τὸ ἐπίταγμα , ἔστω τὸν ὑπὸ αου καὶ βου , προσλαβόντα τὸν γον , ποιεῖν ⃞ον , καὶ λείψαντα τὸν | ||
ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῆς γραμμῆς τετράγωνα προσλαβόντα τὰ ἀπὸ τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας τῆς |
. τάσσω τὸν μὲν αον ʂא ιε , τὸν δὲ βον ʂא κ : καὶ συναμφότερος ὁ βος καὶ ὁ | ||
ὁ Μοι ἐλάσσων τοῦ βου . ἐὰν οὖν τάξω τὸν βον ὁσουδήποτε καὶ προσθῶμεν αὐτὸν τῷ δοθέντι , καὶ τὰ |
βον μετὰ τοῦ γου ποιεῖν Μο λ , τὸν δὲ γον μετὰ τοῦ αου ποιεῖν Μο μ . Τετάχθωσαν οἱ | ||
βου τουτέστιν εἰς ʂ β Μο δ , ἕξω τὸν γον : ἀλλ ' ἔστιν ὁ μερισμὸς ʂ ∠ ʹ |
τοῦ ἀπὸ τῆς ΑΜ κύβου πρὸς τὸν ἀπὸ τῆς ΜΗ κύβον . ἀλλ ' ὡς μὲν ἡ ΓΜ πρὸς ΜΗ | ||
προσδήσαντες εἶτα μέντοι ἀπαλλάττονται , τοῦτο δήπου τὸ λεγόμενον ἀτεχνῶς κύβον ἀναρρίψαντες . οἱ δὲ τίγρεις ἐντυχόντες αὐταῖς , ἀθηρίᾳ |
καὶ συμβήσεται τὸν ἀπὸ τοῦ συγκειμένου ἐκ τῶν τριῶν κύβον λείψαντα ἕκαστον ποιεῖν κύβον . λοιπόν ἐστι τοὺς τρεῖς ἰσῶσαι | ||
. Ἔστω δὴ Μο δ . Ἐπεὶ οὖν τὸν αον λείψαντα αὑτοῦ τὴν πλ . , καὶ τὸν βον λείψαντα |
γον , ποιεῖ ⃞ον : ὥστε καὶ ἑκάτερον τόν τε αον καὶ τὸν βον λείψας ὁ ἐκ τῶν τριῶν στερεὸς | ||
ἐκ τῶν τριῶν συγκείμενον τετράγωνον ΔΥ α , τὸν δὲ αον ΔΥ א ρνγ , ἐπεὶ δεῖ τρίγωνον γενέσθαι , |
Μο κα ἀφελεῖν Μο θ # ΔΥ α καὶ ποιεῖν ⃞ον . ἀλλ ' ἐὰν ἀπὸ Μο κα ἀφέλω Μο | ||
Μο β , δεήσει καὶ ΔΥ λ ʂ ε εἶναι ⃞ον : οὐκ ἔστιν δέ . ἀπάγεται οὖν εἰς τὸ |
' εὐθέως ἐξ ἀρχῆς οὕτως σκευάζειν : τῷ ὀξυμέλιτι μιγνύσθω τετραπλάσιον ὕδατος καλλίστου , κἄπειτα ἑψείσθω μετρίως , ἕως ἂν | ||
ΚΓ , διπλῆ ἄρα καὶ ἡ ΘΚ τῆς ΚΓ . τετραπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΘΚ τοῦ ἀπὸ τῆς |
μονάδας δύο , ἀντὶ δὲ τοῦ τριπλασίου τρεῖς , καὶ πολλαπλασιάζω ταύτας ἐπ ' ἀλλήλας , καὶ γίνονται ἕξ . | ||
τέταρτον , ἀντὶ δὲ ἐπιπέμπτου μονάδα καὶ πέμπτον , καὶ πολλαπλασιάζω ταῦτα ἐπ ' ἄλληλα , καὶ γίνονται δύο μονάδες |
οὐκ ἀπατῶσιν , ἀλλ ' οὐδὲ ὀρχηστὴν ὀνομάζομεν τὸν σχηματίζεσθαι ἀδυνατοῦντα τορῶς καὶ ποικίλως , οὐδὲ κιθαριστὴν τὸν οὐκ ἐπιστάμενον | ||
, τὸν μέχρι πολλοῦ τοσῆσδε ἀρχῆς αὐτοκράτορα καὶ βασιλέα , ἀδυνατοῦντα ἐκ φαρμάκων ἀποθανεῖν δι ' εὐήθη προφυλακὴν ἑτέρων φαρμάκων |
δοθέντα ἀριθμόν , ἵνα δόντες καὶ λαβόντες γένωνται ἴσοι . Ἐπιτετάχθω δὴ τὸν αον τῷ βῳ διδόναι τὸ εον καὶ | ||
ὑπεροχὴν τοῦ μέσου καὶ τοῦ ἐλαχίστου λόγον ἔχῃ δεδομένον . Ἐπιτετάχθω δὴ τὴν ὑπεροχὴν τῆς ὑπεροχῆς εἶναι γπλ . . |
ὑποδιαίρεσιν ἂν πειραθείης συγχωρήσας ἀνελεῖν , εἶτα ἀνελὼν ἐπενέγκοις , πολλαπλασιάσεις τὸν λόγον δριμέως λέγων οὕτως εἰ μὲν τόδε ἐποίησας | ||
σμγ . Ὡσαύτως καὶ εἴτε τὸν κύβον ἐφ ' ἑαυτὸν πολλαπλασιάσεις , εἴτε τὴν πλευρὰν αὐτοῦ ἐπὶ τὸν δυναμόκυβον , |
τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # Φ Ϲ | ||
. ζʹ ψκθ πα . ηʹ ψξη λθ . θʹ ωξδ ϘϚ . ιʹ Ϡοβ ρη . ιαʹ ͵ακδ νβ |
. Καὶ διὰ τοῦτο φανερὰ ἡ ἀπόδειξις . . Τὸν ἐπιταχθέντα ἀριθμὸν διελεῖν εἰς δύο ἀριθμοὺς ἀνίσους , καὶ πάλιν | ||
ὁ ὑπὸ δύο ὁποιωνοῦν πρὸς τὸν τυχόντα λόγον ἔχῃ τὸν ἐπιταχθέντα . ἔστω ὁ τυχὼν Μο ε : καὶ ἐπεὶ |
γραμμὴ συνθέουσα δηλονότι κινήσει . Ἀλλ ' αὕτη συνθέουσα πῶς μετρήσει τὸ ᾧ συνθεῖ ; Τί γὰρ μᾶλλον ὁποτερονοῦν θάτερον | ||
ὑπὸ τῶν Α , Β μετρούμενος [ τὸν Ε ] μετρήσει . ἐλάχιστος δὲ ὑπὸ τῶν Α , Β μετρούμενός |
τοίνυν αὕτη διαφορά , δευτέρα δὲ ἐκείνη . λαβὲ πρῶτον ἑτερομήκη καὶ δεύτερον τετράγωνον καὶ τρίτον τετράγωνον καὶ δεύτερον ἑτερομήκη | ||
ἕτερον ἐπὶ δυοῖν λέγει : ὅθεν καὶ οἱ γεννῶντες τὸν ἑτερομήκη δύο τέ εἰσιν ἀριθμοὶ καὶ μονάδι ἀλλήλων διαφέροντες . |
, ἀλλ ' ἰσοκρατῶς ἀμφότεροι πλευρικοί εἰσιν ἀριθμοὶ τοῦ Ϛʹ ἑτερομήκους ἐκ τοῦ δὶς τρία ἢ ἐκ τοῦ τρὶς βʹ | ||
ἐπὶ τοῦ τετραγώνου καὶ τοῦ ῥόμβου , ἐπὶ δὲ τοῦ ἑτερομήκους καὶ τοῦ ῥομβοειδοῦς τὰ χωρία μόνον . καὶ ὅλως |
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
α . Εὑρεῖν τρίγωνον ὀρθογώνιον ὅπως ὁ ἐν τῇ ὑποτεινούσῃ λείψας τὸν ἐν ἑκατέρᾳ τῶν ὀρθῶν ποιῇ κύβον . Ἔστω | ||
γ # Μο α : καὶ ὁ ἀπὸ τούτου κύβος λείψας αὐτὸν ποιεῖ ΚΥ κζ ʂ Ϛ # ΔΥ κζ |
σφαίρας ἐλεύσεται , ἡ ΑΓ ἄρα ὀρθή ἐστι πρὸς τὸν ΕΒΖΔ κύκλον : καὶ πάντα ἄρα τὰ διὰ τῆς ΑΓ | ||
κύκλος : καὶ ὁ ΑΒΓΔ ἄρα ὀρθός ἐστι πρὸς τὸν ΕΒΖΔ . ὁ ΑΒΓΔ ἄρα κύκλος τὸν ΕΒΖΔ κύκλον πρὸς |
ἐν δυσὶν μέρεσι λόγου νοούμενον , ὃ δὴ ἀπ ' ἀρσενικῆς πέπτωκε συντάξεως κατὰ παραλληλότητα , λέγω τῆς ὅς τις | ||
φῶτα τρίγωνα ἀλλήλοις καὶ ἐν ἀρσενικοῖς ζῳδίοις . ἐπὶ δὲ ἀρσενικῆς γενέσεως τὰ φῶτα ἑαυτοῖς τρίγωνα καὶ ἐν θηλυκοῖς ζῳδίοις |
' ἐποίησε μυττωτόν πολύν . ἔνιοι δὲ πλακοῦντα διὰ λαχάνου συντεθέντα . οἱ δὲ τὸν λεγόμενον ζῦθον . ἡμεῖς μέντοι | ||
δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ τῆς ΑΒ τετράγωνον Μβ ͵θυιγ νθ |
λείψας αὐτὸν ποιεῖ ΚΥ κζ ʂ Ϛ # ΔΥ κζ ἴσ . ʂ Ϛ # ΔΥ α , καὶ γίνεται | ||
ποιεῖν ἴσ . ⃞ῳ , καὶ ʂ β Μο α ἴσ . κύβῳ . καὶ γίνεται ζητεῖν τετράγωνον κύβου βπλ |
α . ωιϚ ΔΥ ση Μο α , μετὰ τοῦ αου , τουτέστι ΔΥ ιγ # Μο α , ποιεῖν | ||
, αἴρω τὴν Μο α , καὶ τάσσω τὸν ὑπὸ αου καὶ γου ΔΥ δ ʂ δ , ὧν ὁ |
τὰ στεγνὰ , στέλλειν δὲ τὰ ῥοώδη . ὅταν δὲ ἐπιπεπλεγμένα ᾖ , πρὸς τὸ κατεπεῖγον ἵστασθαι . κοινότητας δὲ | ||
ἀδίκημα περὶ ἀνθρώπους . Καὶ τὸ τὰ ὀνόματα παράλληλα καὶ ἐπιπεπλεγμένα ἀλλήλοις τιθέναι μηδεμιᾶς ἐργασίας τυγχάνοντα τῆς ἀφελείας ἐστίν , |
λοιπὸν ʂ β # Μο γ ζον μέρος εἰσὶ τοῦ γου : αὐτὸς ἄρα ἔσται ʂ ιδ # Μο κα | ||
ποιῇ ⃞ον . λοιπόν ἐστι καὶ τὸν ὑπὸ βου καὶ γου προσλαβόντα συναμφότερον καὶ ἔτι τὸν ὑπὸ γου καὶ αου |
αὐτοῦ τελάρχης . αἱ δὲ δύο μεραρχίαι φαλαγγαρχία , ἀνδρῶν ͵δϘϚ , λόχων σνϚ , καὶ ὁ τούτων ἀφηγούμενος φαλαγγάρχης | ||
τεταγμένοι λοχαγοί , δῆλον , ὅτι τεταγμένοι μὲν καθέξουσι πήχεις ͵δϘϚ τοῦ μήκους , τοῦτ ' ἔστι στάδια δέκα καὶ |
εἷς μο δ ἐφ ' ἑαυτοὺς πολλαπλασιασθέντες ποιοῦσι δύναμιν μίαν Ϟοὺς η μο ιϚ . Ἀφαιρουμένων οὖν τῶν δυνάμεων , | ||
ἑτέρων ι μο . Καὶ τῆς δείξεως προβάσεως δεήσει τοὺς Ϟοὺς ιβ μο λϚ τριπλασίονας εἶναι μο Ϛ καὶ ἔτι |
ἐλάσσων ʂ α , καὶ μένει ὁ μείζων τοῦ ἐλάσσονος γπλ . . λοιπόν ἐστι καὶ τὸν ἀπὸ τοῦ ἐλάσσονος | ||
Δα Μο λϚ # ΔΥ ιβ : τῆς δὲ πλευρᾶς γπλ . , Μο ιβ ἐν μορίῳ Μο Ϛ # |
ἀπὸ δύσεως ἐπὶ τοὺς οἰκείους ὡριαίους χρόνους : τὸν γὰρ συναχθέντα ἀριθμὸν διεκβαλοῦμεν ἡμέρας μὲν ἀπὸ τῆς ἡλιακῆς μοίρας , | ||
καὶ πρὸς ἑαυτὸ διαφέρον καὶ διαιρετόν , ἰδίᾳ μὲν τὰ συναχθέντα συνῆκται , οὐδεμία δὲ ἀνάγκη ἀπὸ τοῦ λόγου καὶ |
ἓν τῶν ἐπιταγμάτων . Καὶ ἐπεὶ ὁ μὲν αος ἐστι ηιγ / , ὁ δὲ βος Μο γ ∠ ʹ | ||
τουτέστιν ηκδ / : ἔχομεν δὲ καὶ τὸν μὲν αον ηιγ / , τὸν δὲ βον Μο γ ∠ ʹ |
ἧττον ἑτέρου καὶ τὸν αὐτὸν δὲ ἑκάτερα πρός τε τὰ προστιθέμενα πρός τε τὰ ἀπογιγνόμενα . καὶ χαίρει τε αὐτὸς | ||
ια μοιρῶν , ἐλάττονα δὲ τῶν ιβ : τὰ δὲ προστιθέμενα ταῖς ιε μοίραις καὶ ταῖς ια ἔσται ἐπὶ τὸ |
ἦν πρῶτον τὸ διπλάσιον , εἶτα τὸ ἐπιμόριον καὶ τὸ ἐπιμερὲς καὶ τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ | ||
ε : τὸ γὰρ μεῖζον ἢ πολλαπλάσιον ἢ ἐπιμόριον ἢ ἐπιμερὲς ἢ πολλαπλασιεπιμόριον ἢ πολλαπλασιεπιμερές : ὡσαύτως καὶ τὸ ἔλαττον |
σκιάδειον ἐπ ' ἄκρου περιφερές : ἄνθη λευκά , εἶτα χρυσίζοντα . φύεται ἐν εὐγείοις τόποις . Τὸ λεγόμενον ἐλατήριον | ||
καὶ ἁδρὸν καὶ στερεὸν καὶ λεῖον , τῷ δὲ χρώματι χρυσίζοντα , καὶ νοστιμώτατον : τοῦτο δὲ ἐκ τῆς ἀρτοποιΐας |
' ἐμὸν δέμας ; δοῦναι κελεύσω πορθμίδ ' , ἧι καθήσομεν κόσμον τάφωι σῶι πελαγίους ἐς ἀγκάλας . ὡς εὖ | ||
, εἰ μὴ παραδέχοιντο τὸν δάκτυλον , τὸ πλατὺ μήλης καθήσομεν ἢ τὸν πυρῆνα : τὰ δ ' ἄλλα ὁμοίως |
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν | ||
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν |
' ὧν πρόκειται μιᾷ ἁπλῇ τοῦ ὀθονίου προσθέσει σκεπάσαι τὸν ἐπιδεόμενον τόπον , ὥσπερ ἐπὶ κεφαλῆς , σιαγόνων , ἄλλων | ||
τὸ οἴδημα χωρέῃ , ἔτι μὲν λεπτότερον καὶ ἰσχνότερον τὸ ἐπιδεόμενον χωρίον ἔσται , ἔτι δὲ αὖ παραγωγότερα τὰ ὀστέα |
ὁ θεῖος Πλάτων ὡς διαβάλλειν αἱρεῖσθαι . οὕτως δ ' ἀνασκευάζομεν τοὺς λέγοντας τὸν σκοπὸν εἶναι τοῦ Μενεξένου περὶ τοῦ | ||
περὶ τούτου . εἰσφερομένων τοίνυν τῶν νόμων ἢ κατηγοροῦμεν καὶ ἀνασκευάζομεν , ἢ συνηγοροῦμεν καὶ κατασκευάζομεν . μετὰ δὲ τὸ |
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι μο Ϛ | ||
ποιεῖν ⃞ον , ΔΥ δ ʂ η Μο δ . Δεήσει ἄρα καὶ τὸν ἀπὸ τοῦ γου ⃞ον , προσλαβόντα |
μείζονα λόγον ἔχει ἢ ὃν τὰ ιη πρὸς α , ἐλάσσονα δὲ ἢ ὃν τὰ κ πρὸς ἕν : ὥστε | ||
τὸ ηʹ , ἐπὶ δὲ τοῦ ζῳδιακοῦ τὸ εʹ , ἐλάσσονα χρόνον κρύψιν ἄγει τὸ ηʹ τοῦ εʹ : καὶ |
στερεόν . ποιῶ οὕτως : κυβίζω τὰ ζ , γίνονται τμγ : ταῦτα δίς , γίνονται χπϚ : ταῦτα ἑνδεκάκις | ||
Μο γ : αὐτοὶ δὲ οἱ κύβοι ὁ μὲν αος τμγ , ὁ δὲ βος κζ . β . Εὑρεῖν |
οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
, ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
δύναμιν , ἐπὶ δὲ δυναμόκυβον , κύβον , ἐπὶ δὲ κυβόκυβον , δυναμοδύναμιν . Κυβοστὸν δὲ ἐπὶ μὲν ἀριθμόν , | ||
κύβον , ἐπὶ δὲ δυναμόκυβον , δυναμοδύναμιν , ἐπὶ δὲ κυβόκυβον , δυναμόκυβον . Δυναμοστὸν δὲ ἐπὶ μὲν ἀριθμόν , |
ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . . | ||
λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ |
ἀλλήλας τῶν ἐξ ἐκείνων εὐθυγράμμων . ὁμοίως καὶ τὰ μήκει τετραπλάσια δυνάμει ἑκκαιδεκαπλάσιά εἰσιν : ἔχουσι γὰρ τετράκις τὸν τετραπλάσιον | ||
τὸ ἀπὸ τῆς ΓΘ , τουτέστιν τὰ ἀπὸ τῶν ΓΕΘ τετραπλάσια τοῦ ἀπὸ ΘΚ , τὰ ἄρα ἀπὸ ΓΕ ΕΘ |
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
ἁρμοττόμενοι . περὶ μὲν οὖν τούτων ὕστερον ἀκριβῶς ἐροῦμεν . ►α λυδιστί β δωριστί # ∀ Ϲ Ο Ξ Ν | ||
. ἡ γὰρ ὑπὸ δεζ ►ζ δ θ ε ὀξεῖα◄ ►α β η κ γ◄ ►δ λ ε ζ ἀμβλεῖα◄ |
τοὺς παρέξοντας ἀφ ' ἑαυτῶν τὰ μέρη , καθὰ ὁ ἐπιμερὴς κέκληται , οἷον ἐπιδιμερῶν τὸν πέντε πρὸς τρία , | ||
, ἐπιέβδομος καὶ εἰς ἄπειρον . γʹ . κατὰ γένος ἐπιμερὴς δὲ ὁ μετρούμενος ὑπὸ ἑτέρου ἅπαξ , καὶ περισσεύει |
δὲ μείζονα , ἀγκίϲτροιϲ καταπείραντεϲ καὶ κατὰ περιδορὰν ἀφαιρούμενοι καὶ ῥαφαῖϲ τὰ χείλη ϲυνάγοντεϲ καὶ ἐναίμῳ θεραπεύοντεϲ φαρμάκῳ . Ὁ | ||
μετὰ τοῦτο τὰ διεϲτῶτα βελόνῃ ϲυναγάγωμεν ἐρίου ἐχούϲῃ ῥάμμα δύο ῥαφαῖϲ ἀρκούμενοι . εἰ δὲ διὰ καταρραφὴν ἢ καῦϲιν τὸ |
Ϛ , τοῦ δὲ β τὰ δύο καὶ δ . πολλαπλασίασον τὴν ἐλάττονα πλευρὰν τοῦ Α μετὰ τῆς μείζονος πλευρᾶς | ||
μῆκος τῆς Α . τὰ δὴ οὖν ε ια μϚ πολλαπλασίασον μετὰ τοῦ Ϛ , καὶ γίνονται μονάδες λ λεπτὰ |
ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά ἐστι τῶν ἀπὸ τῶν ΑΓ , ΓΔ | ||
σὺν τῇ προσκειμένῃ ὡς μιᾶς , ἅ εἰσιν ἡμίση τῶν σλδ . Τὰ ἀπὸ τῶν ΑΔ καὶ ΔΒ τετράγωνα διπλάσιά |
, ἐπεὶ ὁ ἀπὸ ʂ β Μο α ⃞ος ἐστι ΔΥ δ ʂ δ Μο α , ἐὰν ὁμοίως ἀφέλω | ||
# ʂ β˙͵δφος : καὶ πάντων τὸ Δον . γίνεται ΔΥ α ΜΥ ρδ˙͵ηφος # ʂ ͵Ϛρμδ ἴσ . ⃞ῳ |
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
εὐμεγέθη ποιεῖ . στρυφνὸν δὲ τὸν μεγαλόσχημον τραχύν τε καὶ πολυγώνιον καὶ ἀπεριφερῆ . ὀξὺν δὲ κατὰ τοὔνομα τὸν ὀξὺν | ||
, σκαληνὸν δὲ οὐκ ἔχειν . τὸν μὲν γὰρ δριμὺν πολυγώνιον ποιεῖν τῇ τραχύτητι θερμαίνειν καὶ διαχεῖν . [ διὰ |
κλιμακτῆρα ὑψηλότερόν τινι χρὴ ποιέειν τοῦ μετρίου , καὶ ἱμάτιον πολύπτυχον , ὡς ἂν ἁρμόσῃ , ὑποτείνειν ὑπὸ τὸ σῶμα | ||
κλιμακτῆρα ὑψηλότερόν τινι χρὴ ποιεῖν τοῦ | μετρίου καὶ ἱμάτιον πολύπτυχον , ὡς ἂν ἁρμόσῃ , ὑποτείνειν ὑπὸ τὸ σῶμα |
λοιποῦ ὑπερέχωσι δοθέντι ἀριθμῷ , ὁ μὲν αος μετὰ τοῦ βου , τοῦ γου , Μο δ : ὁ δὲ | ||
ἂν ἴση ἡ ὑπεροχή . ἀλλὰ Μο κε ἐκ τοῦ βου εἰσίν , αἱ δὲ Μο ι ἐκ τοῦ αου |
τουτέστιν ἀπὸ ὁμοίων ὅμοια . Καὶ λοιποὶ Ϟοὶ τρεῖς ἴσοι Ϟῷ ἑνὶ καὶ μονάσι μ . Εἶτα διὰ τὸ μὴ | ||
Τὰ δὲ ἐλάσσονα γίνεται Ϟ Ϛ ↑ μο σμ ἴσα Ϟῷ ἑνὶ μονάσιν π . Ἀπὸ ὁμοίων ὅμοια . Γίνονται |
: ἔπειτα εἴρια πινόεντα οἴνῳ ῥαίνων ἐπιδεῖν , καὶ ἐπὴν ἀπολύσῃς , περισπογγίζειν καὶ μὴ βρέχειν : ἔπειτα κυπάρισσον ἐπιπάσσειν | ||
ἐὰν ἀποκόψῃς τὴν οὐράν , καὶ τὸν τράχουρον αὖθις ἐλεύθερον ἀπολύσῃς ἐς τὴν θάλατταν , τήν γε μὴν προειρημένην οὐρὰν |
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ | ||
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς |
⃞ον καὶ ἔστιν ΔΥ α # Μο ιβ ἴσ . ⃞ῳ καὶ ʂ Ϛ ∠ ʹ # Μο ιβ ἴσ | ||
α . πάλιν , ἐπεὶ θέλω τοὺς τρεῖς ἴσους εἶναι ⃞ῳ , εἰσὶ δὲ οἱ τρεῖς ʂ ιγ , ταῦτα |
: τούτων γὰρ τὰ μὲν ἀπαραίτητά ἐστι τὰ δὲ παραίτησιν ἐπιδεχόμενα , καὶ ἀπαραίτητα μὲν ὡς ἡ ἀναπνοή , παραίτησιν | ||
σελήνην ἐκ τῶν τεσσάρων δυνάμεων ‖ , γένεσιν καὶ φθορὰν ἐπιδεχόμενα . ‖ ‖ Τὸ ἀμυήτοις ἐκλαλεῖν μυστήρια καταλύοντός ἐστι |
ὁ γ συνεχὴς προσσωρευθεὶς καὶ ἐξαπλωθείς γε εἰς μονάδα καὶ συντεθεὶς τὸν Ϛ ἀποδίδωσι δεύτερον ἐνεργείᾳ τρίγωνον καὶ προσέτι σχηματογραφεῖ | ||
δ ὁ ἀπὸ τοῦ αβ τετράγωνος , ὁ δὲ εη συντεθεὶς ἐκ δύο ἐπιπέδων ἀριθμῶν τῶν ἐκ τῶν αβ βγ |
: ἀλλ ' ὁ ὑπ ' αὐτῶν , # Μο ιϚκε / , γί . ΔΥ ιϚκε / # Μο | ||
. Τάσσω οὖν τὸν μὲν ΔΥ α , τὸν δὲ ιϚκε / , καὶ ὁ ὑπ ' αὐτῶν , # |
συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε | ||
ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη |
ὡς τὰ τούτου βραχύτερα τέτμηται καὶ καθόλου τὰ κομματικὰ καὶ ἀσύνδετα . [ , ] ἀλλὰ τὸ τοῦ Κεφάλου καλὸν | ||
, οὗ τὸ ἀκόλουθον ἦν οὐκ ἠμέλει . Καὶ τὰ ἀσύνδετα τοῦ ἀφελοῦς ἐστι : λύει γὰρ τὸν ῥυθμόν . |
ἀναλογεῖ τῇ ἐπιστήμῃ , ἡ δὲ τῇ πίστει καὶ τῇ παρωνύμῳ δόξῃ . ἀβουλήτως οὖν οἱ ῥήτορες καὶ οἱ τύραννοι | ||
τὴν γένεσιν αὐτὸς ἔσχε : διόπερ συμβαίνει αὐτῷ πρὸς τῷ παρωνύμῳ μέρει ἔτι καὶ ἑτερώνυμον ἢ ἑτερώνυμα κεκτῆσθαι , τὸ |
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
ς ' οἶμαι διὰ λόγων ἰόντ ' ἐμοῦ κατηγορήσειν , ἀντιθεῖς ' ἀμείψομαι [ τοῖς σοῖσι τἀμὰ καὶ τὰ ς | ||
' Ἠλείοις Ὀρθωσίας Ἀρτέμιδος ἱερὸν , ὥς φησι Δίδυμος . ἀντιθεῖς ' Ὀρθωσίᾳ : Ὀρθωσία ἡ Ἄρτεμις παρὰ Ὀρθωσιεῦσιν [ |
μὴ ποιῆσαι ἃ δεῖ : ἀπολέσεις τὸν πιστόν , τὸν αἰδήμονα , τὸν κόσμιον . τούτων ἄλλας βλάβας μείζονας μὴ | ||
πιστότερόν σου : τοῦτόν μοι φύλασσε τοιοῦτον οἷος πέφυκεν , αἰδήμονα , πιστόν , ὑψηλόν , ἀκατάπληκτον , ἀπαθῆ , |
ποταμοῦ κελάδοντος Ἀράξεω Φάσιδι συμφέρεται ἱερὸν ῥόον , οἱ δὲ συνάμφω Καυκασίην ἅλαδ ' εἰς ἓν ἐλαυνόμενοι προρέουσιν : δείματι | ||
γὰρ ἂν ἐφαρμόττοι τῷ δὶς γενέσθαι τὴν παλίρροιαν κατὰ τὸν συνάμφω χρόνον , τὸν ἐξ ἡμέρας καὶ νυκτός , ἢ |
ἐκθέσει ἕκαστος μὲν αὐτῶν , εἰ κατὰ τὰ τρία γένη μεμιγμένως γράφοιτο , τὸν τῶν εἰκοσιοκτὼ πληρώσειεν ἂν ἀριθμὸν ἴσον | ||
μὴ ἀφύλακτος ὢν ἐπηρεάζηται . Τὰς δὲ ὁδοιπορίας μὴ ποιεῖσθαι μεμιγμένως ἢ συγκεχυμένως μετὰ τοῦ τούλδου , ἀλλὰ διακεκριμένως , |
παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν ψκθʹ . Ἐὰν οὖν τις λέγῃ ὅτι Οἱ ρʹ πήχεις | ||
προσαυξηθέντες ἑπτὰ ἀριθμοὶ ποιοῦσι τὸν δεύτερον τετράγωνον καὶ κύβον τὸν ψκθʹ , αʹ γʹ θʹ κζʹ παʹ σμγʹ ψκθʹ . |
ἱρῷ , ὅτι Γάλλοι Ἥρῃ μὲν οὐδαμά , Ῥέῃ δὲ τέμνονται καὶ Ἄττεα μιμέονται . Τὰ δέ μοι εὐπρεπέα μὲν | ||
ἀλλήλων διαφέρουσι τῇ φύσει τῆς διαιρέσεως : τοῖς γὰρ αὐτοῖς τέμνονται κεφαλαίοις : πλὴν τοῦ ὁμωνύμου αὐτῇ τῇ στάσει : |
ἑκάτερος τῶν Θ , Κ ἑκάτερον τῶν Μ , Ν μετρείτω : οἱ Η , Θ , Κ , Λ | ||
εἰ γὰρ ἔσται σύμμετρα , μετρήσει τι αὐτὰ μέγεθος . μετρείτω , καὶ ἔστω τὸ Δ . ἐπεὶ οὖν τὸ |
καὶ κακοποιοὶ ἐπιθεωρήσωσιν . ὁμοίως δὲ καὶ τὰ φῶτα ἀλλήλων ἀπόστροφα ἀλλοφύλους ἢ ἀλλοεθνεῖς τοὺς γονεῖς ποιοῦσιν . ὁ Ἥλιος | ||
καὶ ὀκτὼ καὶ δεκαδύο τὸν ἀριθμόν , λέγεται δὲ καὶ ἀπόστροφα πρὸς ἄλληλα τὰ πρὸς τήνδε τὴν διάστασιν τὸν ἀριθμὸν |
ἐν τῷ συμπεπλεγμένῳ ψεύδους γενομένου ἀληθοῦς : ὡς μηδέποτε δύνασθαι συναχθῆναι τὸ συμπέρασμα μὴ συνυπάρχοντος τοῦ ἀποφατικοῦ τῆς συμπλοκῆς τῇ | ||
οὐκ ἔστιν , ἀλλ ' ἐξ ἀρχῆς ὡρίσθησαν οἱ θεοὶ συναχθῆναι ἐν αὐτῇ τὰ ὑποκάτω τοῦ στερεώματος ὕδατα . ἁλὸς |
μαθηματικῶς ἐπιχειρεῖν , οἷον περὶ τῶν τεττάρων στοιχείων γεωμετρικῶς ἢ ἀριθμητικῶς ἢ ἁρμονικῶς , καὶ περὶ τῶν ἄλλων ὡσαύτως . | ||
γʹ τῷ δʹ : καὶ οὕτω διῃρημένα μὲν ἀνάλογον ἔχει ἀριθμητικῶς : ἡ αὐτὴ γὰρ ὑπεροχὴ τοῦ δʹ πρὸς τὸ |
καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει | ||
δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία |
καὶ διελόντι . γέγονεν οὖν τέμνειν τὴν ΓΘΔ περιφέρειαν εἰς δοθέντα λόγον κατὰ τὸ Θ : τοῦτο δὲ προγέγραπται . | ||
ἐστιν ἀρχαῖον : ἀνακεῖσθαι δὲ ἐνταῦθα λέγουσιν ὅρμον Ἁρμονίᾳ μὲν δοθέντα ἐξ ἀρχῆς , καλούμενον δὲ Ἐριφύλης , ὅτι αὐτὴ |
, καὶ ἔτι ὁ ὑπὸ γου καὶ αου , προσλαβὼν συναμφοτέρους , ʂ ε Μο δ ἴσος ⃞ῳ καὶ γίνεται | ||
Καύκωνας Πυλίους ἀπὸ Κόδρου τοῦ Μελάνθου , οἱ δὲ καὶ συναμφοτέρους . Ἀλλὰ γὰρ περιέχονται τοῦ οὐνόματος μᾶλλόν τι τῶν |
ἄγουσιν , ἐλαύνουσιν , ἐλαυνέτωσαν , ἐλαύνουσιν , ἀντίκλισις . Νῶτον ἐπιφάνειαν ἀπὸ τοῦ νωμῶ τὸ κινῶ . νῶτον ἁλός | ||
ἡ δὲ εἰς ὀξὺ ἀπηγμένη ἀκολασίαν καὶ δειλίαν κατηγορεῖ . Νῶτον πλατὺ στερεὸν ἄνδρα γενναῖον , θυμοειδῆ ποιεῖ , τὸ |
: ἀποβρέξαντεϲ ἐλλεβόρου λευκοῦ ⋖ β ἐν ὕδατι ξέϲτῃ καὶ ἐάϲαντεϲ μεῖναι νυχθήμερον τῇ ἐπιούϲῃ ἕψομεν τὸν ἐλλέβορον ἐν τῷ | ||
ὅλον τὸ δέρμα διαιροῦνταϲ πολλαῖϲ καὶ βαθείαιϲ ἀμυχαῖϲ , καὶ ἐάϲαντεϲ ἀπορρυῆναι τὸ αἷμα τῶν πρὸϲ τὰ ϲηπόμενα χρηϲίμων τι |
τούτου λόγον σκεπτέον . Ἀφαιροῦνται τοίνυν τῶν λεπτῶν συστάσεων τὰ χύματα τῇ φαντασίᾳ , καθ ' ὅσον ἂν τὰ χρώματα | ||
δὲ τοῦ θέρους μείω μὲν τῷ ἐξ ἀναλογίας ποσῷ τὰ χύματα καὶ πρὸς τὸ πυρρὸν ἤδη καὶ ξανθὸν χωρεῖ τοῦ |
μήτε καλαθοειδῶς τῆς σκιᾶς πίπτειν δυναμένης , ἀλλὰ τὸν λεγόμενον κῶνον ἀποτελούσης . Ὃ δὴ πρῶτος Ὅμηρος ἐκ μιᾶς λέξεως | ||
ἂν ὑπεραίροι , οὔτε ἐλλείποι . ἐναρμόσει ἄρα εἰς τὸν κῶνον , καὶ περιληφθήσεται ὑπὸ τοῦ κώνου τοῦ περιλαμβάνοντος τὴν |
προστίθενται καὶ τὰ μθ ἑκατοστά , καὶ γίνονται ὁμοῦ ͵ατξθ ἑκατοστά , ὅς ἐστι τετράγωνος ἀριθμὸς ἀπὸ πλευρᾶς λζ δεκάτων | ||
ἀναλύονται εἰς ἑκατοστὰ ͵ατκ . Τούτοις προστίθενται καὶ τὰ μθ ἑκατοστά , καὶ γίνονται ὁμοῦ ͵ατξθ ἑκατοστά , ὅς ἐστι |
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς | ||
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς |
πενταγώνοις οἱ τρίγωνοι προστιθοῖντο τῇ αὐτῇ τάξει , τοὺς εὐτάκτους γεννήσουσιν ἑξαγώνους καὶ πάλιν ἐκείνοις οἱ αὐτοὶ προσπλεκόμενοι τοὺς ἐν | ||
, δεικνύτωσαν , πῶς ἀλλήλας καταλήψονται ἢ πῶς συμπλακήσονται καὶ γεννήσουσιν ἕτερον . ὅτι μὲν οὖν ἀναιρεῖ κίνησιν μᾶλλον τὸ |
μὲν καὶ αὐτοφυῶς τὰ μέρη πρὸς τὴν ἀλλήλων σύμμιξιν . Δύναται δὲ καὶ ἀπὸ τέχνης ἐγείρεσθαί τε καὶ ἐπιτείνεσθαι μᾶλλον | ||
ἀριθμοῦ τὸ ι θέλει ἔχειν ἐν τῇ τελευταίᾳ συλλαβῇ . Δύναται δὲ καὶ ἀπὸ τοῦ κοινοῦ , φημὶ δὴ ἀπὸ |
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |
ἰχθὺν πολλῶν ὀνομασιῶν τετυχηκέναι : καλεῖσθαι γὰρ καὶ βάκχον καὶ ὀνίσκον καὶ χελλαρίην . οἱ μὲν οὖν μείζονες αὐτῶν ὀνομάζονται | ||
, ἐπ ' ὀνίσκῳ δῆσον τὸν πόδα : καὶ τὸν ὀνίσκον * * * σοῦ στρέφοντος ἡ τάσις καὶ ἡ |
τελείως : οὐ γὰρ δύνασαι εἰπεῖν τὸν γ τοῦ η ὑποπολλαπλάσιον : οὐδὲ γὰρ ἔχει λόγον πρὸς αὐτόν : τρὶς | ||
ἐλάττονος κατὰ ἀντιπεπόνθησιν μετὰ τῆς ὑπό προθέσεως τὸ μέν ἐστιν ὑποπολλαπλάσιον τὸ δὲ ὑποεπιμόριον τὸ δὲ ὑποεπιμερές , δύο δὲ |
δὲ κρέασι ἐσθίειν κατὰ τὸν κανόνα τὸν προλεχθέντα καὶ ὅσα ὀστρακώδη τὰ λεγόμενα ζῳόφυτα τουτέστιν ὄστρεια , παγούρους καὶ ἀστακοὺς | ||
ὁ δὲ ζωμὸς αὐτοῦ πινόμενος κωλικοὺς στροφουμένους ἰᾶται . Μυάκια ὀστρακώδη εἰσι . τούτων τὸ ἀπόζεμα ποθὲν γαστέρα μαλάσσει . |
τὸ Τ . διὰ τὰ αὐτὰ δὴ δειχθήσεται καὶ ἡ ΜΤ ἴση τῇ ΤΔ καὶ ἡ ΤΔ τῇ . . | ||
παραλληλογράμμου κύλινδρος περὶ ἄξονα τὸν ΝΤ πρὸς τὸν ἀπὸ τοῦ ΜΤ παραλληλογράμμου κύλινδρον περὶ τὸν αὐτὸν ἄξονα . ὁμοίως δὲ |
ἀπὸ Μο ιε ἀφέλω ʂ α # Μο α καὶ μερίσω εἰς τὸν Μοι α μείζονα τοῦ βου , τουτέστιν | ||
τῶν τριῶν στερεόν , τουτέστι ΔΥ α ʂ β , μερίσω εἰς τὸν ὑπὸ αου καὶ βου τουτέστιν εἰς ʂ |
τὸ γὰρ μεῖζον ἢ πολλαπλάσιον ἢ ἐπιμόριον ἢ ἐπιμερὲς ἢ πολλαπλασιεπιμόριον ἢ πολλαπλασιεπιμερές : ὡσαύτως καὶ τὸ ἔλαττον μετὰ τῆς | ||
πᾶς δὲ ἀριθμὸς πρὸς ἅπαντα λόγον ἔχει ἢ πολλαπλάσιον ἢ πολλαπλασιεπιμόριον ἢ ἐπιμερῆ ἢ καθ ' ἕνα τινὰ λόγον , |
. Ἡ δὲ ἐννεαδικὴ οὕτως εὑρίσκεται . τὰ πρῶτα ἔτη πολυπλασιάζω ἐπὶ τὸν εʹ δʹ , ἐπεὶ ἕκαστος ἐνιαυτὸς ἔχει | ||
αὐτὰς μόνον τὰς τῇ ἐποχῇ παρακειμένας τοῦ πλάτους ιβʹ ιηʹ πολυπλασιάζω ἐπὶ τὸν ιεʹ : γίνονται ρπδʹ λʹ : ἀπολύω |
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
τὸν ΑΒΓΔ , τὸν δὲ διὰ μέσων τῶν ζῳδίων τὸν ΑΕΓΖ τέμνοντας ἀλλήλους κατὰ τὰ Α καὶ Γ σημεῖα , | ||
ΓΔ , ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω τὴν ΑΕΓΖ , καὶ ὁ ἥλιος ἔν τινι ἡμέρᾳ ἀνατολὴν - |
ἀληθεῦσαι ῥωσθῇ τὰ τῶν ἀντιπάλων , οὐ καθῆκον ἔργον δεόντως ἐνεργεῖται . παρὸ καί φησι Μωυσῆς „ δικαίως τὸ δίκαιον | ||
ἀπὸ τοῦ πυρὸϲ αἴρονταϲ τὴν λοπάδα . Ὅϲα ὡϲ φάρμακον ἐνεργεῖται ὠά . Ἐπὶ δυϲεντερικῶν καὶ κοιλιακῶν διαθέϲεων διδόμενον τὸ |