α . ωιϚ ΔΥ ση Μο α , μετὰ τοῦ αου , τουτέστι ΔΥ ιγ # Μο α , ποιεῖν
, αἴρω τὴν Μο α , καὶ τάσσω τὸν ὑπὸ αου καὶ γου ΔΥ δ ʂ δ , ὧν ὁ
9575453 γου
λοιπὸν ʂ β # Μο γ ζον μέρος εἰσὶ τοῦ γου : αὐτὸς ἄρα ἔσται ʂ ιδ # Μο κα
ποιῇ ⃞ον . λοιπόν ἐστι καὶ τὸν ὑπὸ βου καὶ γου προσλαβόντα συναμφότερον καὶ ἔτι τὸν ὑπὸ γου καὶ αου
8848235 βου
λοιποῦ ὑπερέχωσι δοθέντι ἀριθμῷ , ὁ μὲν αος μετὰ τοῦ βου , τοῦ γου , Μο δ : ὁ δὲ
ἂν ἴση ἡ ὑπεροχή . ἀλλὰ Μο κε ἐκ τοῦ βου εἰσίν , αἱ δὲ Μο ι ἐκ τοῦ αου
7844712 δου
μὴ ὑπὸ θορύβου τῶν διωκόντων ἀποτραπείη τῆς κατὰ δαίμονα ὁ δοῦ . καὶ ἡ μὲν ἀμφὶ τοὺς εἴκοσι καὶ τέτταρας
: ἐδέου , ἐδοῦ : καὶ τὸ προστακτικὸν δέου , δοῦ , καὶ μετὰ τῆς περί προθέσεως περιδοῦ , τουτέστι
7534372 ⃞ον
Μο κα ἀφελεῖν Μο θ # ΔΥ α καὶ ποιεῖν ⃞ον . ἀλλ ' ἐὰν ἀπὸ Μο κα ἀφέλω Μο
Μο β , δεήσει καὶ ΔΥ λ ʂ ε εἶναι ⃞ον : οὐκ ἔστιν δέ . ἀπάγεται οὖν εἰς τὸ
7437498 ⃞ου
δεῖ οὖν τὸν ι διελεῖν εἰς τρεῖς ⃞ους ὅπως ἑκάστου ⃞ου ἡ πλευρὰ πάρισος ᾖ Μο Ϛια / . ἀλλὰ
. καὶ γίνεται ὁ συγκείμενος ἐκ τοῦ ἐμβαδοῦ καὶ τοῦ ⃞ου , ΔΥ κϚ Μο ι : ταῦτα ικις :
7366370 λειψαντα
καὶ συμβήσεται τὸν ἀπὸ τοῦ συγκειμένου ἐκ τῶν τριῶν κύβον λείψαντα ἕκαστον ποιεῖν κύβον . λοιπόν ἐστι τοὺς τρεῖς ἰσῶσαι
. Ἔστω δὴ Μο δ . Ἐπεὶ οὖν τὸν αον λείψαντα αὑτοῦ τὴν πλ . , καὶ τὸν βον λείψαντα
7191318 γον
βον μετὰ τοῦ γου ποιεῖν Μο λ , τὸν δὲ γον μετὰ τοῦ αου ποιεῖν Μο μ . Τετάχθωσαν οἱ
βου τουτέστιν εἰς ʂ β Μο δ , ἕξω τὸν γον : ἀλλ ' ἔστιν ὁ μερισμὸς ʂ ∠ ʹ
7159849 αον
γον , ποιεῖ ⃞ον : ὥστε καὶ ἑκάτερον τόν τε αον καὶ τὸν βον λείψας ὁ ἐκ τῶν τριῶν στερεὸς
ἐκ τῶν τριῶν συγκείμενον τετράγωνον ΔΥ α , τὸν δὲ αον ΔΥ א ρνγ , ἐπεὶ δεῖ τρίγωνον γενέσθαι ,
7110807 Μο
# Μο Ϛ . καὶ γίνεται ὁ ⃞ος ΔΥ δ Μο λϚ # Μο κδ ἴσ . ΔΥ δ ʂ
α # Μο α , ἡ δὲ ὑποτείνουσα ΔΥ α Μο α . καὶ γίνεται ζητεῖν ΔΥ β ʂ β
7073671 προσκειμενου
γ : γίνονται θ ἔκ τε τῆς ἡμισείας καὶ τοῦ προσκειμένου ὡς ἀπὸ μιᾶς ἀναγραφέντα τετράγωνα β λϚ καὶ πα
, ὁ ἐκ τοῦ ὅλου σὺν τῷ προσκειμένῳ καὶ τοῦ προσκειμένου ἐπίπεδος μετὰ τοῦ ἀπὸ τοῦ ἡμίσεος τετραγώνου ἴσος ἐστὶ
7071516 συναμφοτερους
, καὶ ἔτι ὁ ὑπὸ γου καὶ αου , προσλαβὼν συναμφοτέρους , ʂ ε Μο δ ἴσος ⃞ῳ καὶ γίνεται
Καύκωνας Πυλίους ἀπὸ Κόδρου τοῦ Μελάνθου , οἱ δὲ καὶ συναμφοτέρους . Ἀλλὰ γὰρ περιέχονται τοῦ οὐνόματος μᾶλλόν τι τῶν
7019672 βον
. τάσσω τὸν μὲν αον ʂא ιε , τὸν δὲ βον ʂא κ : καὶ συναμφότερος ὁ βος καὶ ὁ
ὁ Μοι ἐλάσσων τοῦ βου . ἐὰν οὖν τάξω τὸν βον ὁσουδήποτε καὶ προσθῶμεν αὐτὸν τῷ δοθέντι , καὶ τὰ
6915460 ΔΥ
, ἐπεὶ ὁ ἀπὸ ʂ β Μο α ⃞ος ἐστι ΔΥ δ ʂ δ Μο α , ἐὰν ὁμοίως ἀφέλω
# ʂ β˙͵δφος : καὶ πάντων τὸ Δον . γίνεται ΔΥ α ΜΥ ρδ˙͵ηφος # ʂ ͵Ϛρμδ ἴσ . ⃞ῳ
6798169 τετραπλασιον
' εὐθέως ἐξ ἀρχῆς οὕτως σκευάζειν : τῷ ὀξυμέλιτι μιγνύσθω τετραπλάσιον ὕδατος καλλίστου , κἄπειτα ἑψείσθω μετρίως , ἕως ἂν
ΚΓ , διπλῆ ἄρα καὶ ἡ ΘΚ τῆς ΚΓ . τετραπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΘΚ τοῦ ἀπὸ τῆς
6751591 ἰσ
λείψας αὐτὸν ποιεῖ ΚΥ κζ ʂ Ϛ # ΔΥ κζ ἴσ . ʂ Ϛ # ΔΥ α , καὶ γίνεται
ποιεῖν ἴσ . ⃞ῳ , καὶ ʂ β Μο α ἴσ . κύβῳ . καὶ γίνεται ζητεῖν τετράγωνον κύβου βπλ
6716047 ΓΖΑ
προκείσθω εὑρεῖν πόσων ἐστὶν τὸ περιεχόμενον ὑπὸ τῶν ΑΔΓ , ΓΖΑ περιφερειῶν ἐμβαδὸν μέγεθος οἵων ἐστὶν τὸ ὅλον τοῦ ἡλιακοῦ
τοῦ ὑπὸ ΓΖΑ : τὸ οὖν ὑπὸ ΒΖΕ τοῦ ὑπὸ ΓΖΑ ὑπερέχει τῷ ὑπὸ Η ΖΔ , ὥστε τὸ ὑπὸ
6657170 ⃞ῳ
⃞ον καὶ ἔστιν ΔΥ α # Μο ιβ ἴσ . ⃞ῳ καὶ ʂ Ϛ ∠ ʹ # Μο ιβ ἴσ
α . πάλιν , ἐπεὶ θέλω τοὺς τρεῖς ἴσους εἶναι ⃞ῳ , εἰσὶ δὲ οἱ τρεῖς ʂ ιγ , ταῦτα
6647604 Ϟων
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς
6638096 ἐπιμερης
τοὺς παρέξοντας ἀφ ' ἑαυτῶν τὰ μέρη , καθὰ ὁ ἐπιμερὴς κέκληται , οἷον ἐπιδιμερῶν τὸν πέντε πρὸς τρία ,
, ἐπιέβδομος καὶ εἰς ἄπειρον . γʹ . κατὰ γένος ἐπιμερὴς δὲ ὁ μετρούμενος ὑπὸ ἑτέρου ἅπαξ , καὶ περισσεύει
6630548 εον
Μο α . ἀλλὰ δοὺς μὲν ὁ αος τὸ ἑαυτοῦ εον καὶ ἔτι Μο Ϛ , γί . ʂ δ
δεήσει ἄρα καὶ τὸν γον , δόντα μὲν ἑαυτοῦ τὸ εον , λαβόντα δὲ παρὰ τοῦ βου τὸ δον ,
6599085 πενταπλασιον
καταγραφῆς Εὐθεῖα γάρ τις ἡ ΓΔ τμήματος ἑαυτῆς τοῦ ΔΑ πενταπλάσιον δυνάσθω , τῆς δὲ ΔΑ διπλῆ κείσθω ἡ ΑΒ
, δῆλον : ἐπεὶ γὰρ τὸ μὲν ἀπὸ τῆς ΑΒ πενταπλάσιον τοῦ ἀπὸ τῆς ΜΝ ἐκ κέντρου οὔσης τοῦ κύκλου
6564016 ΚΥ
δὲ ζητουμένων ὃν μὲν ΚΥ Κ ξγ , ὃν δὲ ΚΥ Κ ιε , ὃν δὲ ΚΥ Κ γ .
τοὺς τρεῖς ἰσῶσαι ʂ α : γίνονται δὲ οἱ τρεῖς ΚΥ β δא : ταῦτα ἴσα ʂ α : ὅθεν
6468339 ἀφελω
τοῦ γου ποιεῖν ⃞ον : ἐὰν ἄρα ἀπό τινος ⃞ον ἀφέλω τὰς ΔΥ ιϚ , ἕξω τὸν γον : τάσσω
ΒΓ ὄντος δ , ἐὰν ἀπὸ τοῦ ΑΓ τοῦ η ἀφέλω τὸ δοθὲν τὸ ΑΒ οἷον δ , τὸ λοιπὸν
6450696 ʂא
, ἡ δὲ τοῦ ἑτέρου ἀπὸ διαφορᾶς ʂ β καὶ ʂא α ∠ ʹ . καὶ μένει ὁ ἀπὸ ἑκατέρου
δὲ πολλαπλασιαζόμενος ἀριθμὸς ἔστω ἀριθμοστῶν κυβικῶν ὁσωνδήποτε : ἔστω δὴ ʂא η . ἐπὶ μὲν οὖν τὴν ΔΥ α πολλαπλασιάσαντες
6414882 Μοναδες
ἄρα η ἴσοι δυνάμεσι ε . Πάντα παρὰ ἀριθμόν . Μονάδες ἄρα ὅλαι εἰσὶν ἴσαι ἀριθμοῖς ε . Ἀναλυθέντων αἱ
τουτέστι μο κδ , λοιπὸς γίνεται μο ριθ . . Μονάδες ἄρα ν ἴσαι Ϟ κγ . Ὁ Ϟὸς ἄρα
6386748 προσλαβοντα
τὸ ἐπίταγμα , ἔστω τὸν ὑπὸ αου καὶ βου , προσλαβόντα τὸν γον , ποιεῖν ⃞ον , καὶ λείψαντα τὸν
ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῆς γραμμῆς τετράγωνα προσλαβόντα τὰ ἀπὸ τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας τῆς
6359879 Ἐπιτεταχθω
δοθέντα ἀριθμόν , ἵνα δόντες καὶ λαβόντες γένωνται ἴσοι . Ἐπιτετάχθω δὴ τὸν αον τῷ βῳ διδόναι τὸ εον καὶ
ὑπεροχὴν τοῦ μέσου καὶ τοῦ ἐλαχίστου λόγον ἔχῃ δεδομένον . Ἐπιτετάχθω δὴ τὴν ὑπεροχὴν τῆς ὑπεροχῆς εἶναι γπλ . .
6359354 γβ
ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ
ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ
6353291 ͵αχπα
τε Ϡ ξα ἀπὸ πλευρᾶς τοῦ λα , καὶ τὸν ͵αχπα ἀπὸ πλευρᾶς τοῦ μα , καὶ τὸν ͵βυα ἀπὸ
͵αχπα , ἕξω τὸν βον , ʂ α # Μο ͵αχπα . λοιπόν ἐστι τοὺς τρεῖς συντεθέντας ἴσους εἶναι ʂ
6338305 ἑτερομηκους
, ἀλλ ' ἰσοκρατῶς ἀμφότεροι πλευρικοί εἰσιν ἀριθμοὶ τοῦ Ϛʹ ἑτερομήκους ἐκ τοῦ δὶς τρία ἢ ἐκ τοῦ τρὶς βʹ
ἐπὶ τοῦ τετραγώνου καὶ τοῦ ῥόμβου , ἐπὶ δὲ τοῦ ἑτερομήκους καὶ τοῦ ῥομβοειδοῦς τὰ χωρία μόνον . καὶ ὅλως
6334412 Ποσειδιου
. Μέση δὲ τῶν εἰρημένων δύο πόλεων , τοῦ τε Ποσειδίου καὶ Δάφνης , ὑπάρχει ἡ Ἀπάμεια πόλις . Πρὸς
τοῦ ποταμοῦ εἰς Σελεύκειαν στάδιοι μʹ . ἀπὸ δὲ τοῦ Ποσειδίου τὸν ἐπίτομον εἰς Σελεύκειαν πεσόντι * ζεφύρῳ στάδιοι ριʹ
6332851 διαιρεθῃ
ἀπὸ τῶν αγ , γδ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , ἔτι δὲ διαιρεθῇ καὶ εἰς ἀνίσους ἀριθμούς
γβ τετραγώνῳ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , διαιρεθῇ δὲ καὶ εἰς ἀνίσους ἀριθμούς , ὁ ἐκ τῶν
6327195 Ϟου
οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο
, ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ
6312358 δκις
ΘΜ ἐπὶ τὸν ἀπὸ τοῦ ΚΒ ⃞ον , μετὰ τοῦ δκις ὑπὸ ΗΜ . ΚΒ , καὶ ὁ δκις ὑπὸ
ΓΒ , τουτέστι τῷ ἀπὸ ΑΕ , ποιήσει ἴσον τῷ δκις ὑπὸ ΒΕ . ΕΑ , ὃς μιγεὶς τῷ ἀπὸ
6301579 μο
ἕκτον αὐτοῦ τῷ τρίτῳ , ἤτοι ιη ζʹ , καὶ μο ζʹ , ἤτοι μθ ζʹ , λαβὼν δὲ παρὰ
. Κείμενον . Αὐτὸς ἄρα ὁ τετράγωνος ἔσται δυνάμεων τεσσάρων μο θ ↑ Ϟ ιβ . Ταῦτα ἴσα δυνάμεσι τρισὶν
6279010 πτερυγιου
καὶ μέλιτι προκαταιονῶν ϲτυμμάτων ἀφεψήματι , τὸ δὲ ξηραινόμενον τοῦ πτερυγίου περικαθᾶραι . Λιβανωτοῦ ⋖ α , λεπίδοϲ ⋖ β
πτερυγοτόμῳ ἐκ τῆϲ βάϲεωϲ τὸ πρὸϲ τὸν κανθὸν μέροϲ τοῦ πτερυγίου , φυλαϲϲόμενοι τὰ βλέφαρα καὶ τὸν κανθόν . τοῖϲ
6238391 δβ
δγ . καὶ ἐπεὶ ὁ δὶς ἐκ τῶν αδ , δβ μετὰ τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν αδ ,
δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , αἱ ἄρα ὑπὸ δαε , δβε ὀρθαί εἰσιν
6224415 λειψας
α . Εὑρεῖν τρίγωνον ὀρθογώνιον ὅπως ὁ ἐν τῇ ὑποτεινούσῃ λείψας τὸν ἐν ἑκατέρᾳ τῶν ὀρθῶν ποιῇ κύβον . Ἔστω
γ # Μο α : καὶ ὁ ἀπὸ τούτου κύβος λείψας αὐτὸν ποιεῖ ΚΥ κζ ʂ Ϛ # ΔΥ κζ
6200527 τετρακι
δύο καμπτῆρες ὅ τε γʹ καὶ ὁ δʹ , ιβʹ τετράκι γʹ ἀποτελεῖται . καὶ μὴν ἐκ τοῦ αʹ βʹ
τέσσαρές εἰσιν πλευραί , ὧν ἑκάστη - ἐστὶν πέντε , τετράκι τὰ πέντε εἴκοσι . καὶ λοιπὸν ἀεὶ προιόντι τὸ
6188863 ἡμισεος
δοθέντας ἀριθμούς . Δεῖ δὴ τῶν εὑρισκομένων τὸν ἀπὸ τοῦ ἡμίσεος τοῦ συναμφοτέρου τετράγωνον τοῦ ὑπ ' αὐτῶν ὑπερέχειν τετραγώνῳ
προσοδιακὸν τρίμετρον βραχυκατάληκτον ἐξ Ἰωνικοῦ ἀπὸ μείζονος , χοριάμβου καὶ ἡμίσεος ποδὸς ἀδιαφόρου . Τὸ ηʹ ἰαμβικὸν δίμετρον ἀκατάληκτον :
6185629 ἀφελοντεϲ
τοίνυν τομὴν εἰϲ τὸ κάτω τοῦ μαϲτοῦ δόντεϲ καὶ ὑποδείραντεϲ ἀφελόντεϲ τὴν πιμελὴν ῥαφαῖϲ ζυγώϲομεν . εἰ δὲ καὶ ἀπονένευκε
χοιράδοϲ ὄγκου πλεονάζοι τὸ τοῦ δέρματοϲ , μυρϲινοειδὲϲ αὐτοῦ μέροϲ ἀφελόντεϲ χρηϲώμεθα ταῖϲ ῥαφαῖϲ καὶ φάρμακον ἔναιμον ἐπιβάλωμεν . Τοῦ
6177437 γπλ
ἐλάσσων ʂ α , καὶ μένει ὁ μείζων τοῦ ἐλάσσονος γπλ . . λοιπόν ἐστι καὶ τὸν ἀπὸ τοῦ ἐλάσσονος
Δα Μο λϚ # ΔΥ ιβ : τῆς δὲ πλευρᾶς γπλ . , Μο ιβ ἐν μορίῳ Μο Ϛ #
6170071 Ϟοι
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ .
6164730 ἐπιμερους
ἡ δὲ λοιπὴ μικτὴ σχέσις ἡ πολλαπλασιεπιμερὴς γεννᾶται ἐκ τῆς ἐπιμεροῦς , καὶ ἐκ μὲν τῆς ἐπιδιμεροῦς ἢ δὶς ἐπιτρίτου
τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , ὧν ἕκαστον
6162285 πολλαπλασιου
ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου
: ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον
6156278 πολλαπλασιεπιμοριος
ἐν τῷ προειρημένῳ λόγῳ ἐλάσσων πρὸς τὸν μείζονα ἐξεταζόμενος . πολλαπλασιεπιμόριος δέ ἐστι λόγος , ὅταν ὁ μείζων ὅρος δὶς
ἐλάσσονος μέρος : οἷον ὁ τῶν κϚʹ τοῦ τῶν ηʹ πολλαπλασιεπιμόριος λέγεται , ἐπειδήπερ ὁ ηʹ τρὶς καταμετρήσας τὸν κϚʹ
6150400 ΞΥ
πρὸς ΞΥ , τουτέστι τὸ ὑπὸ ΧΞΥ πρὸς τὸ ἀπὸ ΞΥ , τουτέστι τὸ ὑπὸ ΝΞΜ πρὸς τὸ ἀπὸ ΞΥ
ἴση ἐστὶν ἡ μὲν ΔΞ τῇ ΟΕ , ἡ δὲ ΞΥ τῇ ΥΟ , καὶ γωνίας ἴσας περιέχουσιν , βάσις
6139583 πενταπλασιος
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν
6132498 τετραπλασιος
: διὸ καὶ οὐ δύναται εἶναι ὁ θ τοῦ δ τετραπλάσιος , ὡς ὁ ιϚ τοῦ δ καὶ ὁ λϚ
δὲ ὦσι δύο ἀριθμοὶ ὁ μὲν ἕτερος αὐτῶν τοῦ αὐτοῦ τετραπλάσιος , ὁ δ ' ἕτερος διπλάσιος , ὁ τετραπλάσιος
6114825 εβ
ἐστὶν ἡ Ηβ τῇ εΞ περιφερείᾳ . κοινὴ ἀφῃρήσθω ἡ εβ : λοιπὴ ἄρα ἡ Ηε λοιπῇ τῇ βΞ ἐστιν
γ , αδ , γ , δε , γ , εβ ἐπιπέδοις . Ἔστω γὰρ ἐκ μὲν τῶν γ ,
6097718 λυϲεωϲ
ἐρίοιϲ οἰϲυπηροῖϲ ἢ καὶ ἐλαιοβραχέϲι καὶ τοῖϲ δι ' ὠμῆϲ λύϲεωϲ καταπλαϲτέον . ἀναγαργαριζέϲθωϲαν δὲ κατ ' ἀρχὰϲ μὲν τοῖϲ
φλεγμαίνοι τὰ ϲπλάγχνα , τοῖϲ διὰ λινοϲπέρμου καὶ τῆϲ ὠμῆϲ λύϲεωϲ ἐν ὑδρελαίῳ καταπλάϲμαϲιν αὐτὰ παρηγορήϲωμεν , ἔπειτα δὲ καὶ
6094196 ηιγ
ἓν τῶν ἐπιταγμάτων . Καὶ ἐπεὶ ὁ μὲν αος ἐστι ηιγ / , ὁ δὲ βος Μο γ ∠ ʹ
τουτέστιν ηκδ / : ἔχομεν δὲ καὶ τὸν μὲν αον ηιγ / , τὸν δὲ βον Μο γ ∠ ʹ
6086900 ικ
β τοῦ πρώτου ζυγοῦ , καὶ τὸ ο μεταξὺ τοῦ ικ ὡς κατὰ τὸ γ , καὶ τὸ π μεταξὺ
[ ] αι ? ? [ ] [ ] ! ικ [ ] [ ] ! ! [ ] [
6084711 αγ
ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ
, τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς
6082274 βαρυτατου
διεζευγμένων τὸν τρίτον , τρίτην δὲ ὑπερβολαίων τὸν ἀπὸ τοῦ βαρυτάτου δεύτερον τοῦ πρὸ τῆς βαρυτέρας διαζεύξεως τετραχόρδου , καὶ
τῶν ΒΔ καὶ ΑΕ τμημάτων διέλωμεν εἰς τὰς μέχρι τοῦ βαρυτάτου φθόγγου φθανούσας μοίρας , ἀπὸ τῶν Α καὶ Β
6059323 τετυφθω
εἰς ω προστακτικὸν γίνεται τρίτον , τύπτεσθε τυπτέσθω , τέτυφθε τετύφθω , ἐτύφθητε τυφθήτω , ἐτύπητε τυπήτω , ἐτύψασθε τυψάσθω
συστολῇ τῆς ἀρχούσης προστακτικὸν γίνεται , ἐλελέγμην ἐλέλεξο λέλεξο . τετύφθω : δύναται καὶ ἀπὸ τοῦ τετυφέτω τετυφέσθω καὶ ἐν
6058025 λμ
[ [ ] ! [ ] ! [ ! ] λμ ? [ ] ! [ ! ] ! [
κλ , ἐκ δὲ τῶν δβ , βγ ἑκάτερος τῶν λμ , μν , ἀπὸ δὲ τοῦ βγ ὁ νξ
6038312 ἐννακις
μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β
τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο
6031361 Ψευδοστομου
. . . . . . . ριδ ιϚ : Ψευδοστόμου ποταμοῦ πηγαὶ ἀπὸ τοῦ Βηττιγὼ ὄρους . . .
. . . . . . . . ριζ ιδ Ψευδοστόμου ποταμοῦ ἐκβολαί ριζ γʹ ιδ Ποδοπέρουρα . . .
6019660 ϘϚ
' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . .
ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ
6018690 συντεθεντες
θέλω ἴσους εἶναι Μο π : ἀλλ ' οἱ δύο συντεθέντες ʂ εἰσι δ καὶ Μο δ . ʂ ἄρα
ἄρα ὁ αος ἔσται ʂ δ . καὶ οἱ τρεῖς συντεθέντες ποιοῦσι τὸν ἐπιταχθέντα ⃞ον , ΔΥ α ʂ β
6010923 διπλασιου
δ τῆς δυάδος διπλάσιος : μεῖζον δὲ τὸ τριπλάσιον τοῦ διπλασίου . ὡσαύτως καὶ ἐπὶ πλειόνων , οἷον ἀπὸ β
ἀδιαιρέτου γοῦν τῆς μονάδος ὑποκειμένης . ἐπὶ μὲν γὰρ τοῦ διπλασίου λόγου τῆς ΑΒ πρὸς τὴν Γ [ ἐν διπλασίῳ
6008502 συνθεματος
ὥστε μὴ χεθῆναι σὺν αὐτῷ τι ἀπὸ τῆς οὐσίας τοῦ συνθέματος τῶν τοιούτων χαλαζῶν . Καὶ ἐπίβαλε ἐν αὐτῷ ἕτερον
χώνευσον ἄργυρον : καὶ γελάσαν τι ἔκβαλε ἐκ τούτου τοῦ συνθέματος , καὶ εὑρήσεις τὸν ἄργυρον ὡς ἤλεκτρον . Τοῦτο
5998484 ρξ
# η , τερεβινθίνης # η , πεπέρεως λευκοῦ κόκκους ρξ . τὸ ὕπερον ἀλείφων γλευκίνῳ κόπτε . Ἰσχιαδικοὺς ἐν
∠ ʹ ἡ δὲ ὡς ἐπὶ τὰ Κάσια ὄρη ἐκτροπὴ ρξ μθ ∠ ʹ ἡ δὲ ἐν τούτοις πηγή .
5997440 αὐτεξουσιως
οὐκ ἔστιν ἐκεῖ λαβεῖν τὸ μὴ αὐτεξουσίως . Ὅλον οὖν αὐτεξουσίως ἐν αὐτῷ . Τί οὖν αὐτοῦ , ὃ μὴ
σχηματισμῶν ὁποῖος τυγχάνει καταλήψεται , καὶ ἂν μὲν ἀνατολικὸς τύχῃ αὐτεξουσίως ἀφεθήσεται καὶ τὴν ἐλευθερίαν καρπώσεται , ἐὰν δὲ δυτικὸς
5994062 Ϟῳ
τουτέστιν ἀπὸ ὁμοίων ὅμοια . Καὶ λοιποὶ Ϟοὶ τρεῖς ἴσοι Ϟῷ ἑνὶ καὶ μονάσι μ . Εἶτα διὰ τὸ μὴ
Τὰ δὲ ἐλάσσονα γίνεται Ϟ Ϛ ↑ μο σμ ἴσα Ϟῷ ἑνὶ μονάσιν π . Ἀπὸ ὁμοίων ὅμοια . Γίνονται
5985940 βος
βου , ἕξω τὸν αον . οἷον , ἔστω ὁ βος ʂ α # Μο α : ταῦτα αἴρω ἀπὸ
σπθου . ἔσται ὁ μὲν αος β , ὁ δὲ βος ε , ὁ δὲ γος ι , καὶ ποιοῦσι
5984556 προσλαμβανομενου
διὰ πασῶν , τόνων ἕξ , οἷόν ἐστι τὸ ἀπὸ προσλαμβανομένου ἐπὶ μέσην : τέταρτον δὲ τὸ διὰ πασῶν καὶ
τρίτη συνημμένων , τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ
5974944 ξδα
μο θ , ἤτοι τῶν φοϚ ξδων , καταλείπονται ιϚ ξδα ἅτινά εἰσι τετράγωνος . Αἱ δὲ κα μονάδες συνάγουσιν
ἀπὸ τῶν κα καὶ ποιῶν τοὺς λοιποὺς τετραγώνους , φξ ξδα , καὶ φανερὰ ἡ ἀπόδειξις . . Εἰς τὸ
5966725 αος
α , ἔσται ιβ δא . ἔστι δὲ καὶ ὁ αος λ δא : οἵτινες # Μο ι ποιοῦσι ⃞ους
τῶν τριῶν μεῖζόν ἐστιν ἑκάστου . τετάχθω οὖν ὁ μὲν αος ΔΥ α , ὁ δὲ βος ΔΥ α ʂ
5964985 Σηκοανα
ζʹ , ἀκρωτήριον ἐπίσημον αʹ . Οἱ πάντες ἀπὸ τοῦ Σηκοάνα ποταμοῦ μέχρι τοῦ Ῥήνου ποταμοῦ , [ τουτέστι ]
καὶ Ἀμβιανοὶ καὶ Σουεσσίωνες καὶ Κάλετοι μέχρι τῆς ἐκβολῆς τοῦ Σηκοάνα ποταμοῦ . ἐμφερὴς δ ' ἐστὶ τῇ τῶν Μεναπίων
5961668 ἀποχυμα
ῥαφανίου ἐλαίου , κίκινον ἔλαιον . ἀντὶ ῥητίνης , κολοφωνίας ἀπόχυμα . ἀντὶ ῥητίνης πευκίνης , ῥητίνη τερεβινθίνη . ἀντὶ
κόψον μετὰ τοῦ κηροῦ καὶ ἐπίβαλλε τῇ κακκάβῃ καὶ τὸ ἀπόχυμα , εἰ μὲν ξηρὸν εἴη , λεῖον κοϲκινίϲαϲ ϲτάθμιζε
5961233 ͵βυα
καὶ τὸν ͵αχπα ἀπὸ πλευρᾶς τοῦ μα , καὶ τὸν ͵βυα ἀπὸ πλευρᾶς τοῦ μθ νῦν δέον εὑρεῖν . .
ὁ αος Ϡξα , ὁ βος ͵αχπα , ὁ γος ͵βυα . νῦν δεῖ εὑρεῖν ὅπως ὁ αος καὶ ὁ
5957767 ἀσυνθετοι
καὶ οἱ λοιποί . λέγονται οὕτως ἐκεῖνοι μὲν πρῶτοι καὶ ἀσύνθετοι , ἐπειδὴ ὑπὸ μόνης τῆν μονάδος μετροῦνται , ἐπεὶ
ὡσαύτως καὶ ὁ λθ καὶ ὅμως οὐκ εἰσὶ πρὸς ἀλλήλους ἀσύνθετοι , πρὸς δὲ ἑαυτοὺς σύνθετοι : ἀμφότεροι γὰρ ὑπὸ
5957428 ἐπογδοον
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν
5950258 ἀντονομαζοντος
δὲ διπλῶν τῇ τάξει τῶν κεφαλαίων : καὶ τοῦ μὲν ἀντονομάζοντος καὶ τοῦ κατὰ σύλληψιν τῷ ἐν ἐκείνοις μὲν τῶν
. Δεύτερος ὁ κατὰ σύλληψιν ὀνομαζόμενος , ὅταν τοῦ φεύγοντος ἀντονομάζοντος ὁ διώκων καὶ τούτῳ κἀκείνῳ ὑπεύθυνον αὐτὸν εἶναι λέγῃ
5944074 γλοιωδουϲ
# ιδ : ἕψει τὸ ἔλαιον μετὰ τοῦ χυλοῦ ἕωϲ γλοιώδουϲ ϲυϲτάϲεωϲ καὶ τὰ ξηρὰ λείου τῷ κυπρίνῳ , τὴν
χαμαιλέοντοϲ μέλανοϲ τῆϲ ῥίζηϲ # δ : ϲυνεκλεαίνεται πάντα μέχρι γλοιώδουϲ πάχουϲ , εἶτα καταχρίεται θέρουϲ μὲν ἐν ἡλίῳ πολλάκιϲ
5931422 ΒΣΓ
πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ
: ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ
5929254 ἡμιολιος
ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος .
τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ
5927180 πολλαπλασιαζεσθαι
πλευρὰς ἔχουσιν , [ ὡς ἀριθμοὺς τρεῖς ἴσους ἐπὶ ἴσους πολλαπλασιάζεσθαι , ] οἱ δὲ ἀνίσους . τούτων δ '
πλεῖον , ἀλλὰ ἐκ τοῦ αὐτὸν καθ ' αὑτὸν μὴ πολλαπλασιάζεσθαι , ἀλλ ' ὑπὸ ἑνὸς καὶ ἑτέρου , οἷον
5912959 κροταφου
λοβὸν ὠτὸς ἐπὶ ἰνίον , εἶτα λοξὴν κατὰ τοῦ ἑτέρου κροτάφου καὶ τοῦ βρέγματος ὑπὸ τὸν ἕτερον λοβὸν ἐπὶ ἰνίον
ἀναλύεται χωρὶϲ φανερᾶϲ αἰτίαϲ . νυγματώδειϲ δὲ διαδρομαὶ γίγνονται μέχρι κροτάφου καὶ παρέπεται αὐτοῖϲ ῥευματιϲμὸϲ ὑγροῦ ϲυμμέτρωϲ δριμέοϲ καὶ λεπτοῦ
5905716 ὀϲχεου
δι ' αἰγείρων καὶ αἱ λοιπαὶ ἐπιϲπαϲτικαί . Τοῦ μὲν ὀϲχέου τὴν φλεγμονὴν διαγνωϲτέον ἐκ τοῦ κατὰ τὴν πρώτην τῆϲ
τῇ δεξιᾷ χειρὶ τὸ πέραϲ ἐνδιπλοῦντεϲ ἐπὶ τὰ ἔνδον τοῦ ὀϲχέου ὁμοῦ τε τῇ ἀριϲτερᾷ τὸν περιτόναιον ἀνέλκοντεϲ πρὸϲ τὴν
5901093 τετραγωνου
τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ
πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν
5894975 καταστρωματος
νεὼς μὴ πρότερον ἀξιοῦν ἀπολύεσθαι ἢ τοὺς ἀπὸ τοῦ πολεμίου καταστρώματος ὁπλίτας ἀπαράξητε . καὶ ταῦτα τοῖς ὁπλίταις οὐχ ἧσσον
οὐκ ἂν ποιῆσαι βασιλέα τοιόνδε , τοὺς μὲν ἐκ τοῦ καταστρώματος καταβιβάσαι ἐς κοίλην νέα , ἐόντας Πέρσας καὶ Περσέων
5893170 Τεταχθω
γπλ . τῆς ὑπεροχῆς καὶ τῶν δοθεισῶν Μο ι . Τετάχθω ἡ μὲν ὑπεροχὴ αὐτῶν Μο β , ὁ δὲ
συγκείμενος ἐκ τῶν ἀπ ' αὐτῶν τετραγώνων ποιῇ τετράγωνον . Τετάχθω δὴ τῶν ζητουμένων ὁ μὲν ΔΥ α , ὁ
5892836 λιπτω
χαρακτῆρος : πρόσκειται ἓν ἄφωνον , διὰ τὸ ἵπτω : λίπτω : νίπτω : πίπτω . Τὰ εἰς δω δισύλλαβα
Ξ μάχης ] πολέμου . λελιμμένος ] ἐπιθυμῶν παρὰ τὸ λίπτω . λελιμμένος ] ἐπιθυμῶν . θ Ξ λελιμμένος ]
5884541 σιναρου
κατατείναντα προσδῆσαι , ὅκου ἂν ἁρμόσῃ , ἐκ δὲ τοῦ σιναροῦ ἐς κεράμιον ὕδωρ ἐγχέαντα ἐκκρεμάσαι ἢ ἐς σφυρίδα λίθους
ἐν τῇ ὁδοιπορίῃ οὐ δύναται τὸ σῶμα ὀχέεσθαι ἐπὶ τοῦ σιναροῦ σκέλεος , εἰ μὴ προσκατερεί - δεται τὸ σιναρὸν
5882785 Ὀτανεω
τῶν πίλων μιτρηφόροι ἦσαν . Κισσίων δὲ ἦρχε Ἀνάφης ὁ Ὀτάνεω . Ὑρκάνιοι δὲ κατά περ Πέρσαι ἐσεσάχατο , ἡγεμόνα
σμικρῇ . Ἡ ὦν δὴ Φαιδύμη αὕτη , ἡ τοῦ Ὀτάνεω θυγάτηρ , πάντα ἐπιτελέουσα τὰ ὑπεδέξατο τῷ πατρί ,
5878482 ΚΒ
. καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ
ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ
5874543 ιε
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α ,
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι
5868076 ξυναλλασσοντος
. ξυναλλάσσοντος ] τοῦ συνάγοντος . ξυναλλάσσοντος ] ἑνοῦντος . ξυναλλάσσοντος ] τοῦ συνάγοντος καὶ τοῦ ἑνοῦντος . ξυναλλάσσοντος ]
] ἀποδέχομαι . δεινὸς ] δεξιός . . φεῦ τοῦ ξυναλλάσσοντος ] τοῦ συνάγοντος . ἀπὸ μεταφορᾶς τῶν τὰς συναλλαγὰς
5864417 βλωψ
ο εἰς ω ῥώψ , ὡς βλέπω βλέψω βλὲψ καὶ βλώψ , ἐξ οὗ τὸ ” παραβλῶπες ” . .
ο εἰς ω , κλώψ : ὡς βλέπω βλὲψ βλὸψ βλώψ . ὅθεν παραβλῶπες τῶν ὀφθαλμῶν . Κονιορτός . παρὰ
5855458 ΤΙΣ
. . . . . . . . Τὰ εἰς ΤΙΣ πρὸ αὐτοῦ ψιλὸν ἔχοντα . . . . βαρύνεται
. τὰ δὲ ὀξύνεται : νοκτίς πηκτίς . Τὰ εἰς ΤΙΣ πρὸ τοῦ ΤΙΣ Υ ἔχοντα σπάνια ὄντα τὰ μὲν
5849621 ἀποβρεγματοϲ
μέλλονταϲ ἐλλεβορίζεϲθαι ρκθ Πόϲαι διαφοραὶ τῆϲ δόϲεωϲ ἐλλεβόρου ρλ Περὶ ἀποβρέγματοϲ ἐλλεβόρου ρλα Περὶ ἀφεψήματοϲ ἐλλεβόρου ρλβ Περὶ τοῦ ψαλιϲτοῦ
κλινιδίῳ κρεμαϲτῷ κινεῖν : εἰ δὲ πάνυ ἐνοχλοῖντο πνιγόμενοι , ἀποβρέγματοϲ ἐλλεβόρου τρεῖϲ κυάθουϲ προϲοίϲομεν : τῇ γὰρ ποιότητι ϲυνεργεῖ
5849221 φξ
θ μο , μο θ ↑ δυ μιᾶς , ἤτοι φξ ξδʹ καταλειφθήσονται , ἀπὸ δὲ τῶν κα μο ,
δὲ τῶν κα μο , ἤτοι ͵ατμδ ξδʹ , τῶν φξ ξδʹ . καταλειφθήσονται ψπδ ξδʹ , ὅλος τετράγωνος .
5844375 τριπλασιος
ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε
δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ
5843180 ρμδ
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ
5842443 ἐπιταχθεντα
. Καὶ διὰ τοῦτο φανερὰ ἡ ἀπόδειξις . . Τὸν ἐπιταχθέντα ἀριθμὸν διελεῖν εἰς δύο ἀριθμοὺς ἀνίσους , καὶ πάλιν
ὁ ὑπὸ δύο ὁποιωνοῦν πρὸς τὸν τυχόντα λόγον ἔχῃ τὸν ἐπιταχθέντα . ἔστω ὁ τυχὼν Μο ε : καὶ ἐπεὶ
5840270 Θεαγους
καὶ λεγόντων ἐξ αὐτῶν τῶν χιλίων Ἱππάσου καὶ Διοδώρου καὶ Θεάγους ὑπὲρ τοῦ πάντας κοινωνεῖν τῶν ἀρχῶν καὶ τῆς ἐκκλησίας
μὲν ἀπὸ τῶν Ἐπιστολῶν ἄρχονται , οἱ δὲ ἀπὸ τοῦ Θεάγους : εἰσὶ δὲ οἱ κατὰ τετραλογίαν διελόντες αὐτοὺς καὶ
5838767 περιστρεψαντες
περιτόναιον ἀρξόμεθα , ἔπειτα ὑποσπάσαντες τὸν δάκτυλον ἐπὶ πλέον τε περιστρέψαντες τὸν ὑμένα κατὰ τὸ εἰρημένον μέρος ἀποκόψομεν . Μετὰ
πολεμίων πόλις , ὡς ἂν πρὸς τὴν ἐκείνων φυλακὴν ἑαυτοὺς περιστρέψαντες ἐάσωσι τὸ πολεμεῖν ἐκείνους . Ἀλλὰ καὶ ἐάν τις

Back