γον , ποιεῖ ⃞ον : ὥστε καὶ ἑκάτερον τόν τε αον καὶ τὸν βον λείψας ὁ ἐκ τῶν τριῶν στερεὸς
ἐκ τῶν τριῶν συγκείμενον τετράγωνον ΔΥ α , τὸν δὲ αον ΔΥ א ρνγ , ἐπεὶ δεῖ τρίγωνον γενέσθαι ,
9571701 βον
. τάσσω τὸν μὲν αον ʂא ιε , τὸν δὲ βον ʂא κ : καὶ συναμφότερος ὁ βος καὶ ὁ
ὁ Μοι ἐλάσσων τοῦ βου . ἐὰν οὖν τάξω τὸν βον ὁσουδήποτε καὶ προσθῶμεν αὐτὸν τῷ δοθέντι , καὶ τὰ
9159133 γον
βον μετὰ τοῦ γου ποιεῖν Μο λ , τὸν δὲ γον μετὰ τοῦ αου ποιεῖν Μο μ . Τετάχθωσαν οἱ
βου τουτέστιν εἰς ʂ β Μο δ , ἕξω τὸν γον : ἀλλ ' ἔστιν ὁ μερισμὸς ʂ ∠ ʹ
8018767 ⃞ον
Μο κα ἀφελεῖν Μο θ # ΔΥ α καὶ ποιεῖν ⃞ον . ἀλλ ' ἐὰν ἀπὸ Μο κα ἀφέλω Μο
Μο β , δεήσει καὶ ΔΥ λ ʂ ε εἶναι ⃞ον : οὐκ ἔστιν δέ . ἀπάγεται οὖν εἰς τὸ
7850414 τασσω
: ἔστι δὴ ὁ θ καὶ ὁ ιϚ : καὶ τάσσω τὸν μὲν ἐλάχιστον ʂ α , τὸν δὲ μέσον
, ἐάν τε πάλιν Μο ζ , γίνεται ⃞ος . τάσσω οὖν πάλιν αὐτοὺς ἐν ΔΥ , καὶ τὸν μὲν
7484267 Ἐπιτεταχθω
δοθέντα ἀριθμόν , ἵνα δόντες καὶ λαβόντες γένωνται ἴσοι . Ἐπιτετάχθω δὴ τὸν αον τῷ βῳ διδόναι τὸ εον καὶ
ὑπεροχὴν τοῦ μέσου καὶ τοῦ ἐλαχίστου λόγον ἔχῃ δεδομένον . Ἐπιτετάχθω δὴ τὴν ὑπεροχὴν τῆς ὑπεροχῆς εἶναι γπλ . .
7481431 κυβον
τοῦ ἀπὸ τῆς ΑΜ κύβου πρὸς τὸν ἀπὸ τῆς ΜΗ κύβον . ἀλλ ' ὡς μὲν ἡ ΓΜ πρὸς ΜΗ
προσδήσαντες εἶτα μέντοι ἀπαλλάττονται , τοῦτο δήπου τὸ λεγόμενον ἀτεχνῶς κύβον ἀναρρίψαντες . οἱ δὲ τίγρεις ἐντυχόντες αὐταῖς , ἀθηρίᾳ
7449005 ΔΥ
, ἐπεὶ ὁ ἀπὸ ʂ β Μο α ⃞ος ἐστι ΔΥ δ ʂ δ Μο α , ἐὰν ὁμοίως ἀφέλω
# ʂ β˙͵δφος : καὶ πάντων τὸ Δον . γίνεται ΔΥ α ΜΥ ρδ˙͵ηφος # ʂ ͵Ϛρμδ ἴσ . ⃞ῳ
7351416 πολλαπλασιασθεις
ἐπειδὴ τὸν μὲν κε ὁ ε ἐποίησεν ἐφ ' ἑαυτὸν πολλαπλασιασθείς , τὸν δὲ μθ ὁ ζ . οἱ δὲ
ὁ γ τὸν θ , οὔτε μετ ' ἄλλου τινὸς πολλαπλασιασθείς . Μέρη λέγω τοὺς ὑπολόγους , ὑποεπιτρίτους , ὑποεπιτετάρτους
7344125 Ϡξα
δὲ προδέδεικται , καί εἰσιν οἱ ⃞οι , ὁ αος Ϡξα , ὁ βος ͵αχπα , ὁ γος ͵βυα .
Ϡξα , ἕξω τὸν γον , ʂ α # Μο Ϡξα . καὶ πάλιν ἐὰν ἀπὸ ʂ α ἀφέλω τὰς
7313494 βου
λοιποῦ ὑπερέχωσι δοθέντι ἀριθμῷ , ὁ μὲν αος μετὰ τοῦ βου , τοῦ γου , Μο δ : ὁ δὲ
ἂν ἴση ἡ ὑπεροχή . ἀλλὰ Μο κε ἐκ τοῦ βου εἰσίν , αἱ δὲ Μο ι ἐκ τοῦ αου
7311292 ἰσ
λείψας αὐτὸν ποιεῖ ΚΥ κζ ʂ Ϛ # ΔΥ κζ ἴσ . ʂ Ϛ # ΔΥ α , καὶ γίνεται
ποιεῖν ἴσ . ⃞ῳ , καὶ ʂ β Μο α ἴσ . κύβῳ . καὶ γίνεται ζητεῖν τετράγωνον κύβου βπλ
7307811 γου
λοιπὸν ʂ β # Μο γ ζον μέρος εἰσὶ τοῦ γου : αὐτὸς ἄρα ἔσται ʂ ιδ # Μο κα
ποιῇ ⃞ον . λοιπόν ἐστι καὶ τὸν ὑπὸ βου καὶ γου προσλαβόντα συναμφότερον καὶ ἔτι τὸν ὑπὸ γου καὶ αου
7297419 Μο
# Μο Ϛ . καὶ γίνεται ὁ ⃞ος ΔΥ δ Μο λϚ # Μο κδ ἴσ . ΔΥ δ ʂ
α # Μο α , ἡ δὲ ὑποτείνουσα ΔΥ α Μο α . καὶ γίνεται ζητεῖν ΔΥ β ʂ β
7291489 μετρειτω
ἑκάτερος τῶν Θ , Κ ἑκάτερον τῶν Μ , Ν μετρείτω : οἱ Η , Θ , Κ , Λ
εἰ γὰρ ἔσται σύμμετρα , μετρήσει τι αὐτὰ μέγεθος . μετρείτω , καὶ ἔστω τὸ Δ . ἐπεὶ οὖν τὸ
7267427 γῳ
τῷ βῳ διδόναι τὸ γον , τὸν δὲ βον τῷ γῳ τὸ δον , τὸν δὲ γον τῷ δῳ τὸ
ἐπεὶ θέλω τὸν μέγιστον τοῦ μέσου ὑπερέχειν τῷ τοῦ ἐλαχίστου γῳ μέρει , ἐὰν προσθῶ τῷ μέσῳ τὸ τοῦ ἐλαχίστου
7261860 ⃞ῳ
⃞ον καὶ ἔστιν ΔΥ α # Μο ιβ ἴσ . ⃞ῳ καὶ ʂ Ϛ ∠ ʹ # Μο ιβ ἴσ
α . πάλιν , ἐπεὶ θέλω τοὺς τρεῖς ἴσους εἶναι ⃞ῳ , εἰσὶ δὲ οἱ τρεῖς ʂ ιγ , ταῦτα
7255128 λειψαντα
καὶ συμβήσεται τὸν ἀπὸ τοῦ συγκειμένου ἐκ τῶν τριῶν κύβον λείψαντα ἕκαστον ποιεῖν κύβον . λοιπόν ἐστι τοὺς τρεῖς ἰσῶσαι
. Ἔστω δὴ Μο δ . Ἐπεὶ οὖν τὸν αον λείψαντα αὑτοῦ τὴν πλ . , καὶ τὸν βον λείψαντα
7214946 πολλαπλασιασας
. Σύνθετος γὰρ ἀριθμὸς ὁ Α ἀριθμόν τινα τὸν Β πολλαπλασιάσας τὸν Γ ποιείτω : λέγω , ὅτι ὁ Γ
ὁ Ζ κύβος ἐστί . πάλιν ἐπεὶ ὁ Β ἑαυτὸν πολλαπλασιάσας τὸν Ε πεποίηκεν , τὸν δὲ Ε πολλαπλασιάσας τὸν
7159849 αου
α . ωιϚ ΔΥ ση Μο α , μετὰ τοῦ αου , τουτέστι ΔΥ ιγ # Μο α , ποιεῖν
, αἴρω τὴν Μο α , καὶ τάσσω τὸν ὑπὸ αου καὶ γου ΔΥ δ ʂ δ , ὧν ὁ
6999600 ΛΘΕ
τὰ αὐτά . ὁμοίως δὴ δείξομεν ὅτι ἐστὶν ὡς ὁ ΛΘΕ τομεὺς πρὸς τὸν ΔΘΕ , οὕτως ὁ ΔΘΕ τομεὺς
ΛΘΕ , πρὸς τὴν ὑπὸ ΔΘΕ , τουτέστιν ἤπερ ὁ ΛΘΕ τομεὺς πρὸς τὸν ΔΘΕ , ὡς δὲ ὁ ΛΘΕ
6973420 ΚΥ
δὲ ζητουμένων ὃν μὲν ΚΥ Κ ξγ , ὃν δὲ ΚΥ Κ ιε , ὃν δὲ ΚΥ Κ γ .
τοὺς τρεῖς ἰσῶσαι ʂ α : γίνονται δὲ οἱ τρεῖς ΚΥ β δא : ταῦτα ἴσα ʂ α : ὅθεν
6923792 προσλαβοντα
τὸ ἐπίταγμα , ἔστω τὸν ὑπὸ αου καὶ βου , προσλαβόντα τὸν γον , ποιεῖν ⃞ον , καὶ λείψαντα τὸν
ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῆς γραμμῆς τετράγωνα προσλαβόντα τὰ ἀπὸ τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας τῆς
6919673 αῳ
Μο α # ʂ α : καὶ ἐὰν μὲν τῷ αῳ προστεθῶσι Μο γ , ἔσται ʂ α Μογ :
τὸ Ϛον καὶ Μο ζ , τὸν δὲ γον τῷ αῳ τὸ ζον καὶ Μο η . Τετάχθω ὁ μὲν
6916544 Ϟῳ
τουτέστιν ἀπὸ ὁμοίων ὅμοια . Καὶ λοιποὶ Ϟοὶ τρεῖς ἴσοι Ϟῷ ἑνὶ καὶ μονάσι μ . Εἶτα διὰ τὸ μὴ
Τὰ δὲ ἐλάσσονα γίνεται Ϟ Ϛ ↑ μο σμ ἴσα Ϟῷ ἑνὶ μονάσιν π . Ἀπὸ ὁμοίων ὅμοια . Γίνονται
6912747 ͵αχπα
τε Ϡ ξα ἀπὸ πλευρᾶς τοῦ λα , καὶ τὸν ͵αχπα ἀπὸ πλευρᾶς τοῦ μα , καὶ τὸν ͵βυα ἀπὸ
͵αχπα , ἕξω τὸν βον , ʂ α # Μο ͵αχπα . λοιπόν ἐστι τοὺς τρεῖς συντεθέντας ἴσους εἶναι ʂ
6856367 λειψας
α . Εὑρεῖν τρίγωνον ὀρθογώνιον ὅπως ὁ ἐν τῇ ὑποτεινούσῃ λείψας τὸν ἐν ἑκατέρᾳ τῶν ὀρθῶν ποιῇ κύβον . Ἔστω
γ # Μο α : καὶ ὁ ἀπὸ τούτου κύβος λείψας αὐτὸν ποιεῖ ΚΥ κζ ʂ Ϛ # ΔΥ κζ
6835492 πολλαπλασιασον
Ϛ , τοῦ δὲ β τὰ δύο καὶ δ . πολλαπλασίασον τὴν ἐλάττονα πλευρὰν τοῦ Α μετὰ τῆς μείζονος πλευρᾶς
μῆκος τῆς Α . τὰ δὴ οὖν ε ια μϚ πολλαπλασίασον μετὰ τοῦ Ϛ , καὶ γίνονται μονάδες λ λεπτὰ
6814722 κωνον
μήτε καλαθοειδῶς τῆς σκιᾶς πίπτειν δυναμένης , ἀλλὰ τὸν λεγόμενον κῶνον ἀποτελούσης . Ὃ δὴ πρῶτος Ὅμηρος ἐκ μιᾶς λέξεως
ἂν ὑπεραίροι , οὔτε ἐλλείποι . ἐναρμόσει ἄρα εἰς τὸν κῶνον , καὶ περιληφθήσεται ὑπὸ τοῦ κώνου τοῦ περιλαμβάνοντος τὴν
6797891 Ϛον
τὸ εον , καὶ ἔτι τὸν δον τῷ αῳ τὸ Ϛον , καὶ γίνεσθαι ἴσους μετὰ τὴν ἀντίδοσιν . Τετάχθω
αὐτῶν τῆς τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχῆς εἶναι μέρος Ϛον . Τετάχθω ὁ ἐλάσσων ʂ α , ὁ δὲ
6758687 αος
α , ἔσται ιβ δא . ἔστι δὲ καὶ ὁ αος λ δא : οἵτινες # Μο ι ποιοῦσι ⃞ους
τῶν τριῶν μεῖζόν ἐστιν ἑκάστου . τετάχθω οὖν ὁ μὲν αος ΔΥ α , ὁ δὲ βος ΔΥ α ʂ
6748808 ΔΘΕ
ΔΖΕ μείζονι περιφερείᾳ , ἡ δὲ ΑΗΒ ἐλάττων περιφέρεια τῇ ΔΘΕ . Εἰλήφθω γὰρ τὰ κέντρα τῶν κύκλων τὰ Κ
ὑπὸ ΑΗΒ πρὸς τὸ ὑπὸ ΒΓΗ , οὕτως τὸ ὑπὸ ΔΘΕ πρὸς τὸ ὑπὸ ΕΖΘ . Ἐπεὶ γάρ ἐστιν ὡς
6747935 ηιγ
ἓν τῶν ἐπιταγμάτων . Καὶ ἐπεὶ ὁ μὲν αος ἐστι ηιγ / , ὁ δὲ βος Μο γ ∠ ʹ
τουτέστιν ηκδ / : ἔχομεν δὲ καὶ τὸν μὲν αον ηιγ / , τὸν δὲ βον Μο γ ∠ ʹ
6740728 ριϚʹ
στίχοι εἰσὶν ἰαμβικοὶ τρίμετροι ἀκατάληκτοι ρλγʹ . μετὰ δὲ τὸν ριϚʹ , τὸν ριηʹ , τὸν ρκʹ , τὸν ρκβʹ
τελευταῖος : ἕπου μάραινε δευτέροις διώγμασι . μετὰ δὲ τὸν ριϚʹ , τὸν ριηʹ , τὸν ρκʹ , τὸν ρκβʹ
6728401 ιε
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α ,
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι
6706274 μετρει
τὸ ΓΕ μετρείτω . Ἐπεὶ οὖν τὸ ΑΖ τὸ ΓΕ μετρεῖ , ἀλλὰ τὸ ΓΕ τὸ ΖΒ μετρεῖ , καὶ
. μετρείτω ὁ Γ . ἐπεὶ ὁ Γ τὸν Β μετρεῖ , ὁ δὲ Α τὸν Β οὐ μετρεῖ ,
6699086 ιϚ
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς
6682472 εον
Μο α . ἀλλὰ δοὺς μὲν ὁ αος τὸ ἑαυτοῦ εον καὶ ἔτι Μο Ϛ , γί . ʂ δ
δεήσει ἄρα καὶ τὸν γον , δόντα μὲν ἑαυτοῦ τὸ εον , λαβόντα δὲ παρὰ τοῦ βου τὸ δον ,
6661797 Τασσω
πλευρὰ διζ / , αὐτὸς ἄρα ἔσται ξδ͵δϠιγ / . Τάσσω πάλιν τὸν ἐν τῷ ἐμβαδῷ ʂ α , τὴν
ἔστιν δὲ τοῦτο ῥᾴδιον καὶ ἔστιν ὁ μβ δא . Τάσσω οὖν τὸν αον τῶν ἄκρων Μο μβ δא ,
6653626 ρκε
πάλιν ποίησον τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς
μδ λδ , ἡ δ ' ἐπὶ τῆς ΓΘ μοιρῶν ρκε κϚ ι . ἀκολούθως δὲ καὶ ἡ μὲν ὑπὸ
6626627 ʂא
, ἡ δὲ τοῦ ἑτέρου ἀπὸ διαφορᾶς ʂ β καὶ ʂא α ∠ ʹ . καὶ μένει ὁ ἀπὸ ἑκατέρου
δὲ πολλαπλασιαζόμενος ἀριθμὸς ἔστω ἀριθμοστῶν κυβικῶν ὁσωνδήποτε : ἔστω δὴ ʂא η . ἐπὶ μὲν οὖν τὴν ΔΥ α πολλαπλασιάσαντες
6608040 ποιειτω
ΑΒ , ΓΔ , καὶ ἐμπίπτουσα εἰς αὐτὰς ἡ ΕΖΗΘ ποιείτω τὰς ὑπὸ ΑΖΗ καὶ ὑπὸ ΓΗΖ δύο ὀρθῶν ἐλάσσονας
, καὶ ὁ μὲν α τὸν ε πολλαπλασιάσας τὸν η ποιείτω , ὁ δὲ β τὸν ζ πολλαπλασιάσας τὸν θ
6594226 ϘϚ
' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . .
ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ
6542324 ιη
ἀφειστήκει ὁ ἀστὴρ εἰς τὰ ἑπόμενα τοῦ ἡλίου , μοιρῶν ιη β . διὰ δὲ τοῦ τῆς ἀνωμαλίας κανόνος ,
οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων ἐδείχθη ιη λη , οἵων δ ' αἱ β ὀρθαὶ τξ
6534116 σκυτοτομον
Οὐκοῦν διὰ ταῦτα ἐν μόνῃ τῇ τοιαύτῃ πόλει τόν τε σκυτοτόμον σκυτοτόμον εὑρήσομεν καὶ οὐ κυβερνήτην πρὸς τῇ σκυτοτομίᾳ ,
: ἐργαστὴν δερμάτων . , τὸν τὰς βύρσας ἐργαζόμενον , σκυτοτόμον τὸν τὰς βύρσας θεραπεύοντα καὶ μαλάξοντα καὶ ἐμβρέχοντα .
6516548 Ϟων
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς
6516086 σιϚ
ὁ Γ πρὸς κύβον τὸν Δ . ἔστι δὲ ὁ σιϚ κύβος , πλευραὶ δὲ αὐτοῦ ὁ Ϛ καὶ ὁ
Γ Ϙ καὶ ἓξ καὶ τὸ ἀπ ' αὐτῆς ἐννακισχίλια σιϚ , ἡ δὲ Δ λβ καὶ τὸ ἀπ '
6458616 βος
βου , ἕξω τὸν αον . οἷον , ἔστω ὁ βος ʂ α # Μο α : ταῦτα αἴρω ἀπὸ
σπθου . ἔσται ὁ μὲν αος β , ὁ δὲ βος ε , ὁ δὲ γος ι , καὶ ποιοῦσι
6450425 ρμδ
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ
6446487 συντιθημι
τὴν ἀτέλειαν τοὺς ἔχοντας : ἢ τὰς δύο προτάσεις ἐκλαβὼν συντίθημι ἐν μὲν γὰρ τῷ γράψαι μηδένα εἶναι ἀτελῆ καὶ
ἐπιστέλλω , καὶ συντάσσεται δοτικῇ . γράφω καὶ τὸ γράμματα συντίθημι , καὶ τὸ ζωγραφῶ , καὶ συντάσσεται αἰτιατικῇ .
6445148 γος
αος δϚ / , ὁ βος ϚιϚ / , ὁ γος Μο Ϛ . η . Εὑρεῖν τρεῖς ἀριθμοὺς ὅπως
ιζ , ὁ δὲ βος Μο α , ὁ δὲ γος ηων κε . κδ . Δοθέντα ἀριθμὸν διελεῖν εἰς
6410334 μο
ἕκτον αὐτοῦ τῷ τρίτῳ , ἤτοι ιη ζʹ , καὶ μο ζʹ , ἤτοι μθ ζʹ , λαβὼν δὲ παρὰ
. Κείμενον . Αὐτὸς ἄρα ὁ τετράγωνος ἔσται δυνάμεων τεσσάρων μο θ ↑ Ϟ ιβ . Ταῦτα ἴσα δυνάμεσι τρισὶν
6408755 Ϟον
λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν . Ἅπαξ ἄρα τὰ ἐλάσσονα , ἤτοι τὸν π
κβ . Δεῖ τοίνυν τὸν ἀπὸ τῆς ὑπεροχῆς αὐτῶν τετράγωνον Ϟόν , ἤτοι καθ ' ὑπόθεσιν τὸν ιϚ , ἐλάττονα
6384752 ξδ
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ .
6374165 καυκιου
ἐν ἰσότητι : ἐπίθες δὲ εἰς τὴν τρῦπαν τοῦ ἐπάνω καυκίου μάχαιραν , ὅπου νὰ ἔναι ἡ μύτη τῆς ξυντὴ
μάζωξε τὸν ὑδράργυρον ὅλον μὴ δὲν ἀφήσῃς ἀπὸ τοῦ ἐπάνω καυκίου τίποτας : ἔναι γὰρ κολλημένος εἰς τὸ ἐπάνω καυκίον
6357022 πολλαπλασιαζεσθαι
πλευρὰς ἔχουσιν , [ ὡς ἀριθμοὺς τρεῖς ἴσους ἐπὶ ἴσους πολλαπλασιάζεσθαι , ] οἱ δὲ ἀνίσους . τούτων δ '
πλεῖον , ἀλλὰ ἐκ τοῦ αὐτὸν καθ ' αὑτὸν μὴ πολλαπλασιάζεσθαι , ἀλλ ' ὑπὸ ἑνὸς καὶ ἑτέρου , οἷον
6347895 ριηʹ
τρίμετροι ἀκατάληκτοι ρλγʹ . μετὰ δὲ τὸν ριϚʹ , τὸν ριηʹ , τὸν ρκʹ , τὸν ρκβʹ κώλου τμήματα δʹ
δύναμις οὐσίας ἀερώδους φανώδης , ὅρασις δ ' ἐνεργητική . ριηʹ . Ἀκοή ἐστιν ἡ γινομένη διὰ τοῦ ἐγκεκραμένου τοῖς
6327152 μετρησει
γραμμὴ συνθέουσα δηλονότι κινήσει . Ἀλλ ' αὕτη συνθέουσα πῶς μετρήσει τὸ ᾧ συνθεῖ ; Τί γὰρ μᾶλλον ὁποτερονοῦν θάτερον
ὑπὸ τῶν Α , Β μετρούμενος [ τὸν Ε ] μετρήσει . ἐλάχιστος δὲ ὑπὸ τῶν Α , Β μετρούμενός
6292266 λϚ
δὲ τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι
Διὶ ἡμέρας κβ , Ἄρει ἡμέρας κη , Ἡλίῳ ἡμέρας λϚ , Ἑρμῇ λη , Σελήνῃ ἡμέρας ιζ : Ἑρμῆς
6289576 κζ
ἐστιν Αἰγυπτιακὰ ͵αι καὶ νυχθήμερα σνθ κβ ν νϚ ιϚ κζ ν ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις υογ , ὁ δὲ
τὰ μὲν ἄλλα ὡσαύτως τῷ πρώτῳ , ἐπὶ στίχους δὲ κζ καὶ σελίδια δ διὰ τὸ τὴν μὲν ἐκ τοῦ
6277353 ἐννατα
θ καὶ θ ↑ ἐννάτων , καὶ γίνεται τὰ θ ἔννατα τῆς λείψεως τοῦ Ϟοῦ Ϟὸς εἷς , ↑ τῶν
τὸ ἔτος , εἰς ἐκεῖνον τὸν τόπον ἔνθα ἐπερατώθη τὰ ἔννατα . περὶ δὲ τῶν κατὰ μῆνα καὶ τῶν καθ
6270268 πενταπλασιος
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν
6262550 ξεϲτων
μετρητὴν ξεϲτῶν οβʹ , κοτυλῶν ϘϚʹ : τὸν δὲ μέδιμνον ξεϲτῶν ρβʹ , κοτυλῶν ρλϚʹ . Ὁ δὲ κατὰ Ϲύρουϲ
ἀμφορέα ξεϲτῶν λϚʹ , κοτυλῶν μηʹ : τὸν δὲ μετρητὴν ξεϲτῶν οβʹ , κοτυλῶν ϘϚʹ : τὸν δὲ μέδιμνον ξεϲτῶν
6255442 κυλινδρον
, ἔστιν ἄρα ὡς ὁ ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον
ἐπὶ τὴν τοῦ κύκλου περιφέρειαν διὰ τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ
6253836 ψκθʹ
παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν ψκθʹ . Ἐὰν οὖν τις λέγῃ ὅτι Οἱ ρʹ πήχεις
προσαυξηθέντες ἑπτὰ ἀριθμοὶ ποιοῦσι τὸν δεύτερον τετράγωνον καὶ κύβον τὸν ψκθʹ , αʹ γʹ θʹ κζʹ παʹ σμγʹ ψκθʹ .
6240963 ψωμον
μὰ τὸν Ἥφαιστον , προσόμοιος , καλλιτράπεζος καὶ βουλόμενος λιπαρὸν ψωμὸν καταπίνειν , φησὶν Ἀμειψίας . εἷς οἰωνὸς ἄριστος ἀμύνεσθαι
πρὸς τὰ μεγάλα . νῦν δὲ μὴ δυνάμενοί τινες τὸν ψωμὸν καταπίνειν σύνταξιν ἀγοράσαντες ἐπιβάλλονται ἐσθίειν . διὰ τοῦτο ἐμοῦσιν
6232909 χοινικαϲ
. πτιϲάνηϲ , ὀρόβου , λιβάνου Ἰλλυρίδοϲ , ἀφονίτρου ἀνὰ χοίνικαϲ δ , κόϲτου , ἀμυγδάλων πικρῶν ἀνὰ ⋖ κ
δὲ ἡμίεκτον ἔχει χοίνικαϲ δ , ὥϲτε τὸν μέδιμνον ἔχειν χοίνικαϲ μη , ξέϲταϲ ϘϚ . τούτων δὲ τὸν ϲταθμὸν
6227861 Προκυνα
ζώνη τόν τε Πρόκυνα καὶ τὸν Κύνα , τὸν μὲν Πρόκυνα χωρίζουσα πρὸς ἀνατολὰς ὅλον οὐκ ὀλίγῳ ἐκτὸς τοῦ γάλακτος
τῷ Τοξότῃ φασὶν ἀντικαταδύνειν τήν τε Ἀργὼ ὅλην καὶ τὸν Πρόκυνα , συνανατέλλειν δὲ τόν τε Ὄρνιθα , καὶ τὸν
6225153 ἐπιτασσομενων
νὺξ ἡσυχίαν ἄγει . Ἔσχατος Μυσῶν : ἐπὶ τῶν δυσχερῆ ἐπιτασσομένων . Ἐνδυμίωνος ὕπνον καθεύδεις : ἐπὶ τῶν ὑπνηλῶν :
[ αὐτοῦ ] . τάττεται ἡ παροιμία ἐπὶ τῶν δυσχερῆ ἐπιτασσομένων . ἐποστρακίζειν : παιδιά τις , ἣν παίζουσιν οἱ
6223300 σνϚ
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨
6219210 ρλδʹ
σκευασία πολυτελὴς ρλβʹ . Φουλιάτου σκευασία ρλγʹ . Σπεκάτου σκευασία ρλδʹ . Οἰνανθαρίου σκευασία ρλεʹ . Ἀψινθάτου ἤτοι ῥοδαψινθάτου ὑγιεινοῦ
οὕτως ἐμὲ λαμβάνει : τουτέστι τὴν τοῦ πείθειν δύναμιν . ρλδʹ Τόδε δ ' οὖν μέγα λέγω Τὸ δὲ μέγα
6207732 γβ
ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ
ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ
6204206 ὀκτακις
αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ
ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους .
6203143 ριβ
μοῖραι νϚ κ . ἃς καὶ διπλώσαντες , τὰς γενομένας ριβ μ εἰσηνέγκαμεν εἰς τὸν τῶν ἐν κύκλῳ εὐθειῶν κανόνα
ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν
6197343 δא
ρλβ δא . αἴρω Μο ξ : λοιπαὶ Μο οβ δא . δεῖ οὖν τὰς Μο οβ δא διελεῖν εἰς
ΔΥא Μο δא Εἰ οὖν ταῖς Μο λ προστίθεται Μο δא , ταῖς Μο γ γא προστεθήσεται λϚא καὶ γίνεται
6190101 πολλαπλασιαζομενος
: τοῦτον γὰρ μετρεῖ μετὰ τὸν ιε ἐφ ' ἑαυτὸν πολλαπλασιαζόμενος : πεντάκις γὰρ ε κε . τὸν δὲ τρίτον
, ὅσαι εἰσὶν ἐν αὐτῷ μονάδες , τοσαυτάκις συντεθῇ ὁ πολλαπλασιαζόμενος , καὶ γένηταί τις . Ὅταν δὲ δύο ἀριθμοὶ
6182066 Ἰουδαν
ἀμείνους ἔταξεν ἐπὶ τῆς εὐλογίας , Συμεών , Λευί , Ἰούδαν , Ἰσσάχαρ , Ἰωσὴφ καὶ Βενιαμίν , τοὺς δ
τὴν γένεσιν ἐξ αὐτῆς ξηράν τε καὶ στεῖραν , ἡνίκα Ἰούδαν , τὴν ἐξομολόγησιν , τὸν τέλειον καρπόν , ἤνθησε
6181229 ρκβʹ
, καὶ ἐπὶ τῶν ἄλλων ὁμοίως ἄλλας χορδὰς εἶπον . ρκβʹ Πολλῶν δὴ οὕνεκα Διὰ δὴ σύμπαντα ταῦτα τὰ εἰρημένα
τὸν ριϚʹ , τὸν ριηʹ , τὸν ρκʹ , τὸν ρκβʹ κώλου τμήματα δʹ , ἃ μονόμετρά ἐστι βραχυκατάληκτα .
6173435 λατριον
τοὺς Μολιονίδας ὁ Ἡρακλῆς ἵν ' εἰσπράξηται τὸν Αὐγείαν . λάτριον δὲ μισθὸν τὸν ἀντὶ τῆς λατρείας καὶ ὑπηρεσίας .
τοῦ ἀπαιτητικῶς ἀπῄτει καὶ ἐζήτει τῷ Αὐγέᾳ τὸν μισθὸν τὸν λάτριον , τὸν ὑπέρβιον καὶ τὸν πολὺν ἑκὼν καὶ βουλόμενος
6171500 ἐπιμερης
τοὺς παρέξοντας ἀφ ' ἑαυτῶν τὰ μέρη , καθὰ ὁ ἐπιμερὴς κέκληται , οἷον ἐπιδιμερῶν τὸν πέντε πρὸς τρία ,
, ἐπιέβδομος καὶ εἰς ἄπειρον . γʹ . κατὰ γένος ἐπιμερὴς δὲ ὁ μετρούμενος ὑπὸ ἑτέρου ἅπαξ , καὶ περισσεύει
6166051 ΡΧ
ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν , ἔσται ὡς ὁ
ΥΤ τὴν ΩΨ καὶ τὰς λοιπάς , καὶ ἐπιζεύξαντες τὰς ΡΧ ΥΩ ΤΨ ἕξομεν τὰς τῶν ὀδόντων λοξώσεις . καὶ
6160406 Τεταχθω
γπλ . τῆς ὑπεροχῆς καὶ τῶν δοθεισῶν Μο ι . Τετάχθω ἡ μὲν ὑπεροχὴ αὐτῶν Μο β , ὁ δὲ
συγκείμενος ἐκ τῶν ἀπ ' αὐτῶν τετραγώνων ποιῇ τετράγωνον . Τετάχθω δὴ τῶν ζητουμένων ὁ μὲν ΔΥ α , ὁ
6160040 ⃞ους
ε . ἀπῆκται οὖν μοι τὸν ε διελεῖν εἰς τέσσαρας ⃞ους . [ ἑκάστῃ τῶν πλ . προσέθηκα Μο ∠
πλ . . ] Διαιρεῖται δὲ ὁ ε εἰς τέσσαρας ⃞ους , κεθ / καὶ κειϚ / καὶ κεξδ /
6156698 ἐπιμερη
διότι περιέχει τά τε πολλαπλάσια καὶ τὰ ἐπιμόρια καὶ τὰ ἐπιμερῆ : τὰ δὲ πολλαπλάσια οὐχ ἥκουσιν εἰς ἐπιμόρια καὶ
ἀριθμὸς πρὸς ἅπαντα λόγον ἔχει ἢ πολλαπλάσιον ἢ πολλαπλασιεπιμόριον ἢ ἐπιμερῆ ἢ καθ ' ἕνα τινὰ λόγον , οὓς αὐτὸς
6155791 ͵βυα
καὶ τὸν ͵αχπα ἀπὸ πλευρᾶς τοῦ μα , καὶ τὸν ͵βυα ἀπὸ πλευρᾶς τοῦ μθ νῦν δέον εὑρεῖν . .
ὁ αος Ϡξα , ὁ βος ͵αχπα , ὁ γος ͵βυα . νῦν δεῖ εὑρεῖν ὅπως ὁ αος καὶ ὁ
6151375 ἐναι
καυκία ἐπάνω ἡ τρῦπα , τὸ δὲ κάτω , ἀς ἔναι πλατύτερον , καὶ βάλε τὰ καυκία ἐπάνω εἰς τὸ
, τόν οἱ ἔδωκεν Ἀλκάνδρη , Πολύβοιο δάμαρ , ὃς ἔναι ' ἐνὶ Θήβῃς Αἰγυπτίῃς ' , ὅθι πλεῖστα δόμοις
6150721 εβ
ἐστὶν ἡ Ηβ τῇ εΞ περιφερείᾳ . κοινὴ ἀφῃρήσθω ἡ εβ : λοιπὴ ἄρα ἡ Ηε λοιπῇ τῇ βΞ ἐστιν
γ , αδ , γ , δε , γ , εβ ἐπιπέδοις . Ἔστω γὰρ ἐκ μὲν τῶν γ ,
6149411 Εὐλαιον
Πολύκλειτος εἰς λίμνην τινὰ συμβάλλειν τόν τε Χοάσπην καὶ τὸν Εὔλαιον καὶ ἔτι τὸν Τίγριν , εἶτ ' ἐκεῖθεν εἰς
διάβασιν ἀνέζευξεν ἐπὶ πόλεως Βαδάκης , ἣ κεῖται παρὰ τὸν Εὔλαιον ποταμόν . οὔσης δὲ τῆς ὁδοιπορίας ἐμπύρου διὰ τὸ
6136382 οβ
ἐκ τῆς βας διαιρέσεως Μο κη , ὁ δὲ μείζων οβ . καὶ δῆλον ὡς ποιοῦσι τὸ πρόβλημα . ιδ
. . . . . . . . . . οβ ∠ ʹ λβ ∠ ʹ Γαύαρα . . .
6135437 ἡλον
ὡς δέ τινες , ὑποσχομένης ποιήσειν ἀθάνατον , καὶ τὸν ἧλον ἐξελούσης , διαῤῥυέντος τοῦ ἰχῶρος σὺν ὅλῳ τῷ αἵματι
καρύα , οἱονδήποτε κλάδον δάκε , καὶ ξηρανθήσεται . ἢ ἧλον πεπυρωμένον εἰς τὴν ῥίζαν ἔμπηξον οἱουδήποτε δένδρου . ἢ
6125987 εא
: γίνεται ὁ ὑπ ' αὐτῶν μετὰ συναμφοτέρων ʂ ε εא Μο δ εא : ταῦτα ἴσα ⃞ῳ . πάλιν
ἴσα ⃞ῳ . ποιῶ τοὺς ʂ ε εא Μο δ εא ἐπὶ τὸν κε : γίνονται ʂ ρλ Μο ρε
6124028 Δεησει
ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι μο Ϛ
ποιεῖν ⃞ον , ΔΥ δ ʂ η Μο δ . Δεήσει ἄρα καὶ τὸν ἀπὸ τοῦ γου ⃞ον , προσλαβόντα
6118354 πολυπλασιασθεις
ἀπὸ μονάδος ὁποσοιοῦν ἀριθμοὶ ἐν ἴσῃ ὑπεροχῇ , ὁ σύμπας πολυπλασιασθεὶς ἐπὶ τὸν ὀκταπλασίονα τῆς ὑπεροχῆς αὐτῶν , καὶ προσλαβὼν
α . Πῶς ; Ϟ α δὲ ἐπὶ Ϟ α πολυπλασιασθεὶς ποιεῖ δυ α . δυ ἄρα α ἑξαπλασίων ἐστὶν
6113454 δου
μὴ ὑπὸ θορύβου τῶν διωκόντων ἀποτραπείη τῆς κατὰ δαίμονα ὁ δοῦ . καὶ ἡ μὲν ἀμφὶ τοὺς εἴκοσι καὶ τέτταρας
: ἐδέου , ἐδοῦ : καὶ τὸ προστακτικὸν δέου , δοῦ , καὶ μετὰ τῆς περί προθέσεως περιδοῦ , τουτέστι
6107203 ριγ
ἐστιν ριγ να , ἡ δὲ ὑπὸ ΔΑΖ γωνία τοιούτων ριγ να , οἵων ἐστὶν ἡ μία ὀρθὴ Ϙ .
χαλβάνηϲ ριβ Κολλύρια διάϲμυρνα καὶ Χιακὰ καλούμενα δι ' οἴνου ριγ Κολλύριον τὸ διὰ βδελλίου καὶ ϲτύρακοϲ Φιλαγρίου ριδ Κολλύρια
6103864 ϲαπωνα
ἔλαιον βαλάνινον ὁμοῦ ϲυμμίξαϲ ἐπίχριε τὰϲ τρίχαϲ . Ἄλλο . ϲάπωνα Γαλλικὸν ϲὺν ὕδατι ϲμάϲθω καθ ' ἕκαϲτον βαλανεῖον .
περιεχομένοιϲ οὐ ϲυμφέρει . διάχριϲτον δὲ ϲτόματόϲ ἐϲτι τοιόνδε : ϲάπωνα διεὶϲ τεύτλου χυλῷ χρῖε τὰ κατὰ τὸν οὐρανίϲκον καὶ
6101693 τετραπλασιον
' εὐθέως ἐξ ἀρχῆς οὕτως σκευάζειν : τῷ ὀξυμέλιτι μιγνύσθω τετραπλάσιον ὕδατος καλλίστου , κἄπειτα ἑψείσθω μετρίως , ἕως ἂν
ΚΓ , διπλῆ ἄρα καὶ ἡ ΘΚ τῆς ΚΓ . τετραπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΘΚ τοῦ ἀπὸ τῆς
6094870 ἠδικημενον
ἐπίπεμπτον εἰς παρηγορίαν τοῦ πλημμεληθέντος . ὅταν δὲ ἱλάσηται τὸν ἠδικημένον πρότερον , ἴτω , φησί , μετὰ ταῦτα καὶ
τῶν συναλλαγμάτων δίκαιον ὅρους μὲν ἔχει τὸν ἠδικηκότα καὶ τὸν ἠδικημένον . δίδωσι δὲ ἑκάστῳ οὐ τὸ ἀνάλογον ἀλλὰ τὸ
6093483 γπλ
ἐλάσσων ʂ α , καὶ μένει ὁ μείζων τοῦ ἐλάσσονος γπλ . . λοιπόν ἐστι καὶ τὸν ἀπὸ τοῦ ἐλάσσονος
Δα Μο λϚ # ΔΥ ιβ : τῆς δὲ πλευρᾶς γπλ . , Μο ιβ ἐν μορίῳ Μο Ϛ #
6092672 ὀποπανακα
λιπαρᾶϲ λι . α , ὀποπάνακοϲ # γ : τὸν ὀποπάνακα λύϲαϲ ὄξει ἐπὶ πλέον ἐκλείου καὶ τὴν πίϲϲαν τήξαϲ
ὑποκιϲτίδοϲ , ϲμύρναν , ϲαγαπηνὸν , ϲτύρακα , ἀκακίαν , ὀποπάνακα , παραϲτάζων μέλι ὀλίγον καὶ κόπτων διάλυε , εἶτα
6090759 ιβ
θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα
ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ

Back