ ΖΒΕ διαμένοντος . Ἐὰν δὲ |
δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΗΘ , ΒΗΘ δυσὶν ὀρθαῖς ἴσαι , αἱ ἄρα ὑπὸ | ||
κοινὴ ἀφῃρήσθω ἡ ὑπὸ ΒΗΘ : λοιπὴ ἄρα ἡ ὑπὸ ΑΗΘ λοιπῇ τῇ ὑπὸ ΗΘΔ ἐστιν ἴση : καί εἰσιν |
ΑΓ . καὶ ἐπεὶ τὸ ΑΒΓ ὀρθογώνιόν ἐστιν , ἐν ἡμικυκλίῳ ἄρα ἐστίν , οὗ διάμετρος ἡ ΑΓ : περιγραφὲν | ||
ὥστε καὶ ἡ πρὸς τῷ Ε ὀρθή ἐστιν : ἐν ἡμικυκλίῳ ἄρα ἐστίν : διάμετρος ἄρα ἐστὶν ἡ ΑΘ . |
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
δύναμιν θέσθαι τὴν ἡμετέραν σπουδάσωμεν καὶ ὥσπερ ὑπ ' ὄψιν ἀγάγωμεν . Δείκνυσι γάρ σου περιφανῶς τὴν ψυχήν , περὶ | ||
, καὶ γίνονται πεντάκις ε κε . ἐὰν τοίνυν διάμετρον ἀγάγωμεν ἐν τῷ τετραγώνῳ , ὅ ἐστι διαγώνιον , τὸ |
μίαν καὶ τὴν αὐτὴν εὐθεῖαν γίνεσθαι τὴν ἀπό τε τοῦ κέντρου τῆς γῆς καὶ τῆς ὄψεως τοῦ θεωροῦντος ἐπὶ τὸ | ||
τῷ κέντρῳ τριγώνου ἴσον ἔσται τῷ ἀπὸ τῆς ἐκ τοῦ κέντρου τριγώνῳ ὁμοίῳ τῷ ἀποτεμνομένῳ . ἔστω ὑπερβολὴ ἢ ἔλλειψις |
ἡ ὑπὸ ΒΑΞ τῇ ὑπὸ ΕΔΖ ἴση , ἡ δὲ ΞΟ τῇ ΘΚ , ἡ δὲ ΟΠ τῇ ΜΝ . | ||
περὶ διάμετρον τὴν ΚΝ κύκλος γραφόμενος ὀρθὸς ὢν πρὸς τὴν ΞΟ ὁρίζων ἐστὶ τοῖς πρὸς τῷ Ε οἰκοῦσιν . Ἐπεὶ |
: τὰ μικρὰ ξύλα τὰ ὡσανεὶ ἧλοι πεπηγμένα ἐν τῷ ἄξονι : θραύων δὲ σάρκας : ἀντὶ τοῦ θραυόμενος . | ||
. αἱ χνόαι ἢ τὰ ἐμβαλλόμενα [ πρὸς ] τῷ ἄξονι , ὥστε μὴ ἐξιέναι τὸν τροχόν : ἄλλως : |
, τὸν δ ' ὑπὸ δεικήλοισι δυώδεκα παμφαίνοντα Ζωδιακόν : λοξοὶ δ ' ἐπαμοιβαδὶς ἐζώσαντο οὐρανὸν ἀμφότεροι δίχα τέμνοντές σφεας | ||
. ἔτι δὲ ὁ τοῦ γάλακτος κύκλος καὶ ὁ ζῳδιακὸς λοξοὶ ὄντες πρὸς τοὺς παραλλήλους κύκλους καὶ τέμνοντες ἀλλήλους ἐν |
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
καὶ διὰ τοῦ π , καὶ ὁ αὐτὸς ἔσται τῷ εζηκ ἐπικύκλῳ . γεγράφθω οὖν ὁ πρχ : ἐπεὶ οὖν | ||
ἐπὶ τὰ αὐτὰ τούτῳ φερόμενος ὁμοίως τεταρτημοριαίαν ἐνηνέχθω περιφέρειαν τοῦ εζηκ τὴν εζ : ἔσται οὖν ἐπὶ τοῦ π , |
, τήν τε ἀριθμητικήν , ἣ τῷ ἰσαρίθμῳ ὑπερέχει καὶ ὑπερέχεται , οἷον ἐπὶ τοῦ ἓν καὶ δύο καὶ τρία | ||
δὲ πάντες οἱ τὴν μείζονα μερικὴν ἔχοντες : ἐπεὶ γὰρ ὑπερέχεται τὸ Α ὑπὸ τοῦ Β , ὑπερεχέσθω τὸ Α |
ἐκτίσθη δὲ τὸ ἱερὸν πρὸς εὔκλειαν τοῦ νοῦ καὶ ὁ ἁγιώτατος μὲν νεὼς πρὸς ἀποκάλυψιν τῆς αὐτοῦ σοφίας . πεπλήρωται | ||
, ὃ κέκληκεν αὐλήν , τιθέναι χωρίς , ἀπολειφθήσεται ὁ ἁγιώτατος πεντηκοντάδος ἀριθμός , δύναμις ὢν τοῦ ὀρθογωνίου τριγώνου , |
κέντρου οὖσαν δίχα τέμνουσα : ὥστε καὶ πρὸς ὀρθὰς αὐτὴν τεμεῖ , καὶ ἐὰν πρὸς ὀρθὰς αὐτὴν τέμνῃ , καὶ | ||
τῶν πόλων τέμνει , δίχα τε αὐτὸν καὶ πρὸς ὀρθὰς τεμεῖ . καί ἐστι κοινὴ τομὴ αὐτῶν ἡ ΒΓ : |
γζʹ αἱ γʹ νικῶσιν . γηʹ αἱ ηʹ νικῶσιν . γθʹ αἱ γʹ νικῶσιν . δδʹ ὁ ἐγκαλούμενος νικᾷ καὶ | ||
ἐστὶν ἡμίσους ζῳδίου . Καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ γθʹ , καὶ ἡ ηγκʹ , καὶ ἔτι ἥ τε |
ιδ ∠ ʹιβ , καὶ διέστηκεν Ἀλεξανδρείας πρὸς δύσεις ὥρας γεʹ . Τῆς δὲ Ἀχαΐας αἱ μὲν Βοιώτιαι Θῆβαι τὴν | ||
ἐνιαυτοῦ , ὁ χρόνος ἐστὶν ἐν ᾧ ὁ ἥλιος τὴν γεʹ περιφέρειαν διαπορεύεται . Καὶ ἐπεὶ τοῦ δʹ ἄστρου ἀνατέλλοντος |
φυσᾶν . Κύκλοι δέ εἰσι τὸν ἀριθμὸν ιαʹ , ἀρκτικὸς ἀνταρκτικὸς τροπικοὶ δύο ἰσημερινὸς ὁρίζων μεσημβρινὸς ζωιδιακὸς γαλαξίας κόλουροι δύο | ||
τέσσαρες δὲ ἐλάττονες , οὐδαμῶς ἀλλήλων ἐφαπτόμενοι , ἀρκτικὸς καὶ ἀνταρκτικὸς καὶ θερινὸς καὶ χειμερινός . καὶ ἄλλα τοιαῦτα ἐν |