προκείσθω εὑρεῖν πόσων ἐστὶν τὸ περιεχόμενον ὑπὸ τῶν ΑΔΓ , ΓΖΑ περιφερειῶν ἐμβαδὸν μέγεθος οἵων ἐστὶν τὸ ὅλον τοῦ ἡλιακοῦ
τοῦ ὑπὸ ΓΖΑ : τὸ οὖν ὑπὸ ΒΖΕ τοῦ ὑπὸ ΓΖΑ ὑπερέχει τῷ ὑπὸ Η ΖΔ , ὥστε τὸ ὑπὸ
7518304 τεμνοντος
ἀδιάστατον ἀπολείψουσι τὸ σημεῖον , ὅ γε διχάζεται πρὸς τοῦ τέμνοντος . ὁ δὲ αὐτὸς λόγος καὶ ἐπειδὰν φῶσι τὸν
ἐπιφανείᾳ τοῦ κώνου τὴν ΔΖΕ : κοινὴ δὴ τομὴ τοῦ τέμνοντος ἐπιπέδου καὶ τοῦ ΑΒΓ τριγώνου ἡ ΖΗ . καὶ
7509854 ΑΖΓ
τῇ ὑπὸ ΔΖΕ γωνίᾳ . ἔστιν δὲ καὶ ἡ ὑπὸ ΑΖΓ γωνία τῇ ὑπὸ ΒΖΕ γωνίᾳ : ὅλη ἄρα ἡ
καὶ ἐπεζεύχθωσαν αἱ ΔΚ ΚΒ ΚΕ ἐπεὶ οὖν τὸ ὑπὸ ΑΖΓ μετὰ τοῦ ἀπὸ ΖΚ ἴσον ἐστὶν τῷ ἀπὸ ΑΚ
7307051 τομου
καὶ περιληπτικώτερος , τὸ δὲ τμῆμα μερικώτερον καὶ ὑπὸ τοῦ τόμου περιεχόμενον : περιέχονται μὲν γὰρ ἀμφότερα , ὅ τε
ζʹ . Ὁμοῦ ἔτη σθʹ . Ἐπὶ τοῦ αὐτοῦ δευτέρου τόμου Μανεθῶ βασιλεῖς ϘϚʹ . : Ἐννεακαιδεκάτη δυναστεία βασιλέων εʹ
7291705 ΖΕΗ
ἡ ΓΖ , καὶ ὁ ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΖΕΗ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΒ τῇ ΒΓ
τῶν Ε Γ ἀνεστάτωσαν ὀρθαὶ τῷ ἐπιπέδῳ τοῦ κύκλου αἱ ΖΕΗ ΓΛ , καὶ ἑκατέρα μὲν τῶν ΕΘ ΓΛ ἑξαγώνου
7122709 Εὐκλεους
δὲ [ γὰρ ] αὐτόν φησι Δημήτριος ⌈ ἐπὶ ἄρχοντος Εὐκλέους πρὸ τριῶν ἐτῶν εἰς Σικελίαν πεμφθέντα μετὰ νεῶν Λεοντίνοις
διαμαρτυρήσαντα ὁ ἀγών ἐστι . Λυσίας ἐν τῷ κατ ' Εὐκλέους χωρίου ἐξούλης . Αὐτόχθονες : οἱ Ἀθηναῖοι . Δημοσθένης
7106283 τμηθησεται
ἡ ἀπὸ τοῦ Θ κάθετος ἐπὶ τὸ ΔΕΖ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΣΤΥ ἐπιπέδου . καί εἰσιν ἴσαι αἱ
παραλληλογράμμου καὶ προσεκβαλλομένη μέχρι τοῦ ἑτέρου μέρους τῆς ἐπιφανείας δίχα τμηθήσεται ὑπὸ τοῦ παραλληλογράμμου . ἤχθω διὰ τοῦ Ε σημείου
7088888 ΘΙ
τὸ μὲν ΑΒ τῷ ΕΗ , τὸ δὲ ΓΔ τῷ ΘΙ , ἀσύμμετρον ἄρα ἐστὶ καὶ τὸ ΕΗ τῷ ΘΙ
πλάτος ποιοῦν τὴν ΕΘ , τῷ δὲ ΓΔ ἴσον τὸ ΘΙ πλάτος ποιοῦν τὴν ΘΚ . καὶ ἐπεὶ μέσον ἐστὶν
7072706 ΑΘΓ
πρὸς τὸ ἀπὸ ΓΒ , τὸ ΑΕΗ τρίγωνον πρὸς τὸ ΑΘΓ . ὡς δὲ τὸ ΑΗΕ πρὸς τὸ ΑΘΓ ,
' εἰ δυνατόν , ἔστω [ αὐτῶν ] διάμετρος ἡ ΑΘΓ , καὶ ἐκβληθεῖσα ἡ ΗΖ διήχθω ἐπὶ τὸ Θ
7063731 ΔΖΑ
ΑΔ : ἰσογώνια ἄρα ἐστὶ τὰ τρίγωνα τὰ ΒΓΑ , ΔΖΑ . ὥστε ἴση ἐστὶν ἡ ὑπὸ ΓΑΒ γωνία τῇ
ἴσαι αἱ ΗΕ ΗΖ : ἴσον ἄρα καὶ τὸ ὑπὸ ΔΖΑ μετὰ τοῦ ἀπὸ ΑΗ τῷ ὑπὸ ΔΕΓ μετὰ τοῦ
7038922 αὐτοζῳου
ἀριθμῷ δέ τε πάντ ' ἐπέοικε . τοῦ μὲν οὖν αὐτοζῴου , τουτέστι τοῦ κόσμου τοῦ νοητοῦ , στοιχεῖα τὰ
αὐτοάνθρωπος παράδειγμα μὲν τοῦ ἐνταῦθα ἀνθρώπου , εἰκὼν δὲ τοῦ αὐτοζῴου . φαμὲν οὖν πρὸς ταῦτα ὅτι ἡ μὲν ψυχὴ
7014593 ΓΔΕ
τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ
τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ :
7012302 ΜΛΝ
τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ
ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί
7007119 ΑΗΔ
τῇ ΑΗ , καὶ ἡ ὑπὸ ΑΒΔ γωνία τῇ ὑπὸ ΑΗΔ . ἡ δὲ ὑπὸ ΑΗΔ διπλασία τῆς ὑπὸ ΑΕΔ
ἀλλὰ τὸ ΔΘΛ τῷ ΒΔΖ ἐστιν ἴσον : καὶ τὸ ΑΗΔ ἄρα τῷ ΒΔΖ ἐστιν ἴσον . ὥστε καὶ τὸ
7004949 ΒΣΓ
πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ
: ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ
6992031 ΔΑΕ
ΑΔΕ γωνία λϚ νβ : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΔΑΕ τῶν αὐτῶν ἐστιν ρμε νϚ . ὥστε καὶ ἡ
τοῦ Α ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ εὐθεῖαν . ποιείτω τὴν ΔΑΕ : αἱ ἄρα ΑΒ , ΑΓ , ΔΑΕ εὐθεῖαι
6985105 χιτωνοϲ
ὄπιϲθεν προϲπεφυκὼϲ αὐτῷ , ἐκ τοῦ περιτοναίου τὴν γένεϲιν ἔχων χιτῶνοϲ . τὸ δὲ μέροϲ τοῦτο , καθ ' ὃ
χρηϲόμεθα βοηθήμαϲιν . Τὸ μὲν ϲταφύλωμα κύρτωϲίϲ ἐϲτι τοῦ κερατοειδοῦϲ χιτῶνοϲ ἀτονήϲαντοϲ ϲὺν τῷ ῥαγοειδεῖ , ποτὲ μὲν διὰ ῥευματιϲμόν
6977470 τρυπανου
: ἐὰν δὲ ὡϲ ὑπὸ ϲκόλοποϲ ἐμπεπαρμένου ἢ ὡϲ ὑπὸ τρυπάνου τιτρᾶϲθαι νομίζῃ , παχέοϲ ἐντέρου τὸ εἶδοϲ τῆϲ ὀδύνηϲ
καὶ τότε μᾶλλον ἡ ἐνέργεια ὀξυτέρα γινέσθω , στρεφομένου τοῦ τρυπάνου τῇ ἀρίδι , ἕως ὅτου καταβιβασθῇ ἡ ἀκμὴ εἰς
6975378 τρηματος
⊂ , πλάτος δὲ τρήματος α ⊂ πάχος δὲ ἡμίσους τρήματος καὶ ἔτι ὀγδόου : τοὺς δὲ μεσοστάτας μῆκος ἔχοντας
τῷ μεταξὺ διαστήματι τῶν τροχῶν , κεχωρισμένων δὲ τοῦ μέσου τρήματος . οὗτοι οἱ κάλοι εἴρονται : εἶθ ' ὅταν
6968636 ἐμπεριεχομενη
μέρος ληφθῇ ἀρτιακῶς ὀνομάζεται . καὶ πάλιν ἡ ἑκάστῳ μέρει ἐμπεριεχομένη δύναμις , τουτέστιν αἱ μονάδες , ἄρτιοι καὶ αὐταὶ
γὰρ τοιοῦτον διεζευγμένον καὶ ἀληθὲς καὶ ἀναγκαῖον . Ἡ γῆ ἐμπεριεχομένη τῷ κόσμῳ ἤτοι πρὸς ἀνατολῇ ἐστιν ἢ πρὸς δύσει
6962343 τεμνονται
ἱρῷ , ὅτι Γάλλοι Ἥρῃ μὲν οὐδαμά , Ῥέῃ δὲ τέμνονται καὶ Ἄττεα μιμέονται . Τὰ δέ μοι εὐπρεπέα μὲν
ἀλλήλων διαφέρουσι τῇ φύσει τῆς διαιρέσεως : τοῖς γὰρ αὐτοῖς τέμνονται κεφαλαίοις : πλὴν τοῦ ὁμωνύμου αὐτῇ τῇ στάσει :
6954078 ΗΓΔ
ἡ ΗΒ ἐλάττων τῆς ἐκ τοῦ κέντρου , τὸ ἄρα ΗΓΔ οὐκ ἔσται μέγιστον τῶν παραλλήλους αὐτῷ βάσεις ἐχόντων :
καὶ τὸ ΑΓΔ τοῦ ΑΕΖ , εἰ δὲ μεῖζον τὸ ΗΓΔ τοῦ ΗΕΖ , μεῖζον καὶ τὸ ΑΓΔ τοῦ ΑΕΖ
6938683 ΟΗ
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ ,
6931891 ΑΕΒ
ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος
μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν
6931353 ΖΒΗ
ἄρα ἡ ὑπὸ ΖΔΗ . ὀρθὴ δὲ καὶ ἡ ὑπὸ ΖΒΗ : ἐν κύκλῳ ἄρα τὸ ΒΖΔΗ τετράπλευρον . καὶ
καὶ διὰ μὲν τοῦ Β παρὰ τὴν ΓΔ ἤχθω ἡ ΖΒΗ , διὰ δὲ τοῦ Γ τῇ ΔΕ ἡ ΓΑΗ
6917940 μηνισκου
τῶν εὐθειῶν ἐφ ' αἷς ΕΖ ΖΗ ἀφαιρούμενα ἐντὸς τοῦ μηνίσκου ἀπὸ τοῦ εὐθυγράμμου τμήματα ἴσα ἐστὶ τοῖς ἐκτὸς τοῦ
οὐκ ἐπὶ τετραγωνικῆς πλευρᾶς δεῖξαί φησι τὸν Ἱπποκράτην τὸν τοῦ μηνίσκου τετραγωνισμόν , ἀλλὰ καθόλου , ὡς ἄν τις εἴποι
6916144 ἐκκοπεως
ὀστέῳ ὑπὸ τὴν ὀξεῖαν καὶ ἀποθραύειν σμιλίῳ ἢ τῇ τοῦ ἐκκοπέως ἀκμῇ , τῆς λαβῆς κρατουμένης καὶ πλησσομένης τῷ σφυρίῳ
, ἵνα μὴ τοῦ ὀστέου ὅλου διακοπέντος ἡ τοῦ ἀντερηρεισμένου ἐκκοπέως ἀκμὴ κενεμβατήσασα διέλῃ τὴν μήνιγγα . τοιγαροῦν ὅταν τὰ
6912838 ΖΕΘ
ΟΜ ἴση καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ ΖΕΘ ἴση τῇ ὑπὸ ΝΟΜ . ὅλη ἄρα ἡ ὑπὸ
σημείῳ τῷ Ε τῇ ὑπὸ ΗΕΖ γωνίᾳ ἴση ἡ ὑπὸ ΖΕΘ , καὶ ἐπεζεύχθω ἡ ΖΘ . ἐπεὶ οὖν ἴση
6907275 ἐκτεμνεσθω
τῷ διαφράγματι τῶν μυξωτήρων ἀποστημάτιον γένοιτο , διαιρείσθω καὶ τότε ἐκτεμνέσθω . ἔπειτα ἂν μὲν κατὰ φύσιν ἔχῃ ὁ χόνδρος
εἶεν σώματα , ὁ δὲ πλησίον τῆς θηλῆς τόπος πεφροντισμένος ἐκτεμνέσθω μηνοειδεῖ περιαιρέσει , ἵνα διὰ μὲν τῆς ἐκτομῆς γυμνωθῇ
6893225 ΗΘΚ
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ
6865395 ΔΕΓ
ἐλάττονές εἰσιν , ἴση δὲ ἡ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΕΓ , αἱ ἄρα ὑπὸ ΑΒΓ , ΔΕΓ δύο ὀρθῶν
ὑπὸ ΑΕΒ πρὸς τὸ ἀπὸ ΕΒ , οὕτως τὸ ὑπὸ ΔΕΓ πρὸς τὸ ἀπὸ ΕΓ . ἀλλὰ καὶ ὡς τὸ
6861077 ΑΕΓΔ
ΑΒΓ , ὁ δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΑΕΓΔ , καὶ ἔστω ὑπὸ γῆν τὸ ΑΔΓ ἡμικύκλιον ,
ἐμβαδὸν τοῦ ΑΖΓΗ κύκλου : δηλονότι καὶ τὸ μὲν τοῦ ΑΕΓΔ τομέως ἐμβαδὸν ἕξομεν τοιούτων κϚ ιϚ οἵων ἐδείχθη τὸ
6841283 Ζυμη
ἂν ἐκ ϲηπεδόνοϲ γεννώμενοϲ , ἐϲτὶ δὲ καὶ φυϲώδηϲ . Ζύμη λεπτομερήϲ ἐϲτι καὶ μετρίωϲ θερμή : διὰ τοῦτο τοίνυν
τῆϲ ὀξώδουϲ ποιότητοϲ : δι ' ὃ καὶ κακόχυμοϲ . Ζύμη καὶ αὐτὴ ἐξ ἐναντίων οὐϲιῶν ϲύγκειται : καὶ γὰρ
6830003 ΚΓΒ
καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΑΘ , τοῦ δὲ ΚΓΒ καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΚΒ , τοῦ
ΓΒ , γωνίαν δὲ τὴν ὑπὸ ΘΓΒ γωνίᾳ τῇ ὑπὸ ΚΓΒ ἴσην . ὥστε καὶ λοιπὴ μὲν ἡ ὑπὸ ΒΘΔ
6826884 ΒΔΓ
ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω ,
ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς
6818899 ΑΔΒ
ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς
ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ
6808013 ΞΜΛ
, μείζων ἐστὶ τῆς ἐντὸς καὶ ἀπεναντίον γωνίας τῆς ὑπὸ ΞΜΛ . ὀρθὴ δὲ ἡ ὑπὸ ΞΛΝ : ὀξεῖα ἄρα
δὲ ἡ ὑπὸ ΞΛΝ : ὀξεῖα ἄρα ἐστὶν ἡ ὑπὸ ΞΜΛ : ἀμβλεῖα ἄρα ἐστὶν ἡ ὑπὸ ΞΜΖ . καὶ
6803422 πενταγωνου
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ
6795325 ΓΔΘ
ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν
πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον
6793730 προσκειμενου
γ : γίνονται θ ἔκ τε τῆς ἡμισείας καὶ τοῦ προσκειμένου ὡς ἀπὸ μιᾶς ἀναγραφέντα τετράγωνα β λϚ καὶ πα
, ὁ ἐκ τοῦ ὅλου σὺν τῷ προσκειμένῳ καὶ τοῦ προσκειμένου ἐπίπεδος μετὰ τοῦ ἀπὸ τοῦ ἡμίσεος τετραγώνου ἴσος ἐστὶ
6793159 Ϡοβ
καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι
ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν
6790019 Λινδιων
τοῦ ἀποκαμεῖν καὶ ἀδυνατῆσαι Ἀ . ἐν τῷ περὶ τοῦ Λινδίων φόρου , καὶ ἀντὶ τοῦ ἀπαρνήσασθαι παρὰ τῷ αὐτῷ
πρὸς τὴν Δημοσθένους γραφὴν ἀπολογίᾳ καὶ ἐν τῷ περὶ τοῦ Λινδίων φόρου . ἐοίκασι παρ ' Ἀθηναίοις τινὲς χειροτονεῖσθαι συνήγοροι
6780328 ἀποχυμα
ῥαφανίου ἐλαίου , κίκινον ἔλαιον . ἀντὶ ῥητίνης , κολοφωνίας ἀπόχυμα . ἀντὶ ῥητίνης πευκίνης , ῥητίνη τερεβινθίνη . ἀντὶ
κόψον μετὰ τοῦ κηροῦ καὶ ἐπίβαλλε τῇ κακκάβῃ καὶ τὸ ἀπόχυμα , εἰ μὲν ξηρὸν εἴη , λεῖον κοϲκινίϲαϲ ϲτάθμιζε
6770489 ΗΕΖ
τῇ ΟΛ καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ ΗΕΖ ἴση τῇ ὑπὸ ΛΟΝ . ἐπεὶ οὖν εὐθειῶν τῶν
ὑπὸ ΘΕΖ ἴση ἐστίν . ὀρθὴ ἄρα ἑκατέρα τῶν ὑπὸ ΗΕΖ , ΘΕΖ γωνιῶν . ἡ ΖΕ ἄρα πρὸς τὴν
6760735 γαμμοειδως
στίχων ἀρχομένων ἀπὸ μονάδος ἐπί τε πλάτος καὶ ἐπὶ βάθος γαμμοειδῶς οἱ δεύτεροι ἐφ ' ἑκάτερα καὶ αὐτοὶ γαμμοειδῶς ἀπὸ
, τουτέστιν ἀπὸ διπλασίου . εἰ δὲ καὶ τοὺς ἑτερομήκεις γαμμοειδῶς παρασπίζοιμεν τοῖς τετραγώνοις ἅπαξ τοὺς ἄκρους συντιθέντες καὶ δὶς
6760058 ΨΩ
ἀποτομή . Ἐκβεβλήσθω γὰρ ἡ ΨΟ , καὶ ἔστω ἡ ΨΩ : συμβάλλει ἄρα ἡ ΟΩ τῇ τοῦ κύβου διαμέτρῳ
ΣΨ , ἀπὸ δὲ τοῦ Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως
6759795 ΕΠΕΙ
ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων ,
ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν
6758152 ΛΑ
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου
6755093 ΓΕΔ
Ξ τῇ πρὸς τῷ Ε , περιεχομένῃ δὲ ὑπὸ τῶν ΓΕΔ , ἐλάσσων ἄρα φανήσεται ἡ ΓΔ τῆς ΗΘ .
τῇ ὑπὸ ΔΗΓ , καὶ συναμφότεραι ἄρα ἥ τε ὑπὸ ΓΕΔ καὶ ἡ ὑπὸ ΓΗΒ ἴσαι εἰσὶν τῇ ὑπὸ ΔΕΖ
6752682 ΔΕΑ
, Ε σημείοις γωνίαι ἴσαι . καὶ αἱ ὑπὸ τῶν ΔΕΑ , ΗΕΘ ἴσαι . λαμβανέσθωσαν γωνίαι διάφοροι : λοιπαὶ
. ἀλλ ' ὡς μὲν τὸ ΔΕΖ τρίγωνον πρὸς τὸ ΔΕΑ τρίγωνον , οὕτως ἡ ΕΖ εὐθεῖα πρὸς τὴν ΕΑ
6752530 ΖΟ
ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν
ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ
6747351 Γνεου
τε αἰσχρῶς καὶ ἀπεχώρησε . Γαΐου δὲ Καικιλίου Μετέλλου καὶ Γνέου Κάρβωνος ὑπάτων γενομένων , οἱ ἀδελφοὶ Μέτελλοι κατὰ τὴν
ἐκοινώνησαν , καὶ τὸν δρόμον ἐπ ' αὐτὴν ποιούμενοι παρὰ Γνέου Κορνηλίου Δολοβέλλου τοῦ ὑπάτου πανωλεθρίᾳ διεφθάρησαν . Ὑπὸ τούτους
6740048 ΞΟΠ
Δ διαστήματι δὲ ἑνὶ τῶν ΔΞ ΔΠ κύκλος γεγράφθω ὁ ΞΟΠ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΞΟ τῇ ΟΠ
τετράγωνον πεντα - πλάσιός ἐστι τοῦ ΖΗ . ἀλλὰ ὁ ΞΟΠ γνώμων καὶ τὸ ΖΗ τετράγωνόν ἐστι τὸ ΔΝ .
6739767 ΠΑΝΤΑ
ἐφορατικὴ δύναμις μᾶλλον δὲ περιφραστικῶς , αὐτὴ ἡ Εἱμαρμένη . ΠΑΝΤΑ ΙΔΩΝ ΔΙΟΣ ΟΦΘΑΛΜΟΣ . Ἤγουν πάντα βλέπων ὁ Ζεὺς
Πρόκλος , ὀβελίζει τοὺς ἑπτὰ τούτους στίχους : ἀπὸ τοῦ ΠΑΝΤΑ ΙΔΩΝ , μέχρι τοῦ , ΑΛΛΑ ΤΑΓ ' ΟΥΠΩ
6737370 ΤΞ
ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ αἱ περιφέρειαι
ἄρα ἴσον ἐστὶ τῷ ΝΣ . ἀλλὰ τὸ ΤΥ τῷ ΤΞ ἐστιν ἴσον , κοινὸν δὲ τὸ ΤΣ : ὅλον
6716047 αου
α . ωιϚ ΔΥ ση Μο α , μετὰ τοῦ αου , τουτέστι ΔΥ ιγ # Μο α , ποιεῖν
, αἴρω τὴν Μο α , καὶ τάσσω τὸν ὑπὸ αου καὶ γου ΔΥ δ ʂ δ , ὧν ὁ
6707423 προσεκβαλλομενη
διὰ τοῦ Δ ἡμικύκλια , ἵνα ἡ ἐφαπτομένη ἑκάστου αὐτῶν προσεκβαλλομένη ἐπὶ τὴν τοῦ μείζονος ἡμικυκλίου περιφέρειαν τὴν μεταξὺ τῆς
ἣν ἄγονται καὶ τῆς παρ ' ἣν δύνανται , καὶ προσεκβαλλομένη ἕως τοῦ ἑτέρου μέρους τῆς τομῆς δίχα τμηθήσεται ὑπὸ
6707165 ξυνθηματος
εἴσω τῶν πολεμίων ἐτύγχανον προελθόντες , τότε δὴ δοθέντος τοῦ ξυνθήματος ἐκδραμόντες οἱ Φράγγοι ἐσβάλλουσιν ἀθρόον ἐς αὐτοὺς ἀτάκτως τε
. καὶ οὗτοι ἐπὶ τοὺς ἀποχωροῦντας τῶν βαρβάρων τραπόμενοι ἀπὸ ξυνθήματος , πολλοὺς μὲν αὐτῶν ἐν τῇ φυγῇ ἀπέκτειναν ,
6704711 κροταφου
λοβὸν ὠτὸς ἐπὶ ἰνίον , εἶτα λοξὴν κατὰ τοῦ ἑτέρου κροτάφου καὶ τοῦ βρέγματος ὑπὸ τὸν ἕτερον λοβὸν ἐπὶ ἰνίον
ἀναλύεται χωρὶϲ φανερᾶϲ αἰτίαϲ . νυγματώδειϲ δὲ διαδρομαὶ γίγνονται μέχρι κροτάφου καὶ παρέπεται αὐτοῖϲ ῥευματιϲμὸϲ ὑγροῦ ϲυμμέτρωϲ δριμέοϲ καὶ λεπτοῦ
6702757 ΗΖΘ
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα
6695548 ΑΒΗ
ΒΓΖ τῇ ὑπὸ ΓΒΗ . ἐπεὶ οὖν ὅλη ἡ ὑπὸ ΑΒΗ γωνία ὅλῃ τῇ ὑπὸ ΑΓΖ γωνίᾳ ἐδείχθη ἴση ,
ΑΒΗ τρίγωνον : καὶ τὸ ΑΒΓ ἄρα τρίγωνον πρὸς τὸ ΑΒΗ διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ
6694835 ΛΠ
ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς
ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία ,
6689154 ἡμικυκλιου
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω ,
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ
6686775 κεκινημενου
γύναιον καταλείψαντες ; οὐκοῦν δόξομεν Μενελάου φαυλότεροι τοσοῦτον ὑπὲρ Ἑλένης κεκινημένου ; ἀλλ ' ἐπειδὰν γένηται τοῦτο , παραταξόμεθα καὶ
καὶ ἀρχήν . Ἡ δὲ περιπλευμονίη γίνεται , ὁκόταν , κεκινημένου καὶ θερμαινομένου τοῦ φλέγματος καὶ τῆς χολῆς , ἑλκύσῃ
6678476 εὐεργετησαντος
κατεκτήσατο , Σκίαθον καὶ Πεπάρηθον : ὕστερον δὲ Χείρωνος αὐτὸν εὐεργετήσαντος καὶ τῆς ἰδίας χώρας μεταδόντος ἀπῆρεν ἐκ τῶν προειρημένων
ὁ εὐεργετήσας . τὸ ἄρα εἶναι καὶ ἡ ἐνέργεια τοῦ εὐεργετήσαντος ἐν τῷ εὐεργετηθέντι ἐστί . φιλητὸν δὲ τὸ εἶναι
6673570 ἀμβη
μολπῇ κατ ' Εὐριπίδην . . . . . . ἄμβη , : ἡμεῖς δὲ τούτους πάντας παραιτησάμενοι , Βακχείῳ
τῇ φλιᾷ ὑπὸ τὸ καταρτιζόμενον σκέλος ἐπιτίθεται σπάθη ἰπωτρὶς ἢ ἄμβη ἔσωθεν ἀπὸ τοῦ περινέου ὅλῳ τῷ σκέλει ὑποκειμένη .
6673216 ΒΗΕ
δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε
ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ
6666504 τοιαυτηϲ
τὸ πτερύγιον καλύπτουϲα μέροϲ τοῦ ὄνυχοϲ ἐκ παρωνυχίαϲ ἢ ἑτέραϲ τοιαύτηϲ αἰτίαϲ γινομένη : πρὸϲ ἣν ἀρϲενικὸν καὶ μάνναν ἴϲα
εἰ δὲ ϲυνδράμοι ποτὲ εἰϲ ταὐτὸν ὑγρότηϲ θερμότητι , τῆϲ τοιαύτηϲ δίψηϲ ἄριϲτον ἴαμα ὄξοϲ ἔϲται . τοῖϲ δὲ ἄλλωϲ
6664668 ΒΖΗ
ἔσται τῷ εὐθυγράμμῳ τῷ συγκειμένῳ ἐκ τῶν τριῶν τριγώνων τῶν ΒΖΗ ΒΖΚ ΕΚΖ . τὰ γὰρ ἀπὸ τῶν εὐθειῶν ἐφ
δὲ ὑπὸ ΒΑΕ ἴση ἐστὶν τῇ ἐκτὸς τετραπλεύρου τῇ ὑπὸ ΒΖΗ : καὶ ἡ ὑπὸ ΘΖΒ ἄρα γωνία ἴση ἐστὶν
6663037 ΑΖΒ
τὴν τῆς ὁμαλῆς κινήσεως ὑποτείνει περιφέρειαν , ἡ δὲ ὑπὸ ΑΖΒ τὴν τῆς φαινομένης ἀνωμάλου , ὑπεροχὴ δὲ αὐτῶν ἐστιν
: τὸ ἄρα ὑπὸ ΑΕΛ ἴσον ἐστὶν τῷ τε ὑπὸ ΑΖΒ καὶ τῷ ἀπὸ ΖΕ τετραγώνῳ . ἀλλὰ τὸ μὲν
6658375 λυϲεωϲ
ἐρίοιϲ οἰϲυπηροῖϲ ἢ καὶ ἐλαιοβραχέϲι καὶ τοῖϲ δι ' ὠμῆϲ λύϲεωϲ καταπλαϲτέον . ἀναγαργαριζέϲθωϲαν δὲ κατ ' ἀρχὰϲ μὲν τοῖϲ
φλεγμαίνοι τὰ ϲπλάγχνα , τοῖϲ διὰ λινοϲπέρμου καὶ τῆϲ ὠμῆϲ λύϲεωϲ ἐν ὑδρελαίῳ καταπλάϲμαϲιν αὐτὰ παρηγορήϲωμεν , ἔπειτα δὲ καὶ
6655559 ΒΜΑ
. καὶ ἔστι τῷ μὲν ἀπὸ ΜΔ ἴσον τὸ ὑπὸ ΒΜΑ μετὰ τοῦ ἀπὸ ΔΑ , τῷ δὲ ἀπὸ ΖΚ
ἴσον τῷ ἀπὸ ΓΖ : ἴσον ἄρα καὶ τὸ ὑπὸ ΒΜΑ τῷ ὑπὸ ΒΚΓ : ὡς ἄρα ἡ ΜΒ πρὸς
6655343 ΒΚΑ
ἡ ΒΚΑ περιφέρεια τῇ ΘΖΕ περιφερείᾳ . Ἀλλ ' ἡ ΒΚΑ τῆς ΗΘΖ μείζων ἐστὶν ἢ ὁμοία : καὶ ἡ
τῶν ΒΘΑ : ἡμίσους ἄρα ἐστὶν καὶ ἡ ὑπὸ τῶν ΒΚΑ . ὀρθὴ δέ ἐστιν ἡ ὑπὸ τῶν ΒΕΚ :
6651083 ἐβισκου
. Ε . Ἀντὶ ἐβένου , λώτινον ξύλον . ἀντὶ ἐβίσκου ῥίζης , ῥίζα παπύρου ἢ φύλλα μορέας . ἀντὶ
πτισάνης ἀνὰ # λ , μελιλώτου # β , ἀναδενδρομαλάχης ἐβίσκου # β . τούτων ἑψηθεισῶν ἐν ὕδατι ἀπὸ τοῦ
6647101 στρωτηρος
καὶ ἔπειτα ὑπερενεγκεῖν τὴν χεῖρα σὺν τῷ ξύλῳ ὑπὲρ τοῦ στρωτῆρος , ὡς ἡ μὲν χεὶρ ἐπὶ θάτερα ἔῃ ,
τὸ στῆθος τοῦ ἀνθρώπου ἱμάτιον ἐπικαθίσαι ἐπὶ τὸ προέχον τοῦ στρωτῆρος , εἶτα προσβάλλειν τὸ στῆθος πρὸς τὸν στύλον πλατέῃ
6644741 ἐκτεθεντος
καὶ ἀεὶ οὕτως . γεννᾶται δὲ τοῦ φυσικοῦ ἀριθμοῦ στοιχηδὸν ἐκτεθέντος καὶ ἀεὶ ἀπ ' ἀρχῆς τῶν συνεχῶν κατὰ ἕνα
, συνεχεῖς δὲ τούτους ἑτερογενῶς . ὑπόδειγμα δ ' αὐτῆς ἐκτεθέντος ἀπὸ μονάδος τοῦ ἐφεξῆς ἀριθμοῦ καὶ ὡντινωνοῦν τριῶν ὅρων
6643808 ϲτομιου
ὃ δὴ καὶ δεύτερον καλεῖται . διεϲτῶτοϲ μὲν οὖν τοῦ ϲτομίου τῆϲ μήτραϲ καὶ αὐτοῦ τοῦ χορίου ἀπολελυμένου καὶ παρά
δὲ τοῦ κόλπου διαϲταλέντοϲ : καὶ γὰρ ἐπιρρήξειϲ κύκλῳ τοῦ ϲτομίου θεωροῦνται . ἐφ ' ὧν δεῖ τήν τε χειρουργίαν
6641102 ἐγγραφομενου
ὑποτείνει ἡ τοῦ τετραγώνου πλευρὰ τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου . καὶ ἐπεὶ ἐν σφαίρᾳ δύο κύκλοι οἱ ΜΝΞ
ὑποτείνει ἡ τοῦ τετραγώνου πλευρὰ τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου , ἴση περιφέρεια ἀπειλήφθω ἡ ΒΘ , καὶ πόλῳ
6633578 Θουκλεους
ᾤκησαν . Ἑλλήνων δὲ πρῶτοι Χαλκιδῆς ἐξ Εὐβοίας πλεύσαντες μετὰ Θουκλέους οἰκιστοῦ Νάξον ᾤκισαν , καὶ Ἀπόλλωνος Ἀρχηγέτου βωμὸν ὅστις
Ἀθηναῖοι , Ἱππονίκου τε τοῦ Καλλίου στρατηγοῦντος καὶ Εὐρυμέδοντος τοῦ Θουκλέους , ἀπὸ σημείου ἐς τὸ αὐτὸ κατὰ γῆν ἀπήντων
6631317 σιναρου
κατατείναντα προσδῆσαι , ὅκου ἂν ἁρμόσῃ , ἐκ δὲ τοῦ σιναροῦ ἐς κεράμιον ὕδωρ ἐγχέαντα ἐκκρεμάσαι ἢ ἐς σφυρίδα λίθους
ἐν τῇ ὁδοιπορίῃ οὐ δύναται τὸ σῶμα ὀχέεσθαι ἐπὶ τοῦ σιναροῦ σκέλεος , εἰ μὴ προσκατερεί - δεται τὸ σιναρὸν
6628200 καταστρωματος
νεὼς μὴ πρότερον ἀξιοῦν ἀπολύεσθαι ἢ τοὺς ἀπὸ τοῦ πολεμίου καταστρώματος ὁπλίτας ἀπαράξητε . καὶ ταῦτα τοῖς ὁπλίταις οὐχ ἧσσον
οὐκ ἂν ποιῆσαι βασιλέα τοιόνδε , τοὺς μὲν ἐκ τοῦ καταστρώματος καταβιβάσαι ἐς κοίλην νέα , ἐόντας Πέρσας καὶ Περσέων
6625526 χανω
διὰ τῆς αι διφθόγγου γράφονται : οἷον , χαίνω , χανῶ : μαίνω , τὸ ὀργίζομαι , μανῶ : βαίνω
Ἀχανές : οἷον : ἀχανὲς πέλαγος : παρὰ τὸ χαίνω χανῶ χανές καὶ μετὰ τοῦ ἐπιτατικοῦ α ἀχανές , τὸ
6623551 γευστου
καὶ σιγῆς καὶ μεγάλου ψόφου , οὕτω τοι καὶ γεῦσις γευστοῦ καὶ ἀγεύστου . ἔτι ἐπεὶ ἀόρατον τὸ μὲν φύσει
ἐπὶ τῶν ἄλλων . ἔτι πάσχει ἡ γεῦσις ὑπὸ τοῦ γευστοῦ , ᾗ γευστόν , καὶ διὰ τοῦτο ἀνάγκη τὸ
6618186 ἀνωμαλιαϲ
δὲ πρὸϲ τῷ τὴν ἰϲότητα διαφθείρειν μηδὲ τάξιν τινὰ τῆϲ ἀνωμαλίαϲ διαφυλάττοι , πρὸϲ τῷ ἀνωμάλῳ καὶ ἄτακτοϲ ὁ τοιοῦτόϲ
' ἑκάτερα τὰ μέρη . τῆϲ δὲ παρὰ τὸ μέγεθοϲ ἀνωμαλίαϲ τὸ μὲν πρωιαίτερον ἢ ὀψιαίτερον προϲειληφυίαϲ οἵ τε κυματώδειϲ
6617524 ΔΜΕ
πρὸς τὸ ὑπὸ ΞΜΕ . καὶ ὡς ἄρα τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΠΜΡ , οὕτως τὸ ὑπὸ ΔΜΕ
. τὸ ἄρα ὑπὸ τῶν ΝΜΞ ἴσον ἐστὶ τῷ ὑπὸ ΔΜΕ . ἔστιν ἄρα ὡς ἡ ΜΝ πρὸς ΜΔ ,
6615559 Κεισθω
: ἑκάτερον ἄρα τῶν ΔΘ , ΕΚ μέσον ἐστίν . Κείσθω δὴ τῷ μὲν ΑΙ ἴσον τετράγωνον τὸ ΛΜ ,
ΑΒ , Ζ τῶν ΓΔ , Ε μείζονά ἐστιν . Κείσθω γὰρ τῷ μὲν Ε ἴσον τὸ ΑΗ , τῷ
6614129 ξυναλλασσοντος
. ξυναλλάσσοντος ] τοῦ συνάγοντος . ξυναλλάσσοντος ] ἑνοῦντος . ξυναλλάσσοντος ] τοῦ συνάγοντος καὶ τοῦ ἑνοῦντος . ξυναλλάσσοντος ]
] ἀποδέχομαι . δεινὸς ] δεξιός . . φεῦ τοῦ ξυναλλάσσοντος ] τοῦ συνάγοντος . ἀπὸ μεταφορᾶς τῶν τὰς συναλλαγὰς
6609729 Πλημμυριου
ἀνάκρουσιν , οὐ δυνήσεσθαι αὐτούς , ἄλλως τε καὶ τοῦ Πλημμυρίου πολεμίου τε αὐτοῖς ἐσομένου καὶ τοῦ στόματος οὐ μεγάλου
[ πλησίον ] τὸν μέγαν λέγει : τειχισθέντος δὲ τοῦ Πλημμυρίου τὴν ἐφόρμησιν αὐτόθεν δι ' ὀλίγου χωρίου ἔσεσθαι ἐκ
6606510 ΧΩ
ΨΧ πρὸς τὴν ΧΠ , οὕτως ἡ ΠΧ πρὸς τὴν ΧΩ . καὶ διὰ τοῦτο πάλιν ἐὰν ἐπιζεύξωμεν τὴν ΠΨ
καὶ ἀπὸ περισπωμένων : ἰαχήσω , στεναχήσω . Τὰ εἰς ΧΩ ὑπερδισύλλαβα φύσει βραχείᾳ παραληγόμενα , ἢ παρ ' ὄνομα
6602936 ΑΛΛ
τοῦ σώματος ὅμοιον , οὔτε κατὰ τὴν γνώμην . . ΑΛΛ ' ἙΚΑΤΟΝ ΜΕΝ ΠΑΙΣ . Ὀρθῶς τοῦ κακοῦ βίου
λογογράφοις ἐφεῖται τῷ γένει χρῆσθαι ἀντὶ τοῦ εἴδους . . ΑΛΛ ' ΕΠΙ ΓΑΙΑΝ . ἀντὶ τοῦ κατὰ τὴν γῆν
6601161 Ϙβʹ
κάλλους καὶ ἀρετῆς ἡ ἐπὶ τὸ νοητὸν γίνεται ἄνοδος . Ϙβʹ Καὶ τοῖς ὀνόμασιν ἠναγκασμένη Ἀπολογεῖται ἐνταῦθα διὰ τί ποιητικοῖς
] ἡμέραι [ ] Ϙαʹ , Εὐκτήμονι Ϙʹ , Καλλίππῳ Ϙβʹ . . . . κη : μετοπωρινὴ ἰσημερία .
6599923 τεγγεσθαι
γενικῆς Ἀττικῷ ἐχρήσατο ἔθει . Πλάτων δὲ γενικῇ κέχρηται μὴ τέγγεσθαι ὑπὸ κακοδοξίας . ἀπαίρειν : τὸ μὲν πλεῖστον οἱ
ἐν αὐτῷ ἀτμώδους καὶ φυσώδους διαφορηθέντος , ὡς ἀκραιφνέσιν ἤδη τέγγεσθαι τὸν ἐγκέφαλον ἀναδόσεσιν , εἰ μή πού γε ξηροτέρου
6597174 ΚΗΑ
ὡς ἄρα ἡ ΓΑ πρὸς ΑΒ , οὕτως τὸ ὑπὸ ΚΗΑ , τουτέστι τὸ ἀπὸ ΖΗ , πρὸς τὸ ὑπὸ
ΗΒ , τῆς ΑΗ κοινοῦ ὕψους λαμβανομένης οὕτως τὸ ὑπὸ ΚΗΑ πρὸς τὸ ὑπὸ ΒΗΑ , ὡς ἄρα ἡ ΓΑ
6594210 ἰσοϋψης
, ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη ἄρα τῶν ἀνεσταμένων πυραμίδων μείζων
τὸ ΕΖΗΘ , καὶ ἀνεστάτω ἀπὸ τοῦ ΕΖΗΘ τετραγώνου πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἡ ἄρα ἀνεσταμένη πυραμὶς μεῖζόν ἐστιν
6591653 ΓΖΕ
ἐπὶ τὸ Γ καὶ διὰ τοῦ κέντρου αἱ ΒΖΚ , ΓΖΕ , καὶ ἀπὸ τῶν Ε , Κ ἡ ΚΕ
φησι τὰς ὑπὸ ΑΕΖ καὶ ΔΖΕ καὶ πάλιν τὰς ὑπὸ ΓΖΕ καὶ ΒΕΖ . οὕτως δὲ καλεῖ αὐτὰς ὡς ἐνηλλαγμένως
6584338 Ϡοθ
τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς
πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως
6584041 ΚΘΛ
, καὶ τοῦ ἡλίου ἀνατέλλοντος μὲν κατὰ τὸ Ο ἡ ΚΘΛ περιφέρεια θέσιν ἕξει ὡς τὴν ΟΠΡ , δύνοντος δὲ
ὡς τὴν ΟΠΡ , δύνοντος δὲ κατὰ τὸ Μ ἡ ΚΘΛ περιφέρεια θέσιν ἕξει ὡς τὴν ΜΣΤ . Καὶ ἐπεὶ
6582102 ἐξαρθρηματος
ὅ τε ἐκ δυοῖν διανταίων : ἄλλοτε δὲ κεχρονισμένου τοῦ ἐξαρθρήματος ἐδεήθημεν τοῦ Ἱπποκρατείου βάθρου . Ἡ τῶν κατ '
κδʹ περὶ κατάργματος . κεʹ περὶ ἐμβυρσώματος . κϚʹ περὶ ἐξαρθρήματος καὶ παραρθρήματος . Οὐχ ἅπαξ , οὐδὲ δὶς ,
6567848 προανατελλει
πρὸς τῷ θʹ τὸ εʹ ἄστρον οὐ φαίνεται ἀνατέλλον : προανατέλλει γὰρ αὐτοῦ τὸ θʹ [ τουτέστιν ὁ ἥλιος ]
εἰς τὰ ἑπόμενα μετέβη , ὁ δ ' ἀστὴρ τοσοῦτον προανατέλλει τοῦ ἡλίου , ὅσον ὁ ἥλιος ἐν ταῖς δυσὶν
6566138 βλωμος
γὰρ τὼ βπ τῷ μ . ὅθεν καὶ ὁ ψωμὸς βλωμὸς ἀπὸ τοῦ βλώσκειν διὰ τοῦ λαιμοῦ , ὅ ἐστι
γὰρ τὼ βπ τῷ μ . ὅθεν καὶ ὁ ψωμὸς βλωμὸς ἀπὸ τοῦ βλώσκειν διὰ τοῦ λαιμοῦ , ὅ ἐστι
6565917 ΕΘΠΟ
ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖ τρίγωνον , οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος .
τοῦ καθ ' ἑαυτὸ παραλληλογράμμου . ἀλλὰ τὸ μὲν τοῦ ΕΘΠΟ . , ] ἰσουψεῖς γάρ εἰσιν . ἀλλ '

Back