γραμμὴ συνθέουσα δηλονότι κινήσει . Ἀλλ ' αὕτη συνθέουσα πῶς μετρήσει τὸ ᾧ συνθεῖ ; Τί γὰρ μᾶλλον ὁποτερονοῦν θάτερον
ὑπὸ τῶν Α , Β μετρούμενος [ τὸν Ε ] μετρήσει . ἐλάχιστος δὲ ὑπὸ τῶν Α , Β μετρούμενός
7364134 μετρει
τὸ ΓΕ μετρείτω . Ἐπεὶ οὖν τὸ ΑΖ τὸ ΓΕ μετρεῖ , ἀλλὰ τὸ ΓΕ τὸ ΖΒ μετρεῖ , καὶ
. μετρείτω ὁ Γ . ἐπεὶ ὁ Γ τὸν Β μετρεῖ , ὁ δὲ Α τὸν Β οὐ μετρεῖ ,
6819867 μετρειτω
ἑκάτερος τῶν Θ , Κ ἑκάτερον τῶν Μ , Ν μετρείτω : οἱ Η , Θ , Κ , Λ
εἰ γὰρ ἔσται σύμμετρα , μετρήσει τι αὐτὰ μέγεθος . μετρείτω , καὶ ἔστω τὸ Δ . ἐπεὶ οὖν τὸ
6585678 προσλαβοντα
τὸ ἐπίταγμα , ἔστω τὸν ὑπὸ αου καὶ βου , προσλαβόντα τὸν γον , ποιεῖν ⃞ον , καὶ λείψαντα τὸν
ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῆς γραμμῆς τετράγωνα προσλαβόντα τὰ ἀπὸ τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας τῆς
6561251 βον
. τάσσω τὸν μὲν αον ʂא ιε , τὸν δὲ βον ʂא κ : καὶ συναμφότερος ὁ βος καὶ ὁ
ὁ Μοι ἐλάσσων τοῦ βου . ἐὰν οὖν τάξω τὸν βον ὁσουδήποτε καὶ προσθῶμεν αὐτὸν τῷ δοθέντι , καὶ τὰ
6527445 πενταπλασιος
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν
6526129 ὑπολογος
ἀναλογίαν σώζων γεωμετρικήν , πρόλογος μὲν πρὸς τὸν ἐλάττονα , ὑπόλογος δὲ πρὸς τὸν μείζονα , οὐδέποτε δὲ πλείονες :
' ἑκάτερα αὐτοῦ ἀποκρίνηται , πρὸς μὲν τὸν μείζονα ὡς ὑπόλογος , πρὸς δὲ τὸν ἐλάσσονα ὡς πρόλογος , συνημμένη
6512418 καταληψεται
εἴπερ γὰρ ὁ νοῦς ἑαυτὸν καταλαμβάνεται , ἤτοι ὅλος ἑαυτὸν καταλήψεται , ἢ ὅλος μὲν οὐδαμῶς , μέρει δέ τινι
, τίνα αἰσχύνην οὖσαν οὐκ ἀπωσόμεθα καὶ τίς οὐκ οὖσα καταλήψεται ἡμᾶς ; καὶ τίς ὑπάρχουσά τε ἡμῖν δόξα διαφεύξεται
6508508 ποιειτω
ΑΒ , ΓΔ , καὶ ἐμπίπτουσα εἰς αὐτὰς ἡ ΕΖΗΘ ποιείτω τὰς ὑπὸ ΑΖΗ καὶ ὑπὸ ΓΗΖ δύο ὀρθῶν ἐλάσσονας
, καὶ ὁ μὲν α τὸν ε πολλαπλασιάσας τὸν η ποιείτω , ὁ δὲ β τὸν ζ πολλαπλασιάσας τὸν θ
6496367 ἰσακις
, Β οἱ ΓΔ , ΕΖ : λέγω , ὅτι ἰσάκις ὁ ΓΔ τὸν Α μετρεῖ καὶ ὁ ΕΖ τὸν
ἔχον αὔξησιν τοιανδί , τουτέστιν ᾗ οὕτως ὑπερέχον , ἤγουν ἰσάκις : ποιότης γὰρ ὑπεροχῆς ἐστι τὸ ἰσάκις πολλαπλασιάζεσθαι .
6478669 μετρειται
ἴσον καὶ μεμετρημένον ὀργυιᾷ . * περιβάλλεται : εἰκάζεται , μετρεῖται ἔχει εἰκάζεται * ὅσσον : πλάτος αἰγανέη δὲ τὸ
ἀπὸ τῆς πυγμῆς : ἐπεὶ μὴ ὥσπερ ὁ πῆχυς προτεταμένους μετρεῖται δακτύλους , οὕτω καὶ ὁ πυγὼν , ἀλλὰ συνεστρωμμένη
6475029 Ϟου
οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο
, ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ
6359726 πενταπλασιοι
μακροῦ ὄντων , ἐπαρθεὶς ὁ στρατηγὸς αὐτῶν , ὅτι καὶ πενταπλάσιοι τῶν πολεμίων ἦσαν οἱ σφέτεροι , τήν τε παρεμβολὴν
τὸν ε οὕτως ὡς ὁ ε πρὸς τὴν μονάδα : πενταπλάσιοι γὰρ ἀμφότεροι . Καὶ διὰ τοῦτο ὅσων ἐστὶν ἡ
6350694 ἀρτιος
τὰ τρία εἴδη ἄρτια καλοῦνται , καὶ γὰρ ὁ ἀρτιάκις ἄρτιος , ὁ ἀρτιοπέριττος καὶ ὁ περισσάρτιος . συμβέβηκε δὲ
εἶναι ἀριθμόν ; διότι πᾶς ἀριθμὸς ἢ περιττός ἐστιν ἢ ἄρτιος . καὶ πᾶς ἄρτιος δύναται εἶναι , ἡ δὲ
6340038 κυβον
τοῦ ἀπὸ τῆς ΑΜ κύβου πρὸς τὸν ἀπὸ τῆς ΜΗ κύβον . ἀλλ ' ὡς μὲν ἡ ΓΜ πρὸς ΜΗ
προσδήσαντες εἶτα μέντοι ἀπαλλάττονται , τοῦτο δήπου τὸ λεγόμενον ἀτεχνῶς κύβον ἀναρρίψαντες . οἱ δὲ τίγρεις ἐντυχόντες αὐταῖς , ἀθηρίᾳ
6330815 λειφθησεται
μιᾶς δεκάδος ἔχοντος μετάθεσιν , ἐὰν ἀφέλω μίαν ἐννεάδα , λειφθήσεται ἑξάς . τοῦ δὲ κδʹ δύο ἔχοντος δεκάδας τὰς
ὁ με , ἄφελε τὸν κγ ἀπὸ τοῦ με , λειφθήσεται κβ : τοῦτον ἀνταφαιρῶν ἀπὸ τοῦ κγ , λοιπὴ
6327152 αον
γον , ποιεῖ ⃞ον : ὥστε καὶ ἑκάτερον τόν τε αον καὶ τὸν βον λείψας ὁ ἐκ τῶν τριῶν στερεὸς
ἐκ τῶν τριῶν συγκείμενον τετράγωνον ΔΥ α , τὸν δὲ αον ΔΥ א ρνγ , ἐπεὶ δεῖ τρίγωνον γενέσθαι ,
6307514 περισσακις
; εἰ γὰρ μετρήσει αὐτὸν περισσάκις , ἔσται ὁ Α περισσάκις περισσός , πᾶς δὲ περισσάκις περισσὸς ἥμισυ οὐκ ἔχει
τε γὰρ ἀρτίου ἀρτιάκις μετρεῖται καὶ ὁ αὐτὸς ὑπὸ ἀρτίου περισσάκις , οὐδετέρῳ δὲ τῶν προτέρων τοῦθ ' ἅμα συμβέβηκεν
6300177 μετρῃ
Ἐκ δὴ τούτου φανερόν , ὅτι ἐὰν ἀριθμὸς δύο ἀριθμοὺς μετρῇ , καὶ τὸ μέγιστον αὐτῶν κοινὸν μέτρον μετρήσει :
ὁμοίως δὴ δείξομεν , ὅτι καὶ ἐὰν τὸν Β μὴ μετρῇ . ἐπισκέψεως . , ] ἀντὶ κατανοήσεως . ὅπερ
6297778 μετρουν
† ) ἀντὶ τοῦ δαπάνης , τροφῆς , τό τε μετροῦν καὶ τὸ μετρούμενον . ἅπαξ ἐνταῦθα ἡ φωνή :
μαχόμενα : αὔταρκες δὲ νῦν ἐκεῖνο λέγειν , ὅτι τὸ μετροῦν τὴν κίνησιν ἢ τὴν μονὴν ἐν χρόνῳ γίνεται καὶ
6285167 πολλαπλασιασεις
ὑποδιαίρεσιν ἂν πειραθείης συγχωρήσας ἀνελεῖν , εἶτα ἀνελὼν ἐπενέγκοις , πολλαπλασιάσεις τὸν λόγον δριμέως λέγων οὕτως εἰ μὲν τόδε ἐποίησας
σμγ . Ὡσαύτως καὶ εἴτε τὸν κύβον ἐφ ' ἑαυτὸν πολλαπλασιάσεις , εἴτε τὴν πλευρὰν αὐτοῦ ἐπὶ τὸν δυναμόκυβον ,
6262281 λειψαντα
καὶ συμβήσεται τὸν ἀπὸ τοῦ συγκειμένου ἐκ τῶν τριῶν κύβον λείψαντα ἕκαστον ποιεῖν κύβον . λοιπόν ἐστι τοὺς τρεῖς ἰσῶσαι
. Ἔστω δὴ Μο δ . Ἐπεὶ οὖν τὸν αον λείψαντα αὑτοῦ τὴν πλ . , καὶ τὸν βον λείψαντα
6253206 ὀκταπλασιον
εἰ γὰρ θέλομεν δύο ἐπογδόους εὑρεῖν , λαμβάνομεν τὸν δεύτερον ὀκταπλάσιον : τίς δὲ ὁ δεύτερος ; ὁ ξδ .
τὴν πόλιν . πατούμενοι ] ὑβριζόμενοι , θλιβόμενοι . Γ ὀκταπλάσιον χέζομεν : πολλῷ πλείονα , ἵν ' ᾖ τὸ
6239831 λειψας
α . Εὑρεῖν τρίγωνον ὀρθογώνιον ὅπως ὁ ἐν τῇ ὑποτεινούσῃ λείψας τὸν ἐν ἑκατέρᾳ τῶν ὀρθῶν ποιῇ κύβον . Ἔστω
γ # Μο α : καὶ ὁ ἀπὸ τούτου κύβος λείψας αὐτὸν ποιεῖ ΚΥ κζ ʂ Ϛ # ΔΥ κζ
6235369 δεκακις
ὅτι αὐτῷ , καὶ φανερὸν πεποιήκατε ὅτι οὐδ ' ἂν δεκάκις ἀποθάνῃ , οὐδὲν μᾶλλον κινήσεσθε . τί οὖν πρεσβεύετε
τίκτουσι δὲ πᾶσαν ὥραν τοῦ ἔτους : διὸ δὴ καὶ δεκάκις τοῦ ἐνιαυτοῦ τιθέασιν , ἐν Αἰγύπτῳ δὲ δωδεκάκις .
6223536 ἐμετρει
μετρεῖ ὁ γ κατὰ τὰς ἐν τῷ αβ μονάδας . ἐμέτρει δὲ καὶ τὸν ζ κατὰ τὰς ἐν τῷ αβ
δέος , ὁ δὲ λογισμὸς ἐκαθάρευε δοξοκοπίας καὶ τὸν κίνδυνον ἐμέτρει καὶ τὴν αἰτίαν , ὅτι περὶ πρωτείων δύο ἄνδρε
6220413 περισσαρτιος
, νῦν περὶ τοῦ περισσαρτίου διαλέγεται καί φησιν ὅτι ὁ περισσάρτιος ἀμφοτέροις κοινωνεῖ καὶ ἀμφοτέρων διαφέρει : τῷ μὲν γὰρ
περισσάρτιον , τρὶς γὰρ η κδ : ὁ κδ τοίνυν περισσάρτιος , ὃς πλείους διαιρέσεις ἐπιδέχεται ἄχρι τριάδος . ὡσαύτως
6187130 ἑτερομηκη
τοίνυν αὕτη διαφορά , δευτέρα δὲ ἐκείνη . λαβὲ πρῶτον ἑτερομήκη καὶ δεύτερον τετράγωνον καὶ τρίτον τετράγωνον καὶ δεύτερον ἑτερομήκη
ἕτερον ἐπὶ δυοῖν λέγει : ὅθεν καὶ οἱ γεννῶντες τὸν ἑτερομήκη δύο τέ εἰσιν ἀριθμοὶ καὶ μονάδι ἀλλήλων διαφέροντες .
6171310 μετρεισθω
ἀριθμούς . Γεγονέτω , καὶ ὁ διπλάσιος τοῦ πλήθους αὐτῶν μετρείσθω πρότερον ὑπὸ τετράδος , καὶ ὑποκείσθω ὑπὸ ἕκαστον τῶν
, σύνθετός ἐστιν . μετρηθήσεται ἄρα ὑπὸ ἀριθμοῦ τινος . μετρείσθω ὑπὸ τοῦ Γ . ὁ Γ ἄρα τοῦ Β
6166866 ἐπιπιειν
ἐν δράματι Φιλοσόφοις : εἷς ἄρτος , ὄψον ἰσχάς , ἐπιπιεῖν ὕδωρ . φιλοσοφίαν καινὴν γὰρ οὗτος φιλοσοφεῖ , πεινῆν
καὶ διαλείπειν , εἶτα πάλιν δοτέον ῥεφανίδαϲ καὶ πράϲα καὶ ἐπιπιεῖν οἶνον κεκραμένον πολὺν ἁθρόωϲ καὶ ἀναγκάζειν ἐμεῖν : μετὰ
6142251 ͵δϘϚ
αὐτοῦ τελάρχης . αἱ δὲ δύο μεραρχίαι φαλαγγαρχία , ἀνδρῶν ͵δϘϚ , λόχων σνϚ , καὶ ὁ τούτων ἀφηγούμενος φαλαγγάρχης
τεταγμένοι λοχαγοί , δῆλον , ὅτι τεταγμένοι μὲν καθέξουσι πήχεις ͵δϘϚ τοῦ μήκους , τοῦτ ' ἔστι στάδια δέκα καὶ
6136807 πολλαπλασιασας
. Σύνθετος γὰρ ἀριθμὸς ὁ Α ἀριθμόν τινα τὸν Β πολλαπλασιάσας τὸν Γ ποιείτω : λέγω , ὅτι ὁ Γ
ὁ Ζ κύβος ἐστί . πάλιν ἐπεὶ ὁ Β ἑαυτὸν πολλαπλασιάσας τὸν Ε πεποίηκεν , τὸν δὲ Ε πολλαπλασιάσας τὸν
6135889 ἐφεξει
τὸ μὲν γὰρ σπέρμα καὶ μεῖζον ἔσται καὶ πλείονα τόπον ἐφέξει , τὸ δ ' ἀποτέλεσμα βραχύτερον καὶ ἐν ἐλάττονι
δύναμιν τὰ διάμετρα τοῦ τε ὡροσκόπου καὶ τῶν λοιπῶν κέντρων ἐφέξει πρός τε τὰς χρηματιζούσας μοίρας καὶ ἀχρηματίστους καὶ οἱ
6093048 διελοι
καὶ γέγονε τοιοῦτόν τι , ὡς ἂν εἰ τὴν ὀκτάποδα διέλοι τις εἰς ε καὶ γ καὶ αὖθις εἰς γ
Εἴδη δ ' αὐτοῦ τίνα ἄν τις θεῖτο καὶ πῶς διέλοι ; Σῶμα μὲν οὖν τὸ σύμπαν θετέον εἶναι ,
6073484 ιϚ
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς
6065182 ὑποδιπλασιος
, ἐπὶ μὲν τῶν περιττῶν ἐκθέσεων ὁ μέσος τῶν ἄκρων ὑποδιπλάσιος ἦν , ἐπὶ δὲ τῶν ἀρτίων ἴσοι οἱ μέσοι
σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ ὁ ὑποτριπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημιόλιος
6017684 γον
βον μετὰ τοῦ γου ποιεῖν Μο λ , τὸν δὲ γον μετὰ τοῦ αου ποιεῖν Μο μ . Τετάχθωσαν οἱ
βου τουτέστιν εἰς ʂ β Μο δ , ἕξω τὸν γον : ἀλλ ' ἔστιν ὁ μερισμὸς ʂ ∠ ʹ
6012870 τριπλασιος
ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε
δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ
6011994 μο
ἕκτον αὐτοῦ τῷ τρίτῳ , ἤτοι ιη ζʹ , καὶ μο ζʹ , ἤτοι μθ ζʹ , λαβὼν δὲ παρὰ
. Κείμενον . Αὐτὸς ἄρα ὁ τετράγωνος ἔσται δυνάμεων τεσσάρων μο θ ↑ Ϟ ιβ . Ταῦτα ἴσα δυνάμεσι τρισὶν
6001164 καταμετρει
ὀρθὰς τέμνοντες τούτους , γραφόμενοι δὲ διὰ τῶν πόλων , καταμετρεῖ τὴν μὲν οἰκήσιμον ἐμβατεύων , τὴν δ ' ἄλλην
τοῦ Ϛ μέρη ἐστί , δύο τρίτα . οὐ γὰρ καταμετρεῖ ὁ δ τὸν Ϛ οὔτε μεθ ' ἑαυτοῦ ἤτοι
5986826 γβ
ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ
ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ
5982680 σνϚ
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨
5982308 τριακοσιοστοεξηκοστοπρωτων
πλευρᾶς σκη τριακοσιοστοεξηκοστοπρώτων . Ὁμοίως καὶ ↑ τῶν ἑκατὸν Ϙβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων καὶ αὐτῶν εἰς ἑξακισμύρια ἐννακισχίλια τριακόσια ιβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα
Ἔσται ὁ μὲν πρῶτος , ἐπεὶ ιβ δυ , ρϘβ τριακοσιοστοεξηκοστοπρώτων , ὁ δὲ δεύτερος , ἐπεὶ δυνάμεων ἑπτά ,
5970332 Ϟους
εἷς μο δ ἐφ ' ἑαυτοὺς πολλαπλασιασθέντες ποιοῦσι δύναμιν μίαν Ϟοὺς η μο ιϚ . Ἀφαιρουμένων οὖν τῶν δυνάμεων ,
ἑτέρων ι μο . Καὶ τῆς δείξεως προβάσεως δεήσει τοὺς Ϟοὺς ιβ μο λϚ τριπλασίονας εἶναι μο Ϛ καὶ ἔτι
5950870 Ϟος
Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ ,
γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι
5940317 φιβ
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε ,
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ #
5929935 ἀρτιακις
, καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει
ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς
5927869 πολλαπλασιον
ἔτυχεν , πολλαπλάσιον τὸ Ζ . Ἐπεὶ οὖν ἰσάκις ἐστὶ πολλαπλάσιον τὸ Δ τοῦ Α καὶ τὸ Ε τοῦ Β
οὔτε πολλαπλάσιον ἔσται οὔτε ἐπιμόριον . ἔστω γὰρ διάστημα μὴ πολλαπλάσιον τὸ ΒΓ , καὶ γεγενήσθω , ὡς ὁ Γ
5919980 περιττος
Ἰδοὺ Ῥόδος , ἰδοὺ καὶ πήδημα : ὅτι πᾶς λόγος πέριττος ἐστίν , ἂν μὴ πρόχειρος ἡ ἀπόδειξις τοῦ πράγματος
Ἰδοὺ Ῥόδος , ἰδοὺ καὶ πήδημα : ὅτι πᾶς λόγος πέριττος ἐστίν , ἂν μὴ πρόχειρος ἡ ἀπόδειξις τοῦ πράγματος
5905482 ὁποσοιουν
: ἤλπιζον γὰρ καὶ τοὺς μὴ προειδότας , εἰ καὶ ὁποσοιοῦν τολμήσειαν , ἐκ τοῦ παραχρῆμα ἔχοντάς γε ὅπλα ἐθελήσειν
ὁ ΑΕ : ὅπερ ἔδει δεῖξαι . Ἐὰν περισσοὶ ἀριθμοὶ ὁποσοιοῦν συντεθῶσιν , τὸ δὲ πλῆθος αὐτῶν ἄρτιον ᾖ ,
5902448 ἑκατονταδος
Ὅτι δὲ περιλέλειπται τῶν ἀναλόγων δύο , ἅπερ ἐστὶ τῆς ἑκατοντάδος , τοσαυτάκις αὐξήσομεν τὸν εἰρημένον ἀριθμόν , ὥστε εἶναι
ὁ μὲν Α ὑποκείσθω ἐλάσσων μὲν χιλιάδος μετρούμενος δὲ ὑπὸ ἑκατοντάδος , οἷον μονάδες φʹ , ὁ δὲ Β ἐλάσσων
5901800 περισσος
οὓς κῆρες φορέουσι μελαινάων ἐπὶ νηῶν . ἀθετεῖται , ὅτι περισσός : ἐν γὰρ τῷ κηρεσσιφορήτους τὸ αὐτὸ συντόμως εἴρηκεν
λοιπὸς ὁ ΓΑ ἄρτιός ἐστιν . Ἐπεὶ γὰρ ὁ ΑΒ περισσός ἐστιν , ἀφῃρήσθω μονὰς ἡ ΒΔ : λοιπὸς ἄρα
5901334 ἐλασσονα
μείζονα λόγον ἔχει ἢ ὃν τὰ ιη πρὸς α , ἐλάσσονα δὲ ἢ ὃν τὰ κ πρὸς ἕν : ὥστε
τὸ ηʹ , ἐπὶ δὲ τοῦ ζῳδιακοῦ τὸ εʹ , ἐλάσσονα χρόνον κρύψιν ἄγει τὸ ηʹ τοῦ εʹ : καὶ
5891732 μονασι
ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . .
λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ
5891547 γραψει
, εἰ δὲ περὶ ὃ γράφει οὐχ ἕστηκεν , πῶς γράψει τὸ γράφον ; πάντα μὲν οὖν τὰ ἐν τῇ
ὡς οὐκ ὢν ἐκ τῶν νόμων καθαρὸς τὸ σῶμα , γράψει δ ' ἐν τοῖς ψηφίσμασιν εὐχὰς ὑπὲρ τῆς πόλεως
5882326 τεμει
κέντρου οὖσαν δίχα τέμνουσα : ὥστε καὶ πρὸς ὀρθὰς αὐτὴν τεμεῖ , καὶ ἐὰν πρὸς ὀρθὰς αὐτὴν τέμνῃ , καὶ
τῶν πόλων τέμνει , δίχα τε αὐτὸν καὶ πρὸς ὀρθὰς τεμεῖ . καί ἐστι κοινὴ τομὴ αὐτῶν ἡ ΒΓ :
5879216 ⃞ον
Μο κα ἀφελεῖν Μο θ # ΔΥ α καὶ ποιεῖν ⃞ον . ἀλλ ' ἐὰν ἀπὸ Μο κα ἀφέλω Μο
Μο β , δεήσει καὶ ΔΥ λ ʂ ε εἶναι ⃞ον : οὐκ ἔστιν δέ . ἀπάγεται οὖν εἰς τὸ
5847459 πολλαπλασιος
. ἐπὶ δὲ τοῦ βʹ λήμματος ὁ ἑκατὸν τοῦ εἴκοσι πολλαπλάσιός ἐστι κατὰ τὸν ε , καὶ ὁ κ τοῦ
Γ πολλαπλάσιον εἶναι . ἐπεὶ γὰρ ὁ Β τοῦ Γ πολλαπλάσιός ἐστι , μετρεῖ ἄρα ὁ Γ τὸν Β .
5842399 ΔΥ
, ἐπεὶ ὁ ἀπὸ ʂ β Μο α ⃞ος ἐστι ΔΥ δ ʂ δ Μο α , ἐὰν ὁμοίως ἀφέλω
# ʂ β˙͵δφος : καὶ πάντων τὸ Δον . γίνεται ΔΥ α ΜΥ ρδ˙͵ηφος # ʂ ͵Ϛρμδ ἴσ . ⃞ῳ
5839948 συναπτομενος
ἐς τὴν ἡλιακὴν βασιλείαν τινὰ καὶ χρυσῆν σειρὰν ἀναφέρων καὶ συναπτόμενος . [ . . . . , . ]
μηνὸς μεχεὶρ εἰκάδος πέμπτης ἕως μεσωρὶ εἰκάδος πέμπτης : καὶ συναπτόμενος πάλιν : ὅσα ἂν δύνῃ ταρίχευσαι καὶ πλύναι ὡς
5837276 διεζευγμενη
δέ , ὡς ἐν τῇ τοιαύτῃ ἐκθέσει συνημμένη τε καὶ διεζευγμένη γίνεται μεσότης : εἰ μὲν γὰρ ὁ αὐτὸς μέσος
λϚ , ἀλλὰ καὶ ἑξάκις Ϛ λϚ . εἰ δὲ διεζευγμένη ὑπάρχει , ἀρτιοταγεῖς δὲ ὦσιν οἱ ἀριθμοί , ἀντὶ
5835645 ⃞ους
ε . ἀπῆκται οὖν μοι τὸν ε διελεῖν εἰς τέσσαρας ⃞ους . [ ἑκάστῃ τῶν πλ . προσέθηκα Μο ∠
πλ . . ] Διαιρεῖται δὲ ὁ ε εἰς τέσσαρας ⃞ους , κεθ / καὶ κειϚ / καὶ κεξδ /
5831907 ὑπολογοι
καὶ ὁ πολλαπλασιεπιμερής , ὡς τοῦ τρία ὁ ὀκτώ . ὑπόλογοι δέ εἰσιν οἱ ἐλάσσονες τῶν μειζόνων , ὑποπολλαπλάσιος ,
πολλαπλάσια τῶν τοῦ δευτέρου καὶ τετάρτου , εἰ δὲ οἱ ὑπόλογοι προτάττονται , ὑπερέχουσι τὰ τοῦ δευτέρου καὶ τετάρτου ἰσάκις
5819297 μοναδι
οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον
πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος
5816235 καθεξει
αὐτὸν οὐδὲν τούτων , οὐδὲ ἐς ὁτιοῦν περιελᾷ ψεῦδος , καθέξει δέ , ὁπόσα οἶδε , μεῖον οὐδὲν ἢ ἃ
τοῦ ὕπνου ἢ ἄλλως ἀρχόμενον θορυβεῖν , εὐθὺ ὁ παρὼν καθέξει καὶ κωλύσει αὐτίκα . Τοῦ δὲ ἄλλου πλήθους ἀπὸ
5813160 μεριει
ἀφαιρέτης τῶν χρόνων γενήσεται , ἢ καὶ τὰ ἐλάχιστα ἔτη μεριεῖ . ἔστι δὲ Ἡλίου μὲν ζῴδια τὰ ἀρρενικά ,
ἀγαθοδαιμονῶν ἢ καὶ ἐπί τινος χρηματιστικοῦ τόπου , τὰ τέλεια μεριεῖ . οὐκ ἄρα ἀφελεῖ τις ἀπὸ τῆς ὥρας ἢ
5804590 ιε
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α ,
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι
5797332 προσθησει
τῇ ἀποφάσει , τό τε οὔ ἀποκρινεῖται καὶ αὐτὴν πάλιν προσθήσει τὴν ἀπόφασιν οὔ , οὐκ ἔστιν ἀθάνατος λέγων .
τὸν μὴ ἐξεῖναι δὶς περὶ τῶν αὐτῶν διαγορεύοντα ἀγωνίζεσθαι : προσθήσει δὲ καὶ τὴν εὐθυδικίαν λέγων οὕτως , ὅτι εἰ
5794777 Τεταχθω
γπλ . τῆς ὑπεροχῆς καὶ τῶν δοθεισῶν Μο ι . Τετάχθω ἡ μὲν ὑπεροχὴ αὐτῶν Μο β , ὁ δὲ
συγκείμενος ἐκ τῶν ἀπ ' αὐτῶν τετραγώνων ποιῇ τετράγωνον . Τετάχθω δὴ τῶν ζητουμένων ὁ μὲν ΔΥ α , ὁ
5790918 καθησομεν
' ἐμὸν δέμας ; δοῦναι κελεύσω πορθμίδ ' , ἧι καθήσομεν κόσμον τάφωι σῶι πελαγίους ἐς ἀγκάλας . ὡς εὖ
, εἰ μὴ παραδέχοιντο τὸν δάκτυλον , τὸ πλατὺ μήλης καθήσομεν ἢ τὸν πυρῆνα : τὰ δ ' ἄλλα ὁμοίως
5776004 Δεησει
ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι μο Ϛ
ποιεῖν ⃞ον , ΔΥ δ ʂ η Μο δ . Δεήσει ἄρα καὶ τὸν ἀπὸ τοῦ γου ⃞ον , προσλαβόντα
5771247 ἑξακις
: πεντάκις γὰρ εʹ κεʹ , πεντάκις κεʹ ρκεʹ , ἑξάκις Ϛʹ λϚʹ , καὶ ἑξάκις λϚʹ σιϚʹ . τῶν
τῆς ΕΖ τετράγωνον μονάδων οὔσης ἓξ γίνεται μονάδων λϚ : ἑξάκις γὰρ τὰ Ϛ λϚ . ἔστι δὲ καὶ τὸ
5762831 Ϟοι
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ .
5760818 τασσω
: ἔστι δὴ ὁ θ καὶ ὁ ιϚ : καὶ τάσσω τὸν μὲν ἐλάχιστον ʂ α , τὸν δὲ μέσον
, ἐάν τε πάλιν Μο ζ , γίνεται ⃞ος . τάσσω οὖν πάλιν αὐτοὺς ἐν ΔΥ , καὶ τὸν μὲν
5756332 αἰτησειε
πλεῖ , τρέχει , χωρὶς εἰ μὴ ἐπὶ τῶν αὐτοπαθῶν αἰτήσειέ τις τὸ ποιοῦν τὸ πάθος , φθίνει Θέων ὑπὸ
δὲ τούτων εἴ με προσγελάσειέ τις , ἐδίδουν στενάξας ὁπόσον αἰτήσειέ με . γόγγρον μὲν , ὥσπερ ὁ Πρίαμος τὸν
5751714 Ϟων
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς
5747322 Ἐπιτεταχθω
δοθέντα ἀριθμόν , ἵνα δόντες καὶ λαβόντες γένωνται ἴσοι . Ἐπιτετάχθω δὴ τὸν αον τῷ βῳ διδόναι τὸ εον καὶ
ὑπεροχὴν τοῦ μέσου καὶ τοῦ ἐλαχίστου λόγον ἔχῃ δεδομένον . Ἐπιτετάχθω δὴ τὴν ὑπεροχὴν τῆς ὑπεροχῆς εἶναι γπλ . .
5746638 κζ
ἐστιν Αἰγυπτιακὰ ͵αι καὶ νυχθήμερα σνθ κβ ν νϚ ιϚ κζ ν ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις υογ , ὁ δὲ
τὰ μὲν ἄλλα ὡσαύτως τῷ πρώτῳ , ἐπὶ στίχους δὲ κζ καὶ σελίδια δ διὰ τὸ τὴν μὲν ἐκ τοῦ
5745774 ἐκτεθεντων
καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς
τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α ,
5744973 πολυπλασιαζω
. Ἡ δὲ ἐννεαδικὴ οὕτως εὑρίσκεται . τὰ πρῶτα ἔτη πολυπλασιάζω ἐπὶ τὸν εʹ δʹ , ἐπεὶ ἕκαστος ἐνιαυτὸς ἔχει
αὐτὰς μόνον τὰς τῇ ἐποχῇ παρακειμένας τοῦ πλάτους ιβʹ ιηʹ πολυπλασιάζω ἐπὶ τὸν ιεʹ : γίνονται ρπδʹ λʹ : ἀπολύω
5742101 ἀκολουθησει
του . Ναί . Φίλου γέ τινος δή , εἴπερ ἀκολουθήσει τῇ πρόσθεν ὁμολογίᾳ . Πάνυ γε . Οὐκοῦν καὶ
; ὀκνῶ λέγειν , ὃ μηδὲ θέμις εἰπεῖν , ὅτι ἀκολουθήσει θεῷ θάνατος , εἴ γε καὶ ἠρεμία : τὸ
5740562 ἐπιτριτον
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ
5737738 τετραπλασιος
: διὸ καὶ οὐ δύναται εἶναι ὁ θ τοῦ δ τετραπλάσιος , ὡς ὁ ιϚ τοῦ δ καὶ ὁ λϚ
δὲ ὦσι δύο ἀριθμοὶ ὁ μὲν ἕτερος αὐτῶν τοῦ αὐτοῦ τετραπλάσιος , ὁ δ ' ἕτερος διπλάσιος , ὁ τετραπλάσιος
5726473 συστησεται
προτίθεσθαι , ἅπερ εἰ μὴ προϋφεστήκοι , οὐδ ' αὐτὴ συστήσεται , καθὼς ἐπεδείκνυμεν κἀπὶ τῆς μετοχῆς . ἔνθα γοῦν
γὰρ θάτερον ὑφέλοιμεν , οὐδὲ τὸ ἕτερον καθ ' ἑαυτὸ συστήσεται : διὰ τοῦτο καὶ Δημοσθένης ἐν τῷ κατὰ Μειδίου
5723132 ͵ακδ
συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε
ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη
5722411 Ἐσται
καὶ εἰς πολλὰ λυσιτελήσει ὁ περὶ αἰτίας οὔρων λόγος . Ἔσται γε μὴν ἐπὶ τούτῳ τὸ περὶ τῆς ἐκ τῶν
αἱ ΔΖ , ΖΒΘ , ΗΚ , ΒΔ εὐθεῖαι . Ἔσται ἄρα ἡ ΚΔ περιφέρεια εἰς τὸν ὑποκείμενον τῆς ἐκλείψεως
5721667 διπλασιος
γιγνόμενος ποιεῖ τὸν ἡμιόλιον λόγον , ἐξ ὧν ἀμφοτέρων ὁ διπλάσιος σύγκειται λόγος , τοῦ δʹ φμηὶ πρὸς τὸν βʹ
τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β τετράγωνον ἤτοι διπλάσιος ἤτοι δὶς δίς , ὅπερ ἐδήλωσεν εἰπών : τὰ
5721114 παραλειποντας
ὁ δὲ τετράγωνος τοὺς δυάδι μὲν διαφέροντας , ἕνα δὲ παραλείποντας , πεντάγωνος δὲ ἀκολούθως τοὺς τριάδι μὲν διαφέροντας ,
καὶ τὸ κατιέναι ἡμᾶς διὰ τῶν διὰ μέσου , μηδὲν παραλείποντας ἐν ταῖς διαιρέσεσιν , οὐ σμικρόν τι συντελεῖ πρὸς
5716188 μετρουμενος
οἱ Γ Δ Ε , ὧν ἕκαστος ἐλάσσων μὲν ἑκατοντάδος μετρούμενος δὲ ὑπὸ δεκάδος , καὶ ἄλλοι πάλιν ὁσοιδηποτοῦν ἀριθμοὶ
μετρούμενοι κοινῷ μέτρῳ . Σύνθετος ἀριθμός ἐστιν ὁ ἀριθμῷ τινι μετρούμενος . Σύνθετοι δὲ πρὸς ἀλλήλους ἀριθμοί εἰσιν οἱ ἀριθμῷ
5711354 παρῳχημενος
. εἰ δὲ ἔστιν ἑκάτερος , φημὶ δὲ ὅ τε παρῳχημένος καὶ ὁ μέλλων χρόνος , ἐν τῷ παρόντι ἔσται
παρακειμένῳ δὲ οἰκεῖος ὁ εἰσίν ἐνεστὼς καὶ ὑπερσυντελίκῳ ὁ ἦσαν παρῳχημένος . Καὶ ἰακῶς τετύφατο . Ἑνικά . Ἐτύφθην :
5698209 ἀρτιοι
καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ ,
δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις
5697349 υλβ
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ
5697172 μετρουμενον
πάλιν τοῦ περιττοῦ τὸν μὲν πρῶτον τὸν ὑπὸ μονάδος μόνον μετρούμενον ὡς τὸν τρία , τὸν ζ , τὸν δὲ
: ὥσπερ γὰρ λέγεται καὶ τὸ μέτρον ξέστης καὶ τὸ μετρούμενον , οὕτως ἔφασκον καὶ τὰ νοητὰ καὶ τὰ αἰσθητὰ
5686762 ἀσυνθετος
ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ
ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν
5683246 δισυλλαβοις
' ἑαυτοῦ τὴν οἰκείαν φυλάττον φύσιν . καὶ ταῖς μὲν δισυλλάβοις οὐδὲν τὸ διὰ μέσου χωρίον βαρύτητός τε καὶ ὀξύτητος
δύο συλλαβὰς βαρύτονος ἐκκόπτει μίαν συλλαβὴν , ὅπως ἀναλογοίη τοῖς δισυλλάβοις : οἷον , γανύω , γανύεις γανύει , Γανυμήδης
5680740 διωξω
ἐκείνων πλοῖον : ἀλλὰ μὰ τοὺς θεοὺς οὐκ ἔγωγε αὐτοὺς διώξω , οὐδ ' ἐρεῖ οὐδεὶς ὡς ἐγὼ ἕως μὲν
πόρσω δ ' ἐστὶ σοφοῖς ἄβατον κἀσόφοις . οὔ νιν διώξω : κεινὸς εἴην . Ἐλατὴρ ὑπέρτατε βροντᾶς ἀκαμαντόποδος Ζεῦ
5676795 κυβος
στερεῶν σωμάτων λόγοι δῆλοι , ἐπεὶ καὶ ὁ τοῦ αʹ κύβος τοῦ αὐτοῦ ἐστιν αʹ , ὁ δ ' ἀπὸ
οἱ ἕνα διαλείποντες πάντες , ὁ δὲ τέταρτος ὁ Γ κύβος καὶ οἱ δύο διαλείποντες πάντες , ὁ δὲ ἕβδομος
5665654 προσλαμβανομενῳ
εἰς κύκλον κατακάμψας τῇ δυνάμει καὶ συνάψας τὴν ὑπερβολαίαν τῷ προσλαμβανομένῳ τοὺς δύο φθόγγους ἑνώσῃ , διαμετρήσει μὲν ἡ τοιαύτη
, δώριος ἔσται διὰ τὸ τὸν πρῶτον ἀκουστὸν φθόγγον δωρίου προσλαμβανομένῳ ὡρίσθαι : εἰ δὲ ἐξακούοιτο , θεω - ρῆσαι
5651227 ἀριθμητικως
μαθηματικῶς ἐπιχειρεῖν , οἷον περὶ τῶν τεττάρων στοιχείων γεωμετρικῶς ἢ ἀριθμητικῶς ἢ ἁρμονικῶς , καὶ περὶ τῶν ἄλλων ὡσαύτως .
γʹ τῷ δʹ : καὶ οὕτω διῃρημένα μὲν ἀνάλογον ἔχει ἀριθμητικῶς : ἡ αὐτὴ γὰρ ὑπεροχὴ τοῦ δʹ πρὸς τὸ
5650520 πενταγωνος
παρ ' οὐδέν . ὁ δ ' ὑπ ' αὐτὸν πεντάγωνος ὁ κβʹ σύστημα τοῦ ὑπὲρ αὐτὸν τετραγώνου τοῦ ιϚʹ
ἐστιν , ὁ δὲ δ τετράγωνος , ὁ δὲ ε πεντάγωνος , ὁ δὲ Ϛ ἑξάγωνος , ὁ δὲ ζ
5649456 ζη
αδ μονάδας : ὑπόκειται γάρ . ἴσος ἄρα ἐστὶν ὁ ζη τῷ κν : οἱ γὰρ τοῦ αὐτοῦ ἰσάκις πολλαπλάσιοι
κατὰ τὰς ἐν τῷ αδ μονάδας : ὑπόκειται γὰρ ὁ ζη ἐκ τῶν αδ , δβ : ἴσος ἄρα ὁ

Back