α . ωιϚ ΔΥ ση Μο α , μετὰ τοῦ αου , τουτέστι ΔΥ ιγ # Μο α , ποιεῖν | ||
, αἴρω τὴν Μο α , καὶ τάσσω τὸν ὑπὸ αου καὶ γου ΔΥ δ ʂ δ , ὧν ὁ |
λοιπὸν ʂ β # Μο γ ζον μέρος εἰσὶ τοῦ γου : αὐτὸς ἄρα ἔσται ʂ ιδ # Μο κα | ||
ποιῇ ⃞ον . λοιπόν ἐστι καὶ τὸν ὑπὸ βου καὶ γου προσλαβόντα συναμφότερον καὶ ἔτι τὸν ὑπὸ γου καὶ αου |
λοιποῦ ὑπερέχωσι δοθέντι ἀριθμῷ , ὁ μὲν αος μετὰ τοῦ βου , τοῦ γου , Μο δ : ὁ δὲ | ||
ἂν ἴση ἡ ὑπεροχή . ἀλλὰ Μο κε ἐκ τοῦ βου εἰσίν , αἱ δὲ Μο ι ἐκ τοῦ αου |
μὴ ὑπὸ θορύβου τῶν διωκόντων ἀποτραπείη τῆς κατὰ δαίμονα ὁ δοῦ . καὶ ἡ μὲν ἀμφὶ τοὺς εἴκοσι καὶ τέτταρας | ||
: ἐδέου , ἐδοῦ : καὶ τὸ προστακτικὸν δέου , δοῦ , καὶ μετὰ τῆς περί προθέσεως περιδοῦ , τουτέστι |
Μο κα ἀφελεῖν Μο θ # ΔΥ α καὶ ποιεῖν ⃞ον . ἀλλ ' ἐὰν ἀπὸ Μο κα ἀφέλω Μο | ||
Μο β , δεήσει καὶ ΔΥ λ ʂ ε εἶναι ⃞ον : οὐκ ἔστιν δέ . ἀπάγεται οὖν εἰς τὸ |
δεῖ οὖν τὸν ι διελεῖν εἰς τρεῖς ⃞ους ὅπως ἑκάστου ⃞ου ἡ πλευρὰ πάρισος ᾖ Μο Ϛια / . ἀλλὰ | ||
. καὶ γίνεται ὁ συγκείμενος ἐκ τοῦ ἐμβαδοῦ καὶ τοῦ ⃞ου , ΔΥ κϚ Μο ι : ταῦτα ικις : |
καὶ συμβήσεται τὸν ἀπὸ τοῦ συγκειμένου ἐκ τῶν τριῶν κύβον λείψαντα ἕκαστον ποιεῖν κύβον . λοιπόν ἐστι τοὺς τρεῖς ἰσῶσαι | ||
. Ἔστω δὴ Μο δ . Ἐπεὶ οὖν τὸν αον λείψαντα αὑτοῦ τὴν πλ . , καὶ τὸν βον λείψαντα |
βον μετὰ τοῦ γου ποιεῖν Μο λ , τὸν δὲ γον μετὰ τοῦ αου ποιεῖν Μο μ . Τετάχθωσαν οἱ | ||
βου τουτέστιν εἰς ʂ β Μο δ , ἕξω τὸν γον : ἀλλ ' ἔστιν ὁ μερισμὸς ʂ ∠ ʹ |
γον , ποιεῖ ⃞ον : ὥστε καὶ ἑκάτερον τόν τε αον καὶ τὸν βον λείψας ὁ ἐκ τῶν τριῶν στερεὸς | ||
ἐκ τῶν τριῶν συγκείμενον τετράγωνον ΔΥ α , τὸν δὲ αον ΔΥ א ρνγ , ἐπεὶ δεῖ τρίγωνον γενέσθαι , |
# Μο Ϛ . καὶ γίνεται ὁ ⃞ος ΔΥ δ Μο λϚ # Μο κδ ἴσ . ΔΥ δ ʂ | ||
α # Μο α , ἡ δὲ ὑποτείνουσα ΔΥ α Μο α . καὶ γίνεται ζητεῖν ΔΥ β ʂ β |
γ : γίνονται θ ἔκ τε τῆς ἡμισείας καὶ τοῦ προσκειμένου ὡς ἀπὸ μιᾶς ἀναγραφέντα τετράγωνα β λϚ καὶ πα | ||
, ὁ ἐκ τοῦ ὅλου σὺν τῷ προσκειμένῳ καὶ τοῦ προσκειμένου ἐπίπεδος μετὰ τοῦ ἀπὸ τοῦ ἡμίσεος τετραγώνου ἴσος ἐστὶ |
, καὶ ἔτι ὁ ὑπὸ γου καὶ αου , προσλαβὼν συναμφοτέρους , ʂ ε Μο δ ἴσος ⃞ῳ καὶ γίνεται | ||
Καύκωνας Πυλίους ἀπὸ Κόδρου τοῦ Μελάνθου , οἱ δὲ καὶ συναμφοτέρους . Ἀλλὰ γὰρ περιέχονται τοῦ οὐνόματος μᾶλλόν τι τῶν |
. τάσσω τὸν μὲν αον ʂא ιε , τὸν δὲ βον ʂא κ : καὶ συναμφότερος ὁ βος καὶ ὁ | ||
ὁ Μοι ἐλάσσων τοῦ βου . ἐὰν οὖν τάξω τὸν βον ὁσουδήποτε καὶ προσθῶμεν αὐτὸν τῷ δοθέντι , καὶ τὰ |
, ἐπεὶ ὁ ἀπὸ ʂ β Μο α ⃞ος ἐστι ΔΥ δ ʂ δ Μο α , ἐὰν ὁμοίως ἀφέλω | ||
# ʂ β˙͵δφος : καὶ πάντων τὸ Δον . γίνεται ΔΥ α ΜΥ ρδ˙͵ηφος # ʂ ͵Ϛρμδ ἴσ . ⃞ῳ |
' εὐθέως ἐξ ἀρχῆς οὕτως σκευάζειν : τῷ ὀξυμέλιτι μιγνύσθω τετραπλάσιον ὕδατος καλλίστου , κἄπειτα ἑψείσθω μετρίως , ἕως ἂν | ||
ΚΓ , διπλῆ ἄρα καὶ ἡ ΘΚ τῆς ΚΓ . τετραπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΘΚ τοῦ ἀπὸ τῆς |
λείψας αὐτὸν ποιεῖ ΚΥ κζ ʂ Ϛ # ΔΥ κζ ἴσ . ʂ Ϛ # ΔΥ α , καὶ γίνεται | ||
ποιεῖν ἴσ . ⃞ῳ , καὶ ʂ β Μο α ἴσ . κύβῳ . καὶ γίνεται ζητεῖν τετράγωνον κύβου βπλ |
προκείσθω εὑρεῖν πόσων ἐστὶν τὸ περιεχόμενον ὑπὸ τῶν ΑΔΓ , ΓΖΑ περιφερειῶν ἐμβαδὸν μέγεθος οἵων ἐστὶν τὸ ὅλον τοῦ ἡλιακοῦ | ||
τοῦ ὑπὸ ΓΖΑ : τὸ οὖν ὑπὸ ΒΖΕ τοῦ ὑπὸ ΓΖΑ ὑπερέχει τῷ ὑπὸ Η ΖΔ , ὥστε τὸ ὑπὸ |
⃞ον καὶ ἔστιν ΔΥ α # Μο ιβ ἴσ . ⃞ῳ καὶ ʂ Ϛ ∠ ʹ # Μο ιβ ἴσ | ||
α . πάλιν , ἐπεὶ θέλω τοὺς τρεῖς ἴσους εἶναι ⃞ῳ , εἰσὶ δὲ οἱ τρεῖς ʂ ιγ , ταῦτα |
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
τοὺς παρέξοντας ἀφ ' ἑαυτῶν τὰ μέρη , καθὰ ὁ ἐπιμερὴς κέκληται , οἷον ἐπιδιμερῶν τὸν πέντε πρὸς τρία , | ||
, ἐπιέβδομος καὶ εἰς ἄπειρον . γʹ . κατὰ γένος ἐπιμερὴς δὲ ὁ μετρούμενος ὑπὸ ἑτέρου ἅπαξ , καὶ περισσεύει |
Μο α . ἀλλὰ δοὺς μὲν ὁ αος τὸ ἑαυτοῦ εον καὶ ἔτι Μο Ϛ , γί . ʂ δ | ||
δεήσει ἄρα καὶ τὸν γον , δόντα μὲν ἑαυτοῦ τὸ εον , λαβόντα δὲ παρὰ τοῦ βου τὸ δον , |
καταγραφῆς Εὐθεῖα γάρ τις ἡ ΓΔ τμήματος ἑαυτῆς τοῦ ΔΑ πενταπλάσιον δυνάσθω , τῆς δὲ ΔΑ διπλῆ κείσθω ἡ ΑΒ | ||
, δῆλον : ἐπεὶ γὰρ τὸ μὲν ἀπὸ τῆς ΑΒ πενταπλάσιον τοῦ ἀπὸ τῆς ΜΝ ἐκ κέντρου οὔσης τοῦ κύκλου |
δὲ ζητουμένων ὃν μὲν ΚΥ Κ ξγ , ὃν δὲ ΚΥ Κ ιε , ὃν δὲ ΚΥ Κ γ . | ||
τοὺς τρεῖς ἰσῶσαι ʂ α : γίνονται δὲ οἱ τρεῖς ΚΥ β δא : ταῦτα ἴσα ʂ α : ὅθεν |
τοῦ γου ποιεῖν ⃞ον : ἐὰν ἄρα ἀπό τινος ⃞ον ἀφέλω τὰς ΔΥ ιϚ , ἕξω τὸν γον : τάσσω | ||
ΒΓ ὄντος δ , ἐὰν ἀπὸ τοῦ ΑΓ τοῦ η ἀφέλω τὸ δοθὲν τὸ ΑΒ οἷον δ , τὸ λοιπὸν |
, ἡ δὲ τοῦ ἑτέρου ἀπὸ διαφορᾶς ʂ β καὶ ʂא α ∠ ʹ . καὶ μένει ὁ ἀπὸ ἑκατέρου | ||
δὲ πολλαπλασιαζόμενος ἀριθμὸς ἔστω ἀριθμοστῶν κυβικῶν ὁσωνδήποτε : ἔστω δὴ ʂא η . ἐπὶ μὲν οὖν τὴν ΔΥ α πολλαπλασιάσαντες |
ἄρα η ἴσοι δυνάμεσι ε . Πάντα παρὰ ἀριθμόν . Μονάδες ἄρα ὅλαι εἰσὶν ἴσαι ἀριθμοῖς ε . Ἀναλυθέντων αἱ | ||
τουτέστι μο κδ , λοιπὸς γίνεται μο ριθ . . Μονάδες ἄρα ν ἴσαι Ϟ κγ . Ὁ Ϟὸς ἄρα |
τὸ ἐπίταγμα , ἔστω τὸν ὑπὸ αου καὶ βου , προσλαβόντα τὸν γον , ποιεῖν ⃞ον , καὶ λείψαντα τὸν | ||
ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῆς γραμμῆς τετράγωνα προσλαβόντα τὰ ἀπὸ τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας τῆς |
δοθέντα ἀριθμόν , ἵνα δόντες καὶ λαβόντες γένωνται ἴσοι . Ἐπιτετάχθω δὴ τὸν αον τῷ βῳ διδόναι τὸ εον καὶ | ||
ὑπεροχὴν τοῦ μέσου καὶ τοῦ ἐλαχίστου λόγον ἔχῃ δεδομένον . Ἐπιτετάχθω δὴ τὴν ὑπεροχὴν τῆς ὑπεροχῆς εἶναι γπλ . . |
ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ | ||
ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ |
τε Ϡ ξα ἀπὸ πλευρᾶς τοῦ λα , καὶ τὸν ͵αχπα ἀπὸ πλευρᾶς τοῦ μα , καὶ τὸν ͵βυα ἀπὸ | ||
͵αχπα , ἕξω τὸν βον , ʂ α # Μο ͵αχπα . λοιπόν ἐστι τοὺς τρεῖς συντεθέντας ἴσους εἶναι ʂ |
, ἀλλ ' ἰσοκρατῶς ἀμφότεροι πλευρικοί εἰσιν ἀριθμοὶ τοῦ Ϛʹ ἑτερομήκους ἐκ τοῦ δὶς τρία ἢ ἐκ τοῦ τρὶς βʹ | ||
ἐπὶ τοῦ τετραγώνου καὶ τοῦ ῥόμβου , ἐπὶ δὲ τοῦ ἑτερομήκους καὶ τοῦ ῥομβοειδοῦς τὰ χωρία μόνον . καὶ ὅλως |
. Μέση δὲ τῶν εἰρημένων δύο πόλεων , τοῦ τε Ποσειδίου καὶ Δάφνης , ὑπάρχει ἡ Ἀπάμεια πόλις . Πρὸς | ||
τοῦ ποταμοῦ εἰς Σελεύκειαν στάδιοι μʹ . ἀπὸ δὲ τοῦ Ποσειδίου τὸν ἐπίτομον εἰς Σελεύκειαν πεσόντι * ζεφύρῳ στάδιοι ριʹ |
ἀπὸ τῶν αγ , γδ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , ἔτι δὲ διαιρεθῇ καὶ εἰς ἀνίσους ἀριθμούς | ||
γβ τετραγώνῳ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , διαιρεθῇ δὲ καὶ εἰς ἀνίσους ἀριθμούς , ὁ ἐκ τῶν |
οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
, ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
ΘΜ ἐπὶ τὸν ἀπὸ τοῦ ΚΒ ⃞ον , μετὰ τοῦ δκις ὑπὸ ΗΜ . ΚΒ , καὶ ὁ δκις ὑπὸ | ||
ΓΒ , τουτέστι τῷ ἀπὸ ΑΕ , ποιήσει ἴσον τῷ δκις ὑπὸ ΒΕ . ΕΑ , ὃς μιγεὶς τῷ ἀπὸ |
ἕκτον αὐτοῦ τῷ τρίτῳ , ἤτοι ιη ζʹ , καὶ μο ζʹ , ἤτοι μθ ζʹ , λαβὼν δὲ παρὰ | ||
. Κείμενον . Αὐτὸς ἄρα ὁ τετράγωνος ἔσται δυνάμεων τεσσάρων μο θ ↑ Ϟ ιβ . Ταῦτα ἴσα δυνάμεσι τρισὶν |
καὶ μέλιτι προκαταιονῶν ϲτυμμάτων ἀφεψήματι , τὸ δὲ ξηραινόμενον τοῦ πτερυγίου περικαθᾶραι . Λιβανωτοῦ ⋖ α , λεπίδοϲ ⋖ β | ||
πτερυγοτόμῳ ἐκ τῆϲ βάϲεωϲ τὸ πρὸϲ τὸν κανθὸν μέροϲ τοῦ πτερυγίου , φυλαϲϲόμενοι τὰ βλέφαρα καὶ τὸν κανθόν . τοῖϲ |
δγ . καὶ ἐπεὶ ὁ δὶς ἐκ τῶν αδ , δβ μετὰ τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν αδ , | ||
δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , αἱ ἄρα ὑπὸ δαε , δβε ὀρθαί εἰσιν |
α . Εὑρεῖν τρίγωνον ὀρθογώνιον ὅπως ὁ ἐν τῇ ὑποτεινούσῃ λείψας τὸν ἐν ἑκατέρᾳ τῶν ὀρθῶν ποιῇ κύβον . Ἔστω | ||
γ # Μο α : καὶ ὁ ἀπὸ τούτου κύβος λείψας αὐτὸν ποιεῖ ΚΥ κζ ʂ Ϛ # ΔΥ κζ |
δύο καμπτῆρες ὅ τε γʹ καὶ ὁ δʹ , ιβʹ τετράκι γʹ ἀποτελεῖται . καὶ μὴν ἐκ τοῦ αʹ βʹ | ||
τέσσαρές εἰσιν πλευραί , ὧν ἑκάστη - ἐστὶν πέντε , τετράκι τὰ πέντε εἴκοσι . καὶ λοιπὸν ἀεὶ προιόντι τὸ |
δοθέντας ἀριθμούς . Δεῖ δὴ τῶν εὑρισκομένων τὸν ἀπὸ τοῦ ἡμίσεος τοῦ συναμφοτέρου τετράγωνον τοῦ ὑπ ' αὐτῶν ὑπερέχειν τετραγώνῳ | ||
προσοδιακὸν τρίμετρον βραχυκατάληκτον ἐξ Ἰωνικοῦ ἀπὸ μείζονος , χοριάμβου καὶ ἡμίσεος ποδὸς ἀδιαφόρου . Τὸ ηʹ ἰαμβικὸν δίμετρον ἀκατάληκτον : |
τοίνυν τομὴν εἰϲ τὸ κάτω τοῦ μαϲτοῦ δόντεϲ καὶ ὑποδείραντεϲ ἀφελόντεϲ τὴν πιμελὴν ῥαφαῖϲ ζυγώϲομεν . εἰ δὲ καὶ ἀπονένευκε | ||
χοιράδοϲ ὄγκου πλεονάζοι τὸ τοῦ δέρματοϲ , μυρϲινοειδὲϲ αὐτοῦ μέροϲ ἀφελόντεϲ χρηϲώμεθα ταῖϲ ῥαφαῖϲ καὶ φάρμακον ἔναιμον ἐπιβάλωμεν . Τοῦ |
ἐλάσσων ʂ α , καὶ μένει ὁ μείζων τοῦ ἐλάσσονος γπλ . . λοιπόν ἐστι καὶ τὸν ἀπὸ τοῦ ἐλάσσονος | ||
Δα Μο λϚ # ΔΥ ιβ : τῆς δὲ πλευρᾶς γπλ . , Μο ιβ ἐν μορίῳ Μο Ϛ # |
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
ἡ δὲ λοιπὴ μικτὴ σχέσις ἡ πολλαπλασιεπιμερὴς γεννᾶται ἐκ τῆς ἐπιμεροῦς , καὶ ἐκ μὲν τῆς ἐπιδιμεροῦς ἢ δὶς ἐπιτρίτου | ||
τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , ὧν ἕκαστον |
ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου | ||
: ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον |
ἐν τῷ προειρημένῳ λόγῳ ἐλάσσων πρὸς τὸν μείζονα ἐξεταζόμενος . πολλαπλασιεπιμόριος δέ ἐστι λόγος , ὅταν ὁ μείζων ὅρος δὶς | ||
ἐλάσσονος μέρος : οἷον ὁ τῶν κϚʹ τοῦ τῶν ηʹ πολλαπλασιεπιμόριος λέγεται , ἐπειδήπερ ὁ ηʹ τρὶς καταμετρήσας τὸν κϚʹ |
πρὸς ΞΥ , τουτέστι τὸ ὑπὸ ΧΞΥ πρὸς τὸ ἀπὸ ΞΥ , τουτέστι τὸ ὑπὸ ΝΞΜ πρὸς τὸ ἀπὸ ΞΥ | ||
ἴση ἐστὶν ἡ μὲν ΔΞ τῇ ΟΕ , ἡ δὲ ΞΥ τῇ ΥΟ , καὶ γωνίας ἴσας περιέχουσιν , βάσις |
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν | ||
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν |
: διὸ καὶ οὐ δύναται εἶναι ὁ θ τοῦ δ τετραπλάσιος , ὡς ὁ ιϚ τοῦ δ καὶ ὁ λϚ | ||
δὲ ὦσι δύο ἀριθμοὶ ὁ μὲν ἕτερος αὐτῶν τοῦ αὐτοῦ τετραπλάσιος , ὁ δ ' ἕτερος διπλάσιος , ὁ τετραπλάσιος |
ἐστὶν ἡ Ηβ τῇ εΞ περιφερείᾳ . κοινὴ ἀφῃρήσθω ἡ εβ : λοιπὴ ἄρα ἡ Ηε λοιπῇ τῇ βΞ ἐστιν | ||
γ , αδ , γ , δε , γ , εβ ἐπιπέδοις . Ἔστω γὰρ ἐκ μὲν τῶν γ , |
ἐρίοιϲ οἰϲυπηροῖϲ ἢ καὶ ἐλαιοβραχέϲι καὶ τοῖϲ δι ' ὠμῆϲ λύϲεωϲ καταπλαϲτέον . ἀναγαργαριζέϲθωϲαν δὲ κατ ' ἀρχὰϲ μὲν τοῖϲ | ||
φλεγμαίνοι τὰ ϲπλάγχνα , τοῖϲ διὰ λινοϲπέρμου καὶ τῆϲ ὠμῆϲ λύϲεωϲ ἐν ὑδρελαίῳ καταπλάϲμαϲιν αὐτὰ παρηγορήϲωμεν , ἔπειτα δὲ καὶ |
ἓν τῶν ἐπιταγμάτων . Καὶ ἐπεὶ ὁ μὲν αος ἐστι ηιγ / , ὁ δὲ βος Μο γ ∠ ʹ | ||
τουτέστιν ηκδ / : ἔχομεν δὲ καὶ τὸν μὲν αον ηιγ / , τὸν δὲ βον Μο γ ∠ ʹ |
β τοῦ πρώτου ζυγοῦ , καὶ τὸ ο μεταξὺ τοῦ ικ ὡς κατὰ τὸ γ , καὶ τὸ π μεταξὺ | ||
[ ] αι ? ? [ ] [ ] ! ικ [ ] [ ] ! ! [ ] [ |
ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ | ||
, τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς |
διεζευγμένων τὸν τρίτον , τρίτην δὲ ὑπερβολαίων τὸν ἀπὸ τοῦ βαρυτάτου δεύτερον τοῦ πρὸ τῆς βαρυτέρας διαζεύξεως τετραχόρδου , καὶ | ||
τῶν ΒΔ καὶ ΑΕ τμημάτων διέλωμεν εἰς τὰς μέχρι τοῦ βαρυτάτου φθόγγου φθανούσας μοίρας , ἀπὸ τῶν Α καὶ Β |
εἰς ω προστακτικὸν γίνεται τρίτον , τύπτεσθε τυπτέσθω , τέτυφθε τετύφθω , ἐτύφθητε τυφθήτω , ἐτύπητε τυπήτω , ἐτύψασθε τυψάσθω | ||
συστολῇ τῆς ἀρχούσης προστακτικὸν γίνεται , ἐλελέγμην ἐλέλεξο λέλεξο . τετύφθω : δύναται καὶ ἀπὸ τοῦ τετυφέτω τετυφέσθω καὶ ἐν |
[ [ ] ! [ ] ! [ ! ] λμ ? [ ] ! [ ! ] ! [ | ||
κλ , ἐκ δὲ τῶν δβ , βγ ἑκάτερος τῶν λμ , μν , ἀπὸ δὲ τοῦ βγ ὁ νξ |
μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β | ||
τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο |
. . . . . . . ριδ ιϚ : Ψευδοστόμου ποταμοῦ πηγαὶ ἀπὸ τοῦ Βηττιγὼ ὄρους . . . | ||
. . . . . . . . ριζ ιδ Ψευδοστόμου ποταμοῦ ἐκβολαί ριζ γʹ ιδ Ποδοπέρουρα . . . |
' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . . | ||
ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ |
θέλω ἴσους εἶναι Μο π : ἀλλ ' οἱ δύο συντεθέντες ʂ εἰσι δ καὶ Μο δ . ʂ ἄρα | ||
ἄρα ὁ αος ἔσται ʂ δ . καὶ οἱ τρεῖς συντεθέντες ποιοῦσι τὸν ἐπιταχθέντα ⃞ον , ΔΥ α ʂ β |
δ τῆς δυάδος διπλάσιος : μεῖζον δὲ τὸ τριπλάσιον τοῦ διπλασίου . ὡσαύτως καὶ ἐπὶ πλειόνων , οἷον ἀπὸ β | ||
ἀδιαιρέτου γοῦν τῆς μονάδος ὑποκειμένης . ἐπὶ μὲν γὰρ τοῦ διπλασίου λόγου τῆς ΑΒ πρὸς τὴν Γ [ ἐν διπλασίῳ |
ὥστε μὴ χεθῆναι σὺν αὐτῷ τι ἀπὸ τῆς οὐσίας τοῦ συνθέματος τῶν τοιούτων χαλαζῶν . Καὶ ἐπίβαλε ἐν αὐτῷ ἕτερον | ||
χώνευσον ἄργυρον : καὶ γελάσαν τι ἔκβαλε ἐκ τούτου τοῦ συνθέματος , καὶ εὑρήσεις τὸν ἄργυρον ὡς ἤλεκτρον . Τοῦτο |
# η , τερεβινθίνης # η , πεπέρεως λευκοῦ κόκκους ρξ . τὸ ὕπερον ἀλείφων γλευκίνῳ κόπτε . Ἰσχιαδικοὺς ἐν | ||
∠ ʹ ἡ δὲ ὡς ἐπὶ τὰ Κάσια ὄρη ἐκτροπὴ ρξ μθ ∠ ʹ ἡ δὲ ἐν τούτοις πηγή . |
οὐκ ἔστιν ἐκεῖ λαβεῖν τὸ μὴ αὐτεξουσίως . Ὅλον οὖν αὐτεξουσίως ἐν αὐτῷ . Τί οὖν αὐτοῦ , ὃ μὴ | ||
σχηματισμῶν ὁποῖος τυγχάνει καταλήψεται , καὶ ἂν μὲν ἀνατολικὸς τύχῃ αὐτεξουσίως ἀφεθήσεται καὶ τὴν ἐλευθερίαν καρπώσεται , ἐὰν δὲ δυτικὸς |
τουτέστιν ἀπὸ ὁμοίων ὅμοια . Καὶ λοιποὶ Ϟοὶ τρεῖς ἴσοι Ϟῷ ἑνὶ καὶ μονάσι μ . Εἶτα διὰ τὸ μὴ | ||
Τὰ δὲ ἐλάσσονα γίνεται Ϟ Ϛ ↑ μο σμ ἴσα Ϟῷ ἑνὶ μονάσιν π . Ἀπὸ ὁμοίων ὅμοια . Γίνονται |
βου , ἕξω τὸν αον . οἷον , ἔστω ὁ βος ʂ α # Μο α : ταῦτα αἴρω ἀπὸ | ||
σπθου . ἔσται ὁ μὲν αος β , ὁ δὲ βος ε , ὁ δὲ γος ι , καὶ ποιοῦσι |
διὰ πασῶν , τόνων ἕξ , οἷόν ἐστι τὸ ἀπὸ προσλαμβανομένου ἐπὶ μέσην : τέταρτον δὲ τὸ διὰ πασῶν καὶ | ||
τρίτη συνημμένων , τρίτη διεζευγμένων , τρίτη ὑπερβολαίων . ἀπὸ προσλαμβανομένου ἐπὶ ὑπάτην ὑπατῶν τόνος , ἀπὸ ὑπάτης ὑπατῶν ἐπὶ |
μο θ , ἤτοι τῶν φοϚ ξδων , καταλείπονται ιϚ ξδα ἅτινά εἰσι τετράγωνος . Αἱ δὲ κα μονάδες συνάγουσιν | ||
ἀπὸ τῶν κα καὶ ποιῶν τοὺς λοιποὺς τετραγώνους , φξ ξδα , καὶ φανερὰ ἡ ἀπόδειξις . . Εἰς τὸ |
α , ἔσται ιβ δא . ἔστι δὲ καὶ ὁ αος λ δא : οἵτινες # Μο ι ποιοῦσι ⃞ους | ||
τῶν τριῶν μεῖζόν ἐστιν ἑκάστου . τετάχθω οὖν ὁ μὲν αος ΔΥ α , ὁ δὲ βος ΔΥ α ʂ |
ζʹ , ἀκρωτήριον ἐπίσημον αʹ . Οἱ πάντες ἀπὸ τοῦ Σηκοάνα ποταμοῦ μέχρι τοῦ Ῥήνου ποταμοῦ , [ τουτέστι ] | ||
καὶ Ἀμβιανοὶ καὶ Σουεσσίωνες καὶ Κάλετοι μέχρι τῆς ἐκβολῆς τοῦ Σηκοάνα ποταμοῦ . ἐμφερὴς δ ' ἐστὶ τῇ τῶν Μεναπίων |
ῥαφανίου ἐλαίου , κίκινον ἔλαιον . ἀντὶ ῥητίνης , κολοφωνίας ἀπόχυμα . ἀντὶ ῥητίνης πευκίνης , ῥητίνη τερεβινθίνη . ἀντὶ | ||
κόψον μετὰ τοῦ κηροῦ καὶ ἐπίβαλλε τῇ κακκάβῃ καὶ τὸ ἀπόχυμα , εἰ μὲν ξηρὸν εἴη , λεῖον κοϲκινίϲαϲ ϲτάθμιζε |
καὶ τὸν ͵αχπα ἀπὸ πλευρᾶς τοῦ μα , καὶ τὸν ͵βυα ἀπὸ πλευρᾶς τοῦ μθ νῦν δέον εὑρεῖν . . | ||
ὁ αος Ϡξα , ὁ βος ͵αχπα , ὁ γος ͵βυα . νῦν δεῖ εὑρεῖν ὅπως ὁ αος καὶ ὁ |
καὶ οἱ λοιποί . λέγονται οὕτως ἐκεῖνοι μὲν πρῶτοι καὶ ἀσύνθετοι , ἐπειδὴ ὑπὸ μόνης τῆν μονάδος μετροῦνται , ἐπεὶ | ||
ὡσαύτως καὶ ὁ λθ καὶ ὅμως οὐκ εἰσὶ πρὸς ἀλλήλους ἀσύνθετοι , πρὸς δὲ ἑαυτοὺς σύνθετοι : ἀμφότεροι γὰρ ὑπὸ |
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
δὲ διπλῶν τῇ τάξει τῶν κεφαλαίων : καὶ τοῦ μὲν ἀντονομάζοντος καὶ τοῦ κατὰ σύλληψιν τῷ ἐν ἐκείνοις μὲν τῶν | ||
. Δεύτερος ὁ κατὰ σύλληψιν ὀνομαζόμενος , ὅταν τοῦ φεύγοντος ἀντονομάζοντος ὁ διώκων καὶ τούτῳ κἀκείνῳ ὑπεύθυνον αὐτὸν εἶναι λέγῃ |
# ιδ : ἕψει τὸ ἔλαιον μετὰ τοῦ χυλοῦ ἕωϲ γλοιώδουϲ ϲυϲτάϲεωϲ καὶ τὰ ξηρὰ λείου τῷ κυπρίνῳ , τὴν | ||
χαμαιλέοντοϲ μέλανοϲ τῆϲ ῥίζηϲ # δ : ϲυνεκλεαίνεται πάντα μέχρι γλοιώδουϲ πάχουϲ , εἶτα καταχρίεται θέρουϲ μὲν ἐν ἡλίῳ πολλάκιϲ |
πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ | ||
: ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ |
ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
πλευρὰς ἔχουσιν , [ ὡς ἀριθμοὺς τρεῖς ἴσους ἐπὶ ἴσους πολλαπλασιάζεσθαι , ] οἱ δὲ ἀνίσους . τούτων δ ' | ||
πλεῖον , ἀλλὰ ἐκ τοῦ αὐτὸν καθ ' αὑτὸν μὴ πολλαπλασιάζεσθαι , ἀλλ ' ὑπὸ ἑνὸς καὶ ἑτέρου , οἷον |
λοβὸν ὠτὸς ἐπὶ ἰνίον , εἶτα λοξὴν κατὰ τοῦ ἑτέρου κροτάφου καὶ τοῦ βρέγματος ὑπὸ τὸν ἕτερον λοβὸν ἐπὶ ἰνίον | ||
ἀναλύεται χωρὶϲ φανερᾶϲ αἰτίαϲ . νυγματώδειϲ δὲ διαδρομαὶ γίγνονται μέχρι κροτάφου καὶ παρέπεται αὐτοῖϲ ῥευματιϲμὸϲ ὑγροῦ ϲυμμέτρωϲ δριμέοϲ καὶ λεπτοῦ |
δι ' αἰγείρων καὶ αἱ λοιπαὶ ἐπιϲπαϲτικαί . Τοῦ μὲν ὀϲχέου τὴν φλεγμονὴν διαγνωϲτέον ἐκ τοῦ κατὰ τὴν πρώτην τῆϲ | ||
τῇ δεξιᾷ χειρὶ τὸ πέραϲ ἐνδιπλοῦντεϲ ἐπὶ τὰ ἔνδον τοῦ ὀϲχέου ὁμοῦ τε τῇ ἀριϲτερᾷ τὸν περιτόναιον ἀνέλκοντεϲ πρὸϲ τὴν |
τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
νεὼς μὴ πρότερον ἀξιοῦν ἀπολύεσθαι ἢ τοὺς ἀπὸ τοῦ πολεμίου καταστρώματος ὁπλίτας ἀπαράξητε . καὶ ταῦτα τοῖς ὁπλίταις οὐχ ἧσσον | ||
οὐκ ἂν ποιῆσαι βασιλέα τοιόνδε , τοὺς μὲν ἐκ τοῦ καταστρώματος καταβιβάσαι ἐς κοίλην νέα , ἐόντας Πέρσας καὶ Περσέων |
γπλ . τῆς ὑπεροχῆς καὶ τῶν δοθεισῶν Μο ι . Τετάχθω ἡ μὲν ὑπεροχὴ αὐτῶν Μο β , ὁ δὲ | ||
συγκείμενος ἐκ τῶν ἀπ ' αὐτῶν τετραγώνων ποιῇ τετράγωνον . Τετάχθω δὴ τῶν ζητουμένων ὁ μὲν ΔΥ α , ὁ |
χαρακτῆρος : πρόσκειται ἓν ἄφωνον , διὰ τὸ ἵπτω : λίπτω : νίπτω : πίπτω . Τὰ εἰς δω δισύλλαβα | ||
Ξ μάχης ] πολέμου . λελιμμένος ] ἐπιθυμῶν παρὰ τὸ λίπτω . λελιμμένος ] ἐπιθυμῶν . θ Ξ λελιμμένος ] |
κατατείναντα προσδῆσαι , ὅκου ἂν ἁρμόσῃ , ἐκ δὲ τοῦ σιναροῦ ἐς κεράμιον ὕδωρ ἐγχέαντα ἐκκρεμάσαι ἢ ἐς σφυρίδα λίθους | ||
ἐν τῇ ὁδοιπορίῃ οὐ δύναται τὸ σῶμα ὀχέεσθαι ἐπὶ τοῦ σιναροῦ σκέλεος , εἰ μὴ προσκατερεί - δεται τὸ σιναρὸν |
τῶν πίλων μιτρηφόροι ἦσαν . Κισσίων δὲ ἦρχε Ἀνάφης ὁ Ὀτάνεω . Ὑρκάνιοι δὲ κατά περ Πέρσαι ἐσεσάχατο , ἡγεμόνα | ||
σμικρῇ . Ἡ ὦν δὴ Φαιδύμη αὕτη , ἡ τοῦ Ὀτάνεω θυγάτηρ , πάντα ἐπιτελέουσα τὰ ὑπεδέξατο τῷ πατρί , |
. καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ | ||
ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ |
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α , | ||
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι |
. ξυναλλάσσοντος ] τοῦ συνάγοντος . ξυναλλάσσοντος ] ἑνοῦντος . ξυναλλάσσοντος ] τοῦ συνάγοντος καὶ τοῦ ἑνοῦντος . ξυναλλάσσοντος ] | ||
] ἀποδέχομαι . δεινὸς ] δεξιός . . φεῦ τοῦ ξυναλλάσσοντος ] τοῦ συνάγοντος . ἀπὸ μεταφορᾶς τῶν τὰς συναλλαγὰς |
ο εἰς ω ῥώψ , ὡς βλέπω βλέψω βλὲψ καὶ βλώψ , ἐξ οὗ τὸ ” παραβλῶπες ” . . | ||
ο εἰς ω , κλώψ : ὡς βλέπω βλὲψ βλὸψ βλώψ . ὅθεν παραβλῶπες τῶν ὀφθαλμῶν . Κονιορτός . παρὰ |
. . . . . . . . Τὰ εἰς ΤΙΣ πρὸ αὐτοῦ ψιλὸν ἔχοντα . . . . βαρύνεται | ||
. τὰ δὲ ὀξύνεται : νοκτίς πηκτίς . Τὰ εἰς ΤΙΣ πρὸ τοῦ ΤΙΣ Υ ἔχοντα σπάνια ὄντα τὰ μὲν |
μέλλονταϲ ἐλλεβορίζεϲθαι ρκθ Πόϲαι διαφοραὶ τῆϲ δόϲεωϲ ἐλλεβόρου ρλ Περὶ ἀποβρέγματοϲ ἐλλεβόρου ρλα Περὶ ἀφεψήματοϲ ἐλλεβόρου ρλβ Περὶ τοῦ ψαλιϲτοῦ | ||
κλινιδίῳ κρεμαϲτῷ κινεῖν : εἰ δὲ πάνυ ἐνοχλοῖντο πνιγόμενοι , ἀποβρέγματοϲ ἐλλεβόρου τρεῖϲ κυάθουϲ προϲοίϲομεν : τῇ γὰρ ποιότητι ϲυνεργεῖ |
θ μο , μο θ ↑ δυ μιᾶς , ἤτοι φξ ξδʹ καταλειφθήσονται , ἀπὸ δὲ τῶν κα μο , | ||
δὲ τῶν κα μο , ἤτοι ͵ατμδ ξδʹ , τῶν φξ ξδʹ . καταλειφθήσονται ψπδ ξδʹ , ὅλος τετράγωνος . |
ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε | ||
δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ |
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
. Καὶ διὰ τοῦτο φανερὰ ἡ ἀπόδειξις . . Τὸν ἐπιταχθέντα ἀριθμὸν διελεῖν εἰς δύο ἀριθμοὺς ἀνίσους , καὶ πάλιν | ||
ὁ ὑπὸ δύο ὁποιωνοῦν πρὸς τὸν τυχόντα λόγον ἔχῃ τὸν ἐπιταχθέντα . ἔστω ὁ τυχὼν Μο ε : καὶ ἐπεὶ |
καὶ λεγόντων ἐξ αὐτῶν τῶν χιλίων Ἱππάσου καὶ Διοδώρου καὶ Θεάγους ὑπὲρ τοῦ πάντας κοινωνεῖν τῶν ἀρχῶν καὶ τῆς ἐκκλησίας | ||
μὲν ἀπὸ τῶν Ἐπιστολῶν ἄρχονται , οἱ δὲ ἀπὸ τοῦ Θεάγους : εἰσὶ δὲ οἱ κατὰ τετραλογίαν διελόντες αὐτοὺς καὶ |
περιτόναιον ἀρξόμεθα , ἔπειτα ὑποσπάσαντες τὸν δάκτυλον ἐπὶ πλέον τε περιστρέψαντες τὸν ὑμένα κατὰ τὸ εἰρημένον μέρος ἀποκόψομεν . Μετὰ | ||
πολεμίων πόλις , ὡς ἂν πρὸς τὴν ἐκείνων φυλακὴν ἑαυτοὺς περιστρέψαντες ἐάσωσι τὸ πολεμεῖν ἐκείνους . Ἀλλὰ καὶ ἐάν τις |