, ὥστε παραλλάξει τυχούσῃ ἅμα ἓξ ζῴδια καὶ δύσεται καὶ ἀνατελεῖ . Τοῖς ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν ὁ μεσημβρινὸς δίχα | ||
πρὸς τῷ Ε οἰκοῦσι πάντα τὰ ἄστρα καὶ δύσεται καὶ ἀνατελεῖ καὶ τὸν ἴσον χρόνον ἐνεχθήσεται ὑπέρ τε τὸν ὁρίζοντα |
διαπορευομένου ἐν τῷ ὑπὸ γῆν , τὸ βʹ ἄστρον καὶ δύσεται καὶ ἀνατελεῖ . Τοῦ ζῳδιακοῦ ἓν δωδεκατημόριον ἐν ᾧ | ||
ὥστε τοῦ Ζ ἀνατέλλοντος κατὰ τὸ Κ σημεῖον τὸ Θ δύσεται κατὰ τὸ Ν καὶ ὁ τῶν ζῳδίων κύκλος θέσιν |
ἐν ᾧ ὁ ἥλιος τὴν ΖΘ περιφέρειαν διαπορεύεται . Καὶ συνανατέλλει τῷ Ζ : συνδύνει ἄρα τῷ Θ : ὥστε | ||
φησιν ἀνατέλλειν . . . . . . , Βορρόθεν συνανατέλλει τὰ λειπόμενα τῆς Ἀνδρομέδας καὶ τὰ λοιπὰ τοῦ Περσέως |
ἡ ΓΖ , καὶ ὁ ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΖΕΗ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΒ τῇ ΒΓ | ||
τῶν Ε Γ ἀνεστάτωσαν ὀρθαὶ τῷ ἐπιπέδῳ τοῦ κύκλου αἱ ΖΕΗ ΓΛ , καὶ ἑκατέρα μὲν τῶν ΕΘ ΓΛ ἑξαγώνου |
τέσσαρσι τῆς οἰκουμένης μέρεσι , βορείῳ λέγω καὶ νοτίῳ καὶ ἑσπερίῳ καὶ ἑώῳ . Εἶτα γραμμῇ διελόντες τὴν ὅλην οἰκουμένην | ||
, νηπίη , ἥ ῥ ' ἐπίθησεν ὀιζυρῷ περ Ὀνείρῳ ἑσπερίῳ , ὃς φῦλα πολυτλήτων ἀνθρώπων θέλγει ἐνὶ λεχέεσσιν ἄδην |
ὁρίζοντι , ὅταν δὲ κατὰ τὸ Ο , δύνει τῷ ΔΒΓ ὁρίζοντι . Τὰ ἄρα ἀπλανῆ ἄστρα , ὅσα ἐστὶ | ||
ΠΞ : μεσημβρινὸς γάρ ἐστιν ὁ ΔΑΠ ἐν ἑκατέρῳ τῶν ΔΒΓ ΑΒΓ ὁριζόντων : λοιπὴ ἄρα ἡ ΜΝ ἴση ἐστὶν |
περιχώρῳ εὑρεθήσεται , καὶ θᾶττον εἰ ἐν τῷ ὑπὲρ γῆν ἡμισφαιρίῳ τύχῃ ὥσπερ βραδύτερον εἰ ἐν τῷ ὑπὸ γῆν . | ||
τοῖς λαιοῖς , καὶ ἡ Σελήνη δὲ ἐν τῷ βορείῳ ἡμισφαιρίῳ τὰ δεξιά : ἀνερχομένη γὰρ τὰ βόρεια σημαίνει ἕως |
μείζων ἐστὶν ἡ ΓΕ περιφέρεια τῆς ΕΔ περιφερείας . ὁ πόλῳ γὰρ τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος | ||
φανερὸς μὲν ἀεὶ κύκλος γίνεται ὁ πόλῳ μὲν τῷ βορείῳ πόλῳ τοῦ ἰσημερινοῦ , διαστήματι δὲ τῷ τοῦ πόλου ἐξάρματι |
ὅλῃ τῇ εγζʹ ἐστὶν ἴση : ἡμικύκλιον δέ ἐστιν τὸ αεγʹ : ἡμικύκλιον ἄρα ἐστὶ καὶ τὸ εγζʹ . Καὶ | ||
τὸ εγζʹ ἡμικύκλιον ἐν ἡμίσει ἐνιαυτοῦ , ἐπειδήπερ καὶ τὸ αεγʹ : τῷ ἄρα αʹ ἄστρῳ ἀπὸ ἑῴας φαινομένης ἐπιτολῆς |
τὴν γζʹ περιφέρειαν διαπορεύεται : λέγω ὅτι τοῦ ἡλίου τὴν γζʹ περιφέρειαν διαπορευομένου ἐν τῷ ὑπὸ γῆν τὸ βʹ ἄστρον | ||
ἐνιαυτοῦ , ὁ χρόνος ἐστὶν ἐν ᾧ ὁ ἥλιος τὴν γζʹ περιφέρειαν διαπορεύεται : λέγω ὅτι τοῦ ἡλίου τὴν γζʹ |
ὡρῶν ιδ ∠ ʹ : ὁ ἐν τῷ ἐμπροσθίῳ δεξιῷ βατραχίῳ τοῦ Κενταύρου κρύπτεται . κηʹ . ὡρῶν ιγ ∠ | ||
, ὁ καλούμενος Κάνωβος , ὁ ἐν τῷ ἐμπροσθίῳ δεξιῷ βατραχίῳ τοῦ Κενταύρου . βʹ μεγέθους ἕτεροι ιε : ὁ |
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
ὁρίζοντι . Τὸ Θ ἄρα τοῖς πρὸς ἀνατολὰς οἰκοῦσι πρότερον ἀνατέλλει καὶ πρότερον δύνει . Λέγω δή , ὅτι καί | ||
τὸ πρότερον ἀνατέλλον πρότερον δύνει καὶ τὸ πρότερον δῦνον πρότερον ἀνατέλλει . ἔστω ἀνατολικὰ μὲν τὰ Γ μέρη , δυτικὰ |
δὲ καὶ τοῦτο , ποῖον τῶν φώτων ἐν τῇ γενέσει στρεφομένης τῆς τοῦ παντὸς φορᾶς πρῶτον ἔρχεται εἰς τὸ ὑπόγειον | ||
. καὶ οἱ μὲν διὰ τῶν πόλων τῆς σφαίρας πάντες στρεφομένης τῆς σφαίρας ἐφαρμόζουσιν ἑαυτοῖς , οἱ δὲ λοξοὶ πάντες |
οὖν παράλληλός ἐστιν ἡ ΑΔ τῇ ΕΓ , ἡ ὑπὸ ΑΔΓ γωνία τῇ ὑπὸ ΕΓΔ ἴση ἐστί . δοθεῖσα δὲ | ||
κέντρον τὸ Β διὰ τῶν Α Γ κύκλος γεγράφθω ὁ ΑΔΓ , καὶ ἐκβε - βλήσθω ἡ ΑΒ ἐπὶ τὸ |
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν , ἔσται ὡς ὁ | ||
ΥΤ τὴν ΩΨ καὶ τὰς λοιπάς , καὶ ἐπιζεύξαντες τὰς ΡΧ ΥΩ ΤΨ ἕξομεν τὰς τῶν ὀδόντων λοξώσεις . καὶ |
ἐπειδήπερ ἐὰν κέντρῳ τῷ Β καὶ διαστήματι τῷ ΑΒ κύκλον γράψωμεν , αἱ διάμετροι ἀνίσους ἀπολήψονται τοῦ κύκλου περιφερείας . | ||
ἐὰν διὰ τοῦ Κ πόλου τοῦ ὁρίζοντος καὶ τοῦ Ε γράψωμεν τὸ ΚΘ τεταρτημόριον , γίνεται ἡ ὑπὸ ΚΕΘ γωνία |
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
τουτέστιν ἀπὸ ὁμοίων ὅμοια . Καὶ λοιποὶ Ϟοὶ τρεῖς ἴσοι Ϟῷ ἑνὶ καὶ μονάσι μ . Εἶτα διὰ τὸ μὴ | ||
Τὰ δὲ ἐλάσσονα γίνεται Ϟ Ϛ ↑ μο σμ ἴσα Ϟῷ ἑνὶ μονάσιν π . Ἀπὸ ὁμοίων ὅμοια . Γίνονται |
νότια : καὶ τὰ μὲν ἀφανῆ , τὰ δ ' ἀειφανῆ γένοιτ ' ἂν αὐτῷ τῶν περὶ τοὺς πόλους ἄστρων | ||
λόγον καὶ ἕτερα μέρη πρὸς τῶι Καρκίνωι γίνοιτ ' ἂν ἀειφανῆ τοῦ ζωιδιακοῦ . καὶ οὕτως , ἐφ ' ὅσον |
ὁ μέσος γὰρ ὁ ἐν αὐτῇ στέφανος τῇ ἀράχνῃ ὁ ζῳδιακὸς προσκέκληται κύκλος ὁ ἐν τῷ πόλῳ , μεμέρισται εἰς | ||
ΜΓ . ὅταν μὲν δὴ ἡ ΜΓ ἀνατέλλῃ , ὁ ζῳδιακὸς ἕξει θέσιν τινά : ἐχέτω τὴν ΠΝΞ . ὅταν |
ὡροσκόπος Σκορπίῳ , Κρόνος Λέοντι , Ζεὺς Καρκίνῳ , Ἄρης Αἰγόκερῳ , Ἀφροδίτη Ζυγῷ . οἱ κλῆροι Σκορπίῳ : γέγονε | ||
Σελήνη Σκορπίῳ , Κρόνος Καρκίνῳ , Ζεὺς Ζυγῷ , Ἀφροδίτη Αἰγόκερῳ , Ἄρης ὡροσκόπος Παρθένῳ . ὁ μὲν οὖν Κρόνος |
ἐν τῷ ὑπὲρ γῆν αὐτὴν διελεύσεται : ὥστε καὶ τὴν ζαʹ : τοῦ ἄρα ἡλίου τὴν ζαʹ περιφέρειαν ἐν τῷ | ||
ἄστρον καὶ δύσεται καὶ ἀνατελεῖ : ὥστε τοῦ ἡλίου τὴν ζαʹ περιφέ - ρειαν διαπορευομένου ἐν τῷ ὑπὸ γῆν , |
δὲ καὶ δωδεκάτην , μέχρι διπλῆς ἑπτάδος τε ἄνεμοι ἐκ Δελφῖνος , τὴν πεντεκαιδεκάτην τε ἀνίσχουσι συντόμως οἱ ὦμοι τοῦ | ||
δὲ ὁ Ἀετὸς ἐν τρίτῳ μέρει ὥρας . Τοῦ δὲ Δελφῖνος δύνοντος συγκαταδύνει μὲν ὁ ζῳδιακὸς ἀπὸ [ τοῦ ] |
. Διὰ γὰρ τῶν πόλων τῆς σφαίρας κύκλος μένων ὁ αβγʹ ὁριζέτω τό τε φανερὸν τῆς σφαίρας καὶ τὸ ἀφανές | ||
δὲ αἰεὶ φανερῶν ἔστω ὁ αδʹ , ὧν ἐφάπτεται ὁ αβγʹ ὁρίζων , καὶ γεγράφθω τις μέγιστος κύκλος ἐφαπτόμενος τῶν |
. Ὅταν δὲ ὁ Ὄφις δύνῃ , ὃν ἔχει ὁ Ὀφιοῦχος , συγκαταδύνει μὲν αὐτῷ ὁ ζῳδιακὸς ἀπὸ Σκορπίου μοίρας | ||
Ὠρίων . . . . Βορρόθεν δὲ δύνει Ἀρκτοφύλαξ , Ὀφιοῦχος πλὴν τῆς κεφαλῆς καὶ τοῦ Στεφάνου τὸ ἥμισυ . |
Ἐπεὶ γὰρ ἐν ἴσῳ χρόνῳ ἀνατέλλει τὸ ΒΘΓ ἡμικύκλιον τῷ ΘΓΗ , κοινὸς ἀφῃρήσθω ὁ τῆς ΘΓ περιφερείας ἀνατολικὸς χρόνος | ||
ἡμικύκλιον : ἐν ἴσῳ ἄρα χρόνῳ τὸ ΒΘΓ ἡμικύκλιον τῷ ΘΓΗ ἡμικυκλίῳ ἀνατέλλει . Διὰ τὰ αὐτὰ δὴ καὶ τὸ |
τὸ ἴσον λέγεται διχῶς , κατὰ ἕνα μὲν τρόπον τὸ ἰσομέγεθες καὶ μήτε ὑπερέχον ἐκείνου τοῦ ᾧ λέγεται ἴσον μήτε | ||
Ἴσον , ἰσάριθμον , ἰσοπληθές , ἰσοτελές , ἰσόμηκες , ἰσομέγεθες , ἰσομέτρητον , ἰσοστάσιον , ἰσόσταθμον , ἰσόνομον , |
τῇ λκʹ ἴση ἐστίν : ἡμίσους δὲ ζῳδίου ἐστὶν ἡ δεʹ : ἡμίσους ἄρα καὶ ἡ λκʹ : τοῦ ἄρα | ||
δλʹ , καὶ κοινὴ ἡ λεʹ : ὅλη ἄρα ἡ δεʹ ὅλῃ τῇ λκʹ ἴση ἐστίν : ἡμίσους δὲ ζῳδίου |
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν | ||
πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον |
πρὸς τῷ θʹ τὸ εʹ ἄστρον οὐ φαίνεται ἀνατέλλον : προανατέλλει γὰρ αὐτοῦ τὸ θʹ [ τουτέστιν ὁ ἥλιος ] | ||
εἰς τὰ ἑπόμενα μετέβη , ὁ δ ' ἀστὴρ τοσοῦτον προανατέλλει τοῦ ἡλίου , ὅσον ὁ ἥλιος ἐν ταῖς δυσὶν |
τῇ ὑπὸ ΔΖΕ γωνίᾳ . ἔστιν δὲ καὶ ἡ ὑπὸ ΑΖΓ γωνία τῇ ὑπὸ ΒΖΕ γωνίᾳ : ὅλη ἄρα ἡ | ||
καὶ ἐπεζεύχθωσαν αἱ ΔΚ ΚΒ ΚΕ ἐπεὶ οὖν τὸ ὑπὸ ΑΖΓ μετὰ τοῦ ἀπὸ ΖΚ ἴσον ἐστὶν τῷ ἀπὸ ΑΚ |
, ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη ἄρα τῶν ἀνεσταμένων πυραμίδων μείζων | ||
τὸ ΕΖΗΘ , καὶ ἀνεστάτω ἀπὸ τοῦ ΕΖΗΘ τετραγώνου πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἡ ἄρα ἀνεσταμένη πυραμὶς μεῖζόν ἐστιν |
τινες , ἐν ταῖς βασιλικαῖς αὐλαῖς αὐτὸν διεχρήσαντο πέμπτῳ καὶ τεσσαρακοστῷ τῆς ἡλικίας ἔτει , τῆς βασιλείας δὲ δεκάτῳ καὶ | ||
ἐκ Κρήτης ἐποίκους ἀγαγόντες κοινῇ ἔκτισαν , ἔτει πέμπτῳ καὶ τεσσαρακοστῷ μετὰ Συρακουσῶν οἴκισιν . καὶ τῇ μὲν πόλει ἀπὸ |
τὸ μὲν ΑΒ τῷ ΕΗ , τὸ δὲ ΓΔ τῷ ΘΙ , ἀσύμμετρον ἄρα ἐστὶ καὶ τὸ ΕΗ τῷ ΘΙ | ||
πλάτος ποιοῦν τὴν ΕΘ , τῷ δὲ ΓΔ ἴσον τὸ ΘΙ πλάτος ποιοῦν τὴν ΘΚ . καὶ ἐπεὶ μέσον ἐστὶν |
ἀπὸ Καρκίνου μοίρας ηʹ μέσης ἕως Λέοντος ιθʹ μέσης : μεσουρανεῖ δὲ ἀπὸ Ἰχθύων κʹ ἕως Ταύρου ιβʹ μέσης . | ||
Κριοῦ μοίρας ζʹ καὶ κʹ μέσης ἕως Ταύρου ιδʹ : μεσουρανεῖ δὲ ἀπὸ Καρκίνου μοίρας λʹ ἕως Λέοντος μοίρας αʹ |
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
φανερὸν ἡμισφαίριον , ὁ χρόνος ἐστίν , ἐν ᾧ ἡ ΖΕΚ ἐξαλλάττει τὸ φανερὸν ἡμισφαίριον : αἱ ΖΕΚ , ΕΚΛ | ||
ΖΕΚ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον . Ἐν ᾧ ἄρα ἡ ΖΕΚ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον , ὁ ἥλιος μείζονά τινα |
ἐπὶ γραμμῇσι , Γάδειρά τε καὶ στόμα Νείλου , ἔνθα βορειότατος πέλεται μυχὸς Αἰγύπτοιο καὶ τέμενος περίπυστον Ἀμυκλαίοιο Κανώβου : | ||
ιʹ μοίρας μέσης . καὶ πρῶτος μὲν ἀστὴρ ἀνατέλλει ὁ βορειότατος τῶν ἐν τῇ δεξιᾷ πτέρυγι ἔσχατος δὲ ὁ νοτιώτατος |
, ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν αεγζʹ , καὶ ἔστω ὑπὸ γῆν τὸ αεγʹ ἡμικύκλιον , | ||
, ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν αεγζʹ , καὶ τοῦ ἡλίου ἀνατέλλοντος κατὰ τὸ αʹ ἄστρον |
λαμπρὸς τοῦ νοτίου Ἰχθύος ἐπιτέλλει , καὶ ὁ ἐν τῷ ἐμπροσθίῳ δεξιῷ βατραχίῳ τοῦ Κενταύρου ἑῷος δύνει . Αἰγυπτίοις ταραχώδης | ||
ὡρῶν ιδ : Κύων κρύπτεται , καὶ ὁ ἐν τῷ ἐμπροσθίῳ δεξιῷ βατραχίῳ τοῦ Κενταύρου ἑσπέριος ἀνατέλλει . Αἰγυπτίοις ζέφυρος |
. Ὁ δ ' Ὠρίων ἀνατέλλει μὲν ἐν ἀρχῇ ὀπώρας δύνει δ ' ἐν ἀρχῇ χειμῶνος , ὥστε διὰ τὸ | ||
τοῦ ἄρα ἡλίου ἐπὶ τοῦ κʹ ὄντος τὸ ηʹ ἑσπέριον δύνει . Πάλιν ἐπεὶ τοῦ ἡλίου ὄντος ἐπὶ τοῦ λʹ |
βορείου Στεφάνου ἑσπέριος ἀνατέλλει . ὡρῶν ιδ ∠ ʹ : Στάχυς ἑῷος δύνει , καὶ ὁ καλούμενος Κάνωβος κρύπτεται . | ||
: ἐμεσουράνει γὰρ τὰ μέσα τοῦ Καρκίνου . καὶ ὁ Στάχυς ἄρα διὰ τὰ προειρημένα κατὰ μῆκος μὲν ἀπεῖχεν τότε |
ἡ Σελήνη δὲ ἐν τῷ βορείῳ ἡμισφαιρίῳ τὰ δεξιά : ἀνερχομένη γὰρ τὰ βόρεια σημαίνει ἕως τῆς καταβάσεως , τὰ | ||
ἐν καθύγροις τόποις καὶ ἀνημέροις ἢ δυσχειμέροις , νότον δὲ ἀνερχομένη ἐν τοῖς ἀνατολικοῖς καὶ δυσκόλως μηνυθήσεσθαι ἐν ἡμέραις ξδ |
ἄρα πρὸς τὴν ΕΔ μείζονα λόγον ἔχει ἤπερ ὁ ΕΗΘ τομεὺς πρὸς τὸν ΕΖΘ τομέα . ὡς δὲ ὁ τομεὺς | ||
κέντρου τοῦ κύκλου διπλάσιόν ἐστιν τοῦ τομέως . Ἔστω γὰρ τομεὺς κύκλου ὁ ΑΒΓ . καὶ τοῦ ὑπὸ τῆς ΑΕΒ |
ἡμισφαίριον , ἀλλ ' ἐν ᾧ χρόνῳ ἡ ΚΘΛ περιφέρεια ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον , τὸ μὲν Κ ἀρξάμενον ἀπὸ | ||
ΘΚ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον . Ἐν ᾧ ἄρα χρόνῳ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον ἡ ΘΚ περιφέρεια , ὁ ἥλιος |
τὴν αʹ μοῖραν τῶν Χηλῶν . δύνοντος ἄρα αὐτοῦ δεῖ μεσουρανεῖν ὡς κατὰ παράλληλον κύκλον μέσην τὴν κδʹ μοῖραν τοῦ | ||
ἡμισφαιρίῳ , τὸ δὲ ἑξῆς ἀνατέλλεν , τὸ δὲ τελευταῖον μεσουρανεῖν ἐν τῷ ὑπὸ γῆς ἡμισφαιρίῳ , οἷον Αἰγόκερω δύνοντος |
# ε , ὄξους # με . τίθει ἐν ἡλίῳ θερινῷ ἡμέρας μ καὶ μετὰ ταῦτα χρῶ . Εἰλεὸς πάθος | ||
ἀγρυπνήϲαντεϲ ἢ ὑπερκοπωθέντεϲ καὶ μάλιϲτα κατὰ τὰϲ ὁδοιπορίαϲ καὶ ἡλίῳ θερινῷ ἢ λυπηθέντεϲ ἢ ϲφόδρα φροντίϲαντεϲ ἑτοίμωϲ φρίκαιϲ καὶ πυρετοῖϲ |
ἥλιος τὴν ΛΞ περιφέρειαν διαπορεύεται . δʹ Ὅταν ὁ ἥλιος διαπορεύηται τὸ μετὰ τὸν κριὸν τεταρτημόριον , ἡμέρα καὶ νὺξ | ||
ἀπλανέσιν ἄστροις . Ὅταν ἄρα ὁ ἥλιος τὴν ΟΑΝΗΠ περιφέρειαν διαπορεύηται , ἡμέρα ἐστὶν τοῖς πρὸς τῷ Ζ οἰκοῦσιν , |
στερεοῦ . ἐγγεγράφθω καὶ εἰς τὸν ΑΒΓΔ κύκλον τῷ ΕΟΖΠΗΡΘΣ πολυγώνῳ ὅμοιόν τε καὶ ὁμοίως κείμενον πολύγωνον τὸ ΑΤΒΥΓΦΔΧ , | ||
. Καὶ ἐπεὶ ὅμοιόν ἐστι τὸ ΑΒΓΔΕ πολύγωνον τῷ ΖΗΘΚΛ πολυγώνῳ , ἴση ἐστὶν ἡ ὑπὸ ΒΑΕ γωνία τῇ ὑπὸ |
ὁμοίως ἤχθωσαν : γίνεται δὴ διπλῆ ἡ μὲν ΓΔ τῆς ΓΡ , ἡ δὲ ΗΘ τῆς ΘΣ διὰ τὸ προκείμενον | ||
ΣΓ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ τριπλασίων : ἡ ΓΡ ἄρα πρὸς τὴν ΓΣ μείζονα λόγον ἔχει ἢ ὃν |
μέγιστοι κύκλοι γεγραμμένοι εἰσὶν οἱ ΣΦ , ΤΧ ἐφαπτόμενοι τοῦ ΡΣΤ κύκλου , οὗ καὶ ὁ ἐξ ἀρχῆς ΑΒΓ ἐφήπτετο | ||
ὡς δὲ ἡ ΗΣ πρὸς τὴν ΗΟ , οὕτως ἡ ΡΣΤ περιφέρεια πρὸς τὴν ΞΟΠ . Καταληφθήσεται δὲ καὶ ἡ |
σπορᾶς γέγονεν Αἰγόκερω μοίρᾳ καʹ * * * * ἅτινα συνεγγίζει τοῖς εὑρεθεῖσιν ἔτεσιν . Ἄλλη . Ἥλιος Ὑδροχόου μοίρᾳ | ||
τροπικοῦ κεῖσθαι , ὅπερ ἐστὶ μὲν καὶ αὐτὸ ψεῦδος : συνεγγίζει μέντοι τῷ τροπικῷ ἡ κεφαλὴ μᾶλλον ἢ οἱ ὦμοι |
λʹ ὥρᾳ Ϛʹ ἔφθασεν εἰς Μεχεὶρ κϚʹ εἰς κζʹ ὥρᾳ νυκτερινῇ ηʹ : κουφιζομένου καὶ τοῦ τετάρτου μέρους ἐμβολίμου ἡμερονυκτίου | ||
νυκτερινῇ , καὶ ἡ ἐλαχίστη ἡμέρα ἴση ἐστὶ τῇ ἐλαχίστῃ νυκτερινῇ . Ὁ δὲ ἀνταρκτικὸς κύκλος ὅλος ὑπὸ τὸν ὁρίζοντα |
: „ εἶτα διὰ τοῦ Τοξότου πρὸς τὰ μέσα τοῦ Αἰγόκερω ” συνάπτει . „ ὁ δὲ Ἄρατός φησιν οὕτως | ||
πάθους ἢ πυρετῶν ἐπιφορᾶς . οἷον ἐπεὶ οἱ Δίδυμοι ὑπὸ Αἰγόκερω ἀναιροῦνται καὶ Ὑδροχόος ὑπὸ τῆς Παρθένου , ὅπερ ἐστὶν |
ἐπὶ τὸ εʹ παραγενόμενος τὴν ἑῴαν ἀνατολὴν ποιεῖ τῷ δʹ ἄστρῳ καὶ διὰ ἡμερῶν τριάκοντα : ἑνὸς γὰρ ζῳδίου δίεισιν | ||
τι τῶν ἀπλανῶν ἀνατελλέτω τὸ δʹ : τῷ ἄρα δʹ ἄστρῳ ἀληθινή ἐστιν ἑῴα ἐπιτολή : λέγω ὅτι τοῦ δʹ |
. Ἀλλ ' ὅσον χρόνον ὑπὲρ τὸν ὁρίζοντα φέρεται τῷ ΕΜΖ ὁρίζοντι , τοσοῦτον καὶ τῷ ΑΒΓ ὁρίζοντι : ὥστε | ||
διαφέροντες τῷ τὸν ΑΒΓ πρὸς ἀνατολὰς μᾶλλον τετάχθαι ἤπερ τὸν ΕΜΖ , τὰ ἄρα ἀπλανῆ ἄστρα τοῖς ΑΒΓ ΕΜΖ ὁρίζουσι |
Δράκων ὁ διὰ τῶν Ἄρκτων , Ἀρκτοφύλαξ , Στέφανος , Ἐνγόνασιν , Ὀφιοῦχος , Ὄφις , Λύρα , Ὄρνις , | ||
οὖν τοῖς λοιποῖς συμφωνοῦσι τοῖς φαινομένοις . τοῦ δ ' Ἐνγόνασιν οὐ μόνον τὸ ἀριστερὸν γόνυ καὶ ὁ ποὺς ἔτι |
Δ διαστήματι δὲ ἑνὶ τῶν ΔΞ ΔΠ κύκλος γεγράφθω ὁ ΞΟΠ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΞΟ τῇ ΟΠ | ||
τετράγωνον πεντα - πλάσιός ἐστι τοῦ ΖΗ . ἀλλὰ ὁ ΞΟΠ γνώμων καὶ τὸ ΖΗ τετράγωνόν ἐστι τὸ ΔΝ . |
διαμετροῦν τὸν ὡροσκόπον , ὑπὸ γῆν δὲ καὶ ἀντιμεσουράνημα τὸ διαμετροῦν τὸ μεσουράνημα , οἷον καρκίνου ὡροσκοποῦντος μεσουρανεῖ μὲν κριός | ||
ζυγῷ φθινοπωρινή . στερεὰ δὲ ὑπειλήφασι ταῦρόν τε καὶ τὸ διαμετροῦν , τουτέστι σκορπίον , λέοντά τε καὶ ὑδρηχόον . |
, καὶ τοῦ Κήτους ὁ νοτιώτερος τῶν ἡγουμένων ἐν τῷ τετραπλεύρῳ . Ἀνατέλλει δὲ ὁ Προκύων ἐν τρίτῳ μέρει ὥρας | ||
ἀριστερὸς πούς , ἔσχατος δὲ τοῦ Κήτους τῶν ἐν τῷ τετραπλεύρῳ ὁ βορειότερος τῶν ἡγουμένων . Ἀνατέλλει δὲ ὁ Λαγωὸς |
προκείσθω εὑρεῖν πόσων ἐστὶν τὸ περιεχόμενον ὑπὸ τῶν ΑΔΓ , ΓΖΑ περιφερειῶν ἐμβαδὸν μέγεθος οἵων ἐστὶν τὸ ὅλον τοῦ ἡλιακοῦ | ||
τοῦ ὑπὸ ΓΖΑ : τὸ οὖν ὑπὸ ΒΖΕ τοῦ ὑπὸ ΓΖΑ ὑπερέχει τῷ ὑπὸ Η ΖΔ , ὥστε τὸ ὑπὸ |
ἐστὶ τοιαύτη , ὥστε ἔχειν μεσουρανοῦντα Καρκίνον ἐπὶ τοῦ θερινοῦ τροπικοῦ , ἀνατολικὰς Χηλὰς ἐπὶ τοῦ ἰσημερινοῦ , δυτικὸν Κριόν | ||
' αἵρεσιν ἐκπτώσεων ἢ μετοικισμῶν αἴτιος ἢ φυγῶν , πλὴν τροπικοῦ ὄντος τοῦ ζῳδίου ἢ δισώμου ἐπανέρχεται εἰς τὴν προτέραν |
οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ κύκλον . Οἱ τῶν αὐτῶν ἐφαπτόμενοι μέγιστοι κύκλοι ὧν | ||
εἰσι τῶν ἀληθινῶν . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς |
, ἐν ᾗ τὴν τροπὴν ἐποιήσατο πρὸς τῷ Ε , ἀνατελλέτω κατὰ τὸ Ζ , καὶ ἔστω , καθ ' | ||
τῆς ἀρχῆς τῶν Διδύμων ἔγγιστα χρόνων ἰσημερινῶν ιζ , καὶ ἀνατελλέτω πρῶτον ἡ ἀρχὴ τοῦ Κριοῦ , ἵνα μεσου - |
τουτέστιν ἡ ὑπὸ ΗΚΘ τῇ ὑπὸ ΟΛΗ , τουτέστιν ἡ ΠΘ περιφέρεια τῇ ΟΗ . ἀλλὰ καὶ ἡ ΘΣ τῇ | ||
ἀπὸ ΕΘ , ΘΗ : καὶ λοιπὸν ἄρα τὸ ἀπὸ ΠΘ λοιπῷ τῷ ἀπὸ ΘΡ ἴσον ἐστίν : ἴση ἄρα |
δὲ κατὰ ταῦτα τὸν τοῦ Ἑρμοῦ καὶ ἐν μὲν τῷ ἑῴῳ σχήματι ἡμερινόν , ἐν δὲ τῷ ἑσπερίῳ νυκτερινόν . | ||
ἐστιν ἐν τῷ ὡροσκόπῳ ἢ ἅμα τῷ κυρίῳ τοῦ ὡροσκόπου ἑῴῳ ὄντι , δηλοῖ εὐτυχίαν μεγίστην . Εἶτα παραλαμβάνει ἡ |
ἑκατέρᾳ τῶν ΚΣ , ΒΟ : καὶ ἑκατέρα ἄρα τῶν ΚΣ , ΒΟ τῆς ΣΟ μείζων ἐστίν . καὶ ἐπεὶ | ||
μία ἄρα τῶν ΘΚ , ΚΛ ἑκατέρας τῶν ΨΚ , ΚΣ μείζων ἐστίν . καὶ ἐπεὶ παράλληλός ἐστιν ὁ ΒΖΓ |
τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς | ||
πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως |
λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν | ||
, ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω - |
καὶ διὰ τοῦ π , καὶ ὁ αὐτὸς ἔσται τῷ εζηκ ἐπικύκλῳ . γεγράφθω οὖν ὁ πρχ : ἐπεὶ οὖν | ||
ἐπὶ τὰ αὐτὰ τούτῳ φερόμενος ὁμοίως τεταρτημοριαίαν ἐνηνέχθω περιφέρειαν τοῦ εζηκ τὴν εζ : ἔσται οὖν ἐπὶ τοῦ π , |
παραληγόμενα σπάνιά ἐστι μονογενῆ ὄντα : οἷον , λύκος : κρίκος : Μύκος , ὄνομα ἔθνους . Εἰς κος λῆγον | ||
, τὸ δὲ ῥάμμα κεχαλασμένον ἁμματιζέσθω , ἵνα φανῇ ὡς κρίκος . ταῖς δ ' ἑξῆς ἡμέραις παράγεται τὸ ῥάμμα |
λοξὸν κύκλον περιφέρειαι , ἥ τε ΡΔ ἐστὶν καὶ ἡ ΡΕ : γωνίαι δὲ ἥ τε Ζ καὶ ἡ Η | ||
ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ , καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΕΞ , |
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
ΚΕΔ . ἀλλ ' ἡ μὲν ὑπὸ ΚΔΕ τῇ ὑπὸ ΔΚΛ ἐστὶν ἴση , ἡ δὲ ὑπὸ ΚΕΔ τῇ ὑπὸ | ||
τῷ Ζ , διαστήματι δὲ τῷ ΖΔ κύκλος γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ |
' ὅτι τῶν ἅμα αὐτῷ συνανατειλάντων μερῶν τοῦ Ἡνιόχου πρότερος καταδύνει ὁ Ταῦρος . ψεῦδος γάρ ἐστι καὶ τοῦτο : | ||
τῶν αὐτῶν μερῶν τοῦ ὁρίζοντος ἀνατέλλει καὶ εἰς τὰ αὐτὰ καταδύνει . Ἀσύνδετα δὲ καὶ ἀπηλλοτριωμένα καλεῖται τμήματα , ὅσα |
Λαγωός , καὶ τοῦ Κυνὸς τὰ ἐμπρόσθια , καὶ ὁ Προκύων , καὶ τοῦ Ὕδρου ἡ κεφαλή : δύνει δὲ | ||
πάλιν ἀστὴρ Διδύμων πρώτιστον τὴν μοῖραν ἀνατέλλει , ὁ δὲ Προκύων Καρκίνου γὰρ πρὸς μοῖραν τὴν ἑβδόμην ὁ κοινὸς Ἀνδρομέδας |
ιαʹ . ὡρῶν ιδ ∠ ʹ : ὁ ἐν τῷ ἑπομένῳ ὤμῳ τοῦ Ὠρίωνος κρύπτεται . Αἰγυπτίοις ἀνεμώδης κατάστασις . | ||
ἄνθρωπον πᾶν ζῶον εἶναι ἢ πᾶν γελαστικόν . οὐ τῷ ἑπομένῳ οὖν δεῖ ἀλλὰ τῷ ὑποκειμένῳ συντάττειν τὸν προσδιορισμόν , |
ὀρθὰς ἔχει , ἀλλὰ ταὐτὸν ὑπόκειται τριγώνῳ τε εἶναι καὶ σκαληνῷ . εἰ δὲ μὴ ταὐτὸν ἀλλ ' ἕτερον , | ||
ἡ ὑπὸ ΑΓΒ τῆς ὑπὸ ΓΔΒ . Ἐὰν ἐν κώνῳ σκαληνῷ τμηθέντι διὰ τῆς κορυφῆς ἐπιπέδοις τισὶν ἐπὶ παραλλήλων βάσεων |
τὰ ἄρα τρίγωνα , ὧν βάσεις μὲν αἱ ΘΚ , ΟΞ , ὕψη δὲ αἱ ΛΑ , ΑΝ , ἴσα | ||
. ἐπεὶ οὖν δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΟΞ , ΞΠ ἴσαι εἰσίν , καὶ βάσις ἡ ΑΓ |
αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ | ||
ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους . |
ΑΕΖ , καὶ ἴσον ὁμοίως . Ἐὰν ἐν σκαληνῷ κώνῳ τμηθέντι διὰ τῆς κορυφῆς ἐπιπέδοις ἐπὶ παραλλήλων βάσεων ἰσοσκελῆ τρίγωνα | ||
αἰσχύνομαι εἰς ὄψιν ἐλθεῖν τοῦ ἰατροῦ . Σχολαστικῷ τὴν σταφυλὴν τμηθέντι παρήγγειλεν ὁ ἰατρὸς μὴ λαλεῖν . ὁ δὲ τῷ |
λ , στύρακος # α , οἴνου # Ϛ : ἀπαφρίσας τὸ μέλι καὶ τρίψας τὸν στύρακα μῖξον , καὶ | ||
ἡμέρας κ καὶ διυλίσας αὐτά , ἑψήσας τὸ μέλι καὶ ἀπαφρίσας ἕνωσον καὶ ἀναδήσας ἔα . Μέλιτος ξέστην α , |
, εἰ μὴ καὶ κόσμον αὐτῇ τις ἁρμονίας τὸν προσήκοντα περιθήσει . Ἵνα δὲ μὴ δόξω φάσιν ἀναπόδεικτον λέγειν , | ||
αὐτοῦ καὶ ἀναπειθομένην χώραν κατασχεῖν . οὐ γὰρ ἀμφωτίδας γε περιθήσει τὰς Ξενοκράτους ἡμῖν . τί χρὴ περὶ τῆς ἀνδρείας |
δ ' ὁ ἀπ ' ἄρκτων παρακείμενος τῷ λαμπρῷ . Μεσουρανεῖ δὲ τῶν ἄλλων ἀστέρων πρῶτος μὲν ὁ μέσος τῶν | ||
νοτιώτατος τῶν ἐν τῇ ἀποτομῇ τοῦ πλοίου καὶ λαμπρός . Μεσουρανεῖ δὲ τῶν ἄλλων πρῶτος μὲν τοῦ Περσέως ὁ ἐν |
καὶ ὡς ἡ ΤΒ πρὸς τὴν ΒΛ , οὕτως ἡ ΟΖ πρὸς τὴν ΖΝ . δι ' ἴσου ἄρα ὡς | ||
τὸ ὑπὸ ΓΞΑ μετὰ τοῦ ἀπὸ ΑΕ καὶ τοῦ ἀπὸ ΟΖ , τουτέστι τοῦ ἀπὸ ΕΘ , πρὸς τὸ ὑπὸ |
ἀπολείπει τούτων αὐτοῦ προανατελλόντων , οἷς δὲ σύνεστι τούτων αὐτῷ συνανατελλόντων . ὧν δὲ γίνεται ἀπ ' ἐναντίας τούτων ἀνατελλόντων | ||
τῆς καθ ' ἑκάτερον εἶδος συγκράσεως καὶ ἔτι τῆς τῶν συνανατελλόντων αὐτοῖς ἀπλανῶν ἀστέρων σχηματογραφίας τὰ περὶ τὰς διατυπώσεις τῶν |
ὁ ἑπόμενος τῶν ἐν τῇ κεφαλῇ τριῶν , καὶ ὁ Σύνδεσμος τῶν λίνων . Δύνει δὲ ὁ Βοώτης ἐν ὥραις | ||
: ὁ δὲ ἐν ἄκρῳ τῷ λίνῳ κείμενος λαμπρὸς ἀστὴρ Σύνδεσμος προσαγορεύεται . Βόρεια δέ ἐστιν , ὅσα τοῦ τῶν |
ὡρῶν ιδ : ὁ ἐπὶ τῆς κεφαλῆς τοῦ ἑπομένου Διδύμου ἑῷος δύνει . ὡρῶν ιδ ∠ ʹ : Κύων ἑσπέριος | ||
ἔτει Ἀδριανοῦ κατ ' Αἰγυπτίους Ἐπιφὶ βʹ εἰς τὴν γʹ ἑῷος ὁ τῆς Ἀφροδίτης τὸ πλεῖστον ἀπέστη τοῦ ἡλίου τῆς |
νόσους εἰκὸς εἶναι πολλάς . Τοῦ δὲ Ἅληκος ποταμοῦ τοῦ διορίζοντος τὴν Ῥηγίνην ἀπὸ τῆς Λοκρίδος βαθεῖαν φάραγγα διεξιόντος ἴδιόν | ||
ΓΔ . ἡ ΓΔ ἄρα διάμετρός ἐστι τοῦ κύκλου τοῦ διορίζοντος ἐν τῇ σελήνῃ τὸ σκιερὸν καὶ τὸ λαμπρόν . |
ἕτερα . Ἴσον , ἰσάριθμον , ἰσοπληθές , ἰσοτελές , ἰσόμηκες , ἰσομέγεθες , ἰσομέτρητον , ἰσοστάσιον , ἰσόσταθμον , | ||
σκαληνόν , ὀρθογώνιον ἀμβλυγώνιον ὀξυγώνιον . στερεομετρία , πλευραί , ἰσόμηκες τετράγωνον , πρόμηκες ἑτερόμηκες , βάθος ἔχον , ἀβαθές |
πρὸς τὸ ἀπὸ ΓΒ , τὸ ΑΕΗ τρίγωνον πρὸς τὸ ΑΘΓ . ὡς δὲ τὸ ΑΗΕ πρὸς τὸ ΑΘΓ , | ||
' εἰ δυνατόν , ἔστω [ αὐτῶν ] διάμετρος ἡ ΑΘΓ , καὶ ἐκβληθεῖσα ἡ ΗΖ διήχθω ἐπὶ τὸ Θ |
ἐν νυκτί . ἐπισημαίνεται δὲ τοῦτο Ἄρατος λέγων ἓξ αἰεὶ δύνουσι δυωδεκάδες κύκλοιο : δυωδεκάδες γὰρ εἶπε τὰ δωδεκατημόρια τῶν | ||
δὲ , τὴν πρώτιστον δὲ ταύτης Ὑάδες σὺν τῷ Λαγωῷ δύνουσι πρὸς τὸν ὄρθρον , καὶ τὴν δευτέραν τὸ αὐτὸ |
: εἶτα τὰ μέσα τῶν Χηλῶν κατὰ πλάτος καὶ τοῦ Κενταύρου τὴν δεξιὰν χεῖρα καὶ τὰ ἐμπρόσθια γόνατα : μετὰ | ||
' ὕλην . πρώτην μὲν Χείρωνος ἐπαλθέα ῥίζαν ἑλέσθαι , Κενταύρου Κρονίδαο φερώνυμον , ἥν ποτε Χείρων Πηλίου ἐν νιφόεντι |
, τὸ ὑπὸ Η , ΔΛ πρὸς τὸ δὶς ὑπὸ ΓΔΛ : ὡς ἄρα τὸ ἀπὸ ΚΛ πρὸς τὸ ὑπὸ | ||
ΔΛ εὐθείας περιφέρεια τοιούτων ρκ , οἵων ὁ περὶ τὸ ΓΔΛ ὀρθογώνιον κύκλος τξ , ἡ δ ' ἐπὶ τῆς |
ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ αἱ περιφέρειαι | ||
ἄρα ἴσον ἐστὶ τῷ ΝΣ . ἀλλὰ τὸ ΤΥ τῷ ΤΞ ἐστιν ἴσον , κοινὸν δὲ τὸ ΤΣ : ὅλον |
καί , ἐν ᾧ χρόνῳ ἡ ΔΕ ἐξαλλάσσει τὸ ἀφανὲς ἡμισφαίριον , ἡ ΖΒ τὸ φανερόν . Τοῦ τῶν ζῳδίων | ||
, ὅτι ἐν ᾧ χρόνῳ ἡ ΑΕ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον , ἡ ΓΖ τὸ ἀφανές , καὶ ἀνάπαλιν , |
, ὅταν ἐν τοῖς πρώτοις ὦσι δυσὶ κέντροις τῷ τε ἀνατέλλοντι καὶ τῷ μεσουρανοῦντι καὶ ταῖς τούτων ἐπαναφοραῖς , ἐπισινεῖς | ||
αἳ πίσυρές μιν ἄτερ χειρὸς κατάγουσιν : ὥστε τῷ Κριῷ ἀνατέλλοντι ἄρχεσθαι αὐτὸν ἀντικαταδύνειν . ἀκολούθως δὲ ταύτῃ τῇ ὑποθέσει |
τι καλεῖται ἑσπερία συνανατολὴ ἀληθινή , ὅταν ἅμα τῷ ἡλίῳ δύνοντι καὶ ὁ ἀστὴρ ἀνατέλλῃ , ὃ δέ τι καλεῖται | ||
ὡροσκόπῳ , ἔπειτα οἱ ἐν τῷ μεσουρανήματι ἢ ἐν τῷ δύνοντι ἢ ἐν τῷ ὑπογείῳ . ἐὰν δὲ οἱ τόποι |