μήτε καλαθοειδῶς τῆς σκιᾶς πίπτειν δυναμένης , ἀλλὰ τὸν λεγόμενον κῶνον ἀποτελούσης . Ὃ δὴ πρῶτος Ὅμηρος ἐκ μιᾶς λέξεως
ἂν ὑπεραίροι , οὔτε ἐλλείποι . ἐναρμόσει ἄρα εἰς τὸν κῶνον , καὶ περιληφθήσεται ὑπὸ τοῦ κώνου τοῦ περιλαμβάνοντος τὴν
8822240 κυλινδρον
, ἔστιν ἄρα ὡς ὁ ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον
ἐπὶ τὴν τοῦ κύκλου περιφέρειαν διὰ τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ
8277363 ἀξονα
μένοντι ὡς οἱ κινούμενοι κῶνοι καὶ σφαῖραι περὶ τὸν ἴδιον ἄξονα . τῆς δ ' εἰς εὐθὺ φορᾶς πλείονά ἐστιν
. καὶ ὡς ἄρα ὁ ΗΘ ἄξων πρὸς τὸν ΚΛ ἄξονα , οὕτως ὅ τε ΑΒΗ κῶνος πρὸς τὸν ΓΔΚ
7815859 κωνος
ΕΖ ὕψος . λέγω , ὅτι ἴσος ἐστὶν ὁ ΑΒΞ κῶνος ἢ κύλινδρος τῷ ΓΘΔ κώνῳ ἢ κυλίνδρῳ . πάλιν
ὁ ὑπὸ τοῦ ΒΓΖ τριγώνου γινόμενος ἀπὸ τῆς αὐτῆς βάσεως κῶνος , ὕψος ἔχων τήν τε ΒΔ καὶ ἅπαξ τὴν
7788693 κυκλον
δοθεὶς κύκλος ὁ ΑΒΓΔ : δεῖ δὴ εἰς τὸν ΑΒΓΔ κύκλον πεντεκαιδεκάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι . Ἐγγεγράφθω εἰς
τὴν σελήνην ἑξακοσιάκις μὲν καὶ πεντηκοντάκις ἔγγιστα καταμετρεῖν τὸν ἴδιον κύκλον , δὶς δὲ καὶ ἡμισάκις τὸν τῆς σκιᾶς καταμετρεῖν
7516909 κυλινδρος
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς
7431975 ΛΘΕ
τὰ αὐτά . ὁμοίως δὴ δείξομεν ὅτι ἐστὶν ὡς ὁ ΛΘΕ τομεὺς πρὸς τὸν ΔΘΕ , οὕτως ὁ ΔΘΕ τομεὺς
ΛΘΕ , πρὸς τὴν ὑπὸ ΔΘΕ , τουτέστιν ἤπερ ὁ ΛΘΕ τομεὺς πρὸς τὸν ΔΘΕ , ὡς δὲ ὁ ΛΘΕ
7424288 ΒΘΕΖ
ΑΗ ἴση : ὡς ἄρα ὁ ΑΗΓΔ κῶνος πρὸς τὸν ΒΘΕΖ , οὕτως ὁ ΒΘ ἄξων πρὸς τὸν ΑΗ :
τὸ ΒΕΖ τρίγωνον πρὸς τὸ ΚΓΔ . ἔχει δὲ ὁ ΒΘΕΖ κῶνος πρὸς τὸν ΚΗΓΔ κῶνον ἰσοϋψῆ διπλασίονα λόγον ἤπερ
7358609 ΑΒΓΔ
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ
7322033 ΔΘΕ
ΔΖΕ μείζονι περιφερείᾳ , ἡ δὲ ΑΗΒ ἐλάττων περιφέρεια τῇ ΔΘΕ . Εἰλήφθω γὰρ τὰ κέντρα τῶν κύκλων τὰ Κ
ὑπὸ ΑΗΒ πρὸς τὸ ὑπὸ ΒΓΗ , οὕτως τὸ ὑπὸ ΔΘΕ πρὸς τὸ ὑπὸ ΕΖΘ . Ἐπεὶ γάρ ἐστιν ὡς
7253303 ΑΗΓΔ
κύκλος πρὸς τὸν Θ κύκλον , τουτέστιν ἡ βάσις τοῦ ΑΗΓΔ κώνου πρὸς τὴν βάσιν τοῦ ΒΘΕΖ κώνου , διπλασίονα
πρὸς τὸν ΒΘΕΖ κῶνον : ἰσοϋψεῖς γάρ : καὶ ὁ ΑΗΓΔ ἄρα κῶνος πρὸς τὸν ΒΘΕΖ κῶνον διπλασίονα λόγον ἔχει
7247967 κυβον
τοῦ ἀπὸ τῆς ΑΜ κύβου πρὸς τὸν ἀπὸ τῆς ΜΗ κύβον . ἀλλ ' ὡς μὲν ἡ ΓΜ πρὸς ΜΗ
προσδήσαντες εἶτα μέντοι ἀπαλλάττονται , τοῦτο δήπου τὸ λεγόμενον ἀτεχνῶς κύβον ἀναρρίψαντες . οἱ δὲ τίγρεις ἐντυχόντες αὐταῖς , ἀθηρίᾳ
7230905 κοχλιαν
ταῖς ἀφύαις συναλίσκεται : εἴη δ ' ἂν κατὰ τὸν κοχλίαν τὸν γυμνὸν τὸ εἶδος . Γὺψ νεκρῷ πολέμιος .
ἥλους καὶ λαβὼν τοσούτους μύρμηκας δῆσον ἐν λίνῳ πανίῳ καὶ κοχλίαν ἕνα μετ ' αὐτῶν καὶ καύσας αὐτοὺς λείωσον σὺν
7202067 Προκυνα
ζώνη τόν τε Πρόκυνα καὶ τὸν Κύνα , τὸν μὲν Πρόκυνα χωρίζουσα πρὸς ἀνατολὰς ὅλον οὐκ ὀλίγῳ ἐκτὸς τοῦ γάλακτος
τῷ Τοξότῃ φασὶν ἀντικαταδύνειν τήν τε Ἀργὼ ὅλην καὶ τὸν Πρόκυνα , συνανατέλλειν δὲ τόν τε Ὄρνιθα , καὶ τὸν
7130780 πολυγωνιον
εὐμεγέθη ποιεῖ . στρυφνὸν δὲ τὸν μεγαλόσχημον τραχύν τε καὶ πολυγώνιον καὶ ἀπεριφερῆ . ὀξὺν δὲ κατὰ τοὔνομα τὸν ὀξὺν
, σκαληνὸν δὲ οὐκ ἔχειν . τὸν μὲν γὰρ δριμὺν πολυγώνιον ποιεῖν τῇ τραχύτητι θερμαίνειν καὶ διαχεῖν . [ διὰ
7129294 ΟΠΡ
ΜΝΞ ἴσον ἐστὶ τῷ ὑπὸ γῆν τοῦ ΟΕΡΠ κύκλου τῷ ΟΠΡ . πάλιν ἐπεὶ αἱ ΖΘ , ΕΗ ἴσαι τε
ΝΖ περιφέρεια τῇ ΖΠ περιφερείᾳ : οἱ ἄρα ΜΝΞ , ΟΠΡ κύκλοι ἴσον ἀπέχουσιν ὁποτερασοῦν τῶν διχοτομιῶν . οἱ δὲ
7120415 ἀτρακτον
γνώμης , ἐγὼ δύστηνος ἐξαποφθερῶ : τὸν γὰρ βαλόντ ' ἄτρακτον οἶδα καὶ θεόν , Χείρωνα πημήναντα , χὦνπερ ἂν
τοῦ πόλου διήκοντα οἷον κίονα , ἑτέραν δὲ ἠλακάτην καὶ ἄτρακτον , τοὺς δέ τινας περὶ τοῦτον κοίλους ἐν ἀλλήλοις
7120139 τομεα
ἔλαττόν ἐστιν , τὸ ΕΖΓ ἄρα τρίγωνον πρὸς τὸν ΕΖΗ τομέα μείζονα λόγον ἔχει ἤπερ τὸ ΕΖΔ τρίγωνον πρὸς τὸν
περιφέρειαν , τουτέστιν ἤπερ ὁ ΑΒΓ κύκλος πρὸς τὸν ΒΔΕ τομέα , ἕξει δηλονότι καὶ ὁ ΑΒΓ κύκλος πρὸς τὸν
7062907 τομευς
ἄρα πρὸς τὴν ΕΔ μείζονα λόγον ἔχει ἤπερ ὁ ΕΗΘ τομεὺς πρὸς τὸν ΕΖΘ τομέα . ὡς δὲ ὁ τομεὺς
κέντρου τοῦ κύκλου διπλάσιόν ἐστιν τοῦ τομέως . Ἔστω γὰρ τομεὺς κύκλου ὁ ΑΒΓ . καὶ τοῦ ὑπὸ τῆς ΑΕΒ
7051486 γεγενησθω
ὅτι τὸ ΓΔ ἔν τινι ἀποστήματι γενόμενον οὐκέτι ὁραθήσεται . γεγενήσθω γὰρ τὸ ΓΔ ἐν τῷ μεταξὺ διαστήματι τῶν ὄψεων
ΥΑ : ἡ δὲ ΟΡ πρὸς μείζονα τῆς ΑΠ . γεγενήσθω δέ , καὶ ἔστωσαν αἱ ΓΕ , ΓΝ ,
7034338 γραψωμεν
ἐπειδήπερ ἐὰν κέντρῳ τῷ Β καὶ διαστήματι τῷ ΑΒ κύκλον γράψωμεν , αἱ διάμετροι ἀνίσους ἀπολήψονται τοῦ κύκλου περιφερείας .
ἐὰν διὰ τοῦ Κ πόλου τοῦ ὁρίζοντος καὶ τοῦ Ε γράψωμεν τὸ ΚΘ τεταρτημόριον , γίνεται ἡ ὑπὸ ΚΕΘ γωνία
7011025 ΒΔΕ
ΒΔΕ κύκλον τῇ ΑΓ εὐθείᾳ μὴ μείζονι οὔσῃ τῆς τοῦ ΒΔΕ κύκλου διαμέτρου ἴση εὐθεῖα ἡ ΒΔ : καὶ ἐπεζεύχθωσαν
ἐπεὶ τὸ ὑπὸ τῶν ΑΔΓ ἴσον ἐστὶν τῷ ὑπὸ τῶν ΒΔΕ , ἀνάλογον ἄρα ἐστὶν ὡς ἡ ΑΔ πρὸς τὴν
7008433 ταπεινοτατος
, ἐν πλείστῳ δὲ χρόνῳ δύνειν Κριόν . Πάλιν ἐπεὶ ταπεινότατος γίνεται ὁ τῶν ζῳδίων κύκλος Αἰγόκερω αης μοίρας μεσουρανούσης
κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ
7008188 ἀστερα
τὸν αὐτὸν τοῖς ἄλλοις τῆς ἐποχῆς χρόνον τὸν τοῦ Διὸς ἀστέρα μέσως κατὰ μῆκος μὲν ἐπέχοντα Χηλῶν μοίρας δ μα
φασίν , ἕνα τινὰ τῶν ἐν τῷ ζῳδιακῷ κύκλῳ λαμπρὸν ἀστέρα παρατηρήσαντες ἀνατέλλοντα οἱ πάλαι , εἶτα ἀμφορέα τετρημένον πληρώσαντες
6993216 ΖΗΘ
δὲ τῇ τοῦ τετραγώνου πλευρᾷ γεγράφθω μεγίστου κύκλου τμῆμα τὸ ΖΗΘ . καὶ προσαναπεπληρώσθω τό τε ΕΓΗ τεταρτημόριον καὶ τὸ
πρὸς τὸν ΖΗΘ κύκλον καὶ ἐξ οὗ ὃν ἔχει ὁ ΖΗΘ κύκλος πρὸς τὸ ὑπὸ τῶν ΖΒΘ εὐθειῶν καὶ τῆς
6984114 ἐλυτροειδη
πλέον αὐτοῦ ἐν ἀγγείῳ τινὶ ἐκκρίναντεϲ ἀνατείναντέϲ τε ἀγκίϲτροιϲ τὸν ἐλυτροειδῆ περιέλωμεν ὅλον , μάλιϲτα τὸ λεπτότατον αὐτοῦ μέροϲ .
ἕτερον ἢ χυμοί τινες γλίσχροι τε καὶ παχεῖς ἐπὶ τὸν ἐλυτροειδῆ χιτῶνα κατασκήψαντες , ἢ καὶ αὐτὸ τὸ ὄσχεον ,
6973511 ποιειτω
ΑΒ , ΓΔ , καὶ ἐμπίπτουσα εἰς αὐτὰς ἡ ΕΖΗΘ ποιείτω τὰς ὑπὸ ΑΖΗ καὶ ὑπὸ ΓΗΖ δύο ὀρθῶν ἐλάσσονας
, καὶ ὁ μὲν α τὸν ε πολλαπλασιάσας τὸν η ποιείτω , ὁ δὲ β τὸν ζ πολλαπλασιάσας τὸν θ
6972638 ΚΘΕΖ
πρὸς τὴν Θ , οὕτως ὁ ΑΗΓΔ κῶνος πρὸς τὸν ΚΘΕΖ , ὁ ἄρα ΑΗΓΔ κῶνος πρὸς τὸν ΒΘΕΖ διπλασίονα
τὸ ΚΕΖ : ὡς ἄρα ὁ ΑΗΓΔ κῶνος πρὸς τὸν ΚΘΕΖ κῶνον , οὕτως ὁ ΚΘΕΖ πρὸς τὸν ΒΘΕΖ .
6951382 ἀνταρκτικον
διεζῶσθαι κύκλοις , ὧν ὀνόματα εἶναι τάδε : ἀρκτικόν , ἀνταρκτικόν , θερινὸν τροπικόν , χειμερινὸν τροπικόν , ἰσημερινόν ,
δὲ τόν τε ἀρκτικὸν καὶ τὸν θερινὸν τροπικὸν καὶ τὸν ἀνταρκτικόν . ἀρκτικὸς δ ' ὁ αὐτὸς καὶ ἀεὶ φανερὸς
6948463 βον
. τάσσω τὸν μὲν αον ʂא ιε , τὸν δὲ βον ʂא κ : καὶ συναμφότερος ὁ βος καὶ ὁ
ὁ Μοι ἐλάσσων τοῦ βου . ἐὰν οὖν τάξω τὸν βον ὁσουδήποτε καὶ προσθῶμεν αὐτὸν τῷ δοθέντι , καὶ τὰ
6931750 ΕΖΗΘ
τῆς ΖΘ τετράγωνον , οὕτως ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον , ἀλλὰ μὴν καὶ ὡς τὸ ἀπὸ τῆς
ΕΖΗΘ πυραμίς : καὶ ἡ ΑΒΓΔ ἄρα πυραμὶς πρὸς τὴν ΕΖΗΘ πυραμίδα τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν
6918557 παραλληλον
ἐπέχουσα : τὸ δ ' ἑωθινὸν τῷ Ῥήνῳ ποταμῷ περιγραφομένη παράλληλον ἔχοντι τὸ ῥεῦμα τῇ Πυρήνῃ : τὸ δὲ νότιον
ἂν εἶεν καὶ οἱ ἀπὸ Μασσαλίας ἐπὶ τὸν διὰ Βορυσθένους παράλληλον , ὅς γε διὰ τῆς Κελτικῆς παρωκεανίτιδος ἂν εἴη
6916508 τυλον
μέλανοϲ καθιεμένη ἐν δύο που ἢ τριϲὶν ἡμέραιϲ ἀφίϲτηϲι τὸν τύλον . κείϲθωϲαν δὲ ἐν τῇ τρίτῃ τάξει τῶν θερμαινόντων
φησιν , ἔκαμον τὸν ὦμον βαστάζων , ἴστω Ἡρακλῆς . τύλον δὲ ἀρσενικῶς καὶ τύλαν θηλυκῶς ἔλεγον τοῦ ὤμου τὸ
6905126 μετρειτω
ἑκάτερος τῶν Θ , Κ ἑκάτερον τῶν Μ , Ν μετρείτω : οἱ Η , Θ , Κ , Λ
εἰ γὰρ ἔσται σύμμετρα , μετρήσει τι αὐτὰ μέγεθος . μετρείτω , καὶ ἔστω τὸ Δ . ἐπεὶ οὖν τὸ
6904879 ἐπικυκλος
δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω
τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα
6897743 πολον
τῶν ὅλων μέση , περὶ τὸν διὰ παντὸς τεταμένον σφιγγομένη πόλον , ἡμέρας φύλαξ καὶ νυκτός , πρεσβυτάτη τῶν ἐντὸς
τὴν ἐνέργειαν , τὰ δὲ ἐπέκεινα πρὸς αὐτὸν τὸν βόρειον πόλον ἔτι λύει καὶ θάλπει καὶ ἀνορθοῖ πρὸς ἀναθυμίασιν ,
6839328 νεφρον
ὑπὸ τὸν μαζὸν καὶ ἐς τὸν σπλῆνα καὶ ἐς τὸν νεφρὸν , ἡ δὲ ἀπὸ τῶν ἀριστερῶν ἐς τὰ δεξιὰ
ἧπαρ : καὶ διακραίην ἐκφύσασα ἔναιμον , κατέχει ἐς τὸν νεφρὸν [ καὶ ] τὸν δεξιὸν λοβὸν τὸν ἡπατιαῖον .
6834208 ζῳδιακον
' ἐπίνοιαν στήσαντες τὸν κόσμον νοήσωμεν τὰ πλανώμενα ὑπὸ τὸν ζῳδιακόν , ἀκίνητον ὄντα καθ ' ὑπόθεσιν , κινούμενα :
ἀνταρκτικόν , θερινὸν τροπικόν , χειμερινὸν τροπικόν , ἰσημερινόν , ζῳδιακόν , καὶ προσέτι γαλαξίαν . ὁ γὰρ ὁρίζων πάθος
6827883 ΗΘΚ
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ
6823789 ΞΒ
ἐστιν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΞΒ πρὸς ΒΧ : καὶ ὡς ἄρα ἡ ΧΑ πρὸς
ἄρα ἴση ἐστὶν τῇ ΛΜ . ἔστι δὲ καὶ ἡ ΞΒ ἴση τῇ ΒΛ , διὰ τὸ τὸ Β σημεῖον
6817843 ἡλον
ὡς δέ τινες , ὑποσχομένης ποιήσειν ἀθάνατον , καὶ τὸν ἧλον ἐξελούσης , διαῤῥυέντος τοῦ ἰχῶρος σὺν ὅλῳ τῷ αἵματι
καρύα , οἱονδήποτε κλάδον δάκε , καὶ ξηρανθήσεται . ἢ ἧλον πεπυρωμένον εἰς τὴν ῥίζαν ἔμπηξον οἱουδήποτε δένδρου . ἢ
6814722 αον
γον , ποιεῖ ⃞ον : ὥστε καὶ ἑκάτερον τόν τε αον καὶ τὸν βον λείψας ὁ ἐκ τῶν τριῶν στερεὸς
ἐκ τῶν τριῶν συγκείμενον τετράγωνον ΔΥ α , τὸν δὲ αον ΔΥ א ρνγ , ἐπεὶ δεῖ τρίγωνον γενέσθαι ,
6788711 κανθον
τῆς ῥινὸς συνιστάμενον . ῥήγνυται δὲ πολλάκις εἰς τὸν μέγαν κανθόν : ἔστι δὲ ὅτε καὶ λυμαίνουσι καὶ τερηδωνίζουσι τὰ
κανθὸν μέροϲ τοῦ πτερυγίου , φυλαϲϲόμενοι τὰ βλέφαρα καὶ τὸν κανθόν . τοῖϲ μὲν γὰρ τὰ βλέφαρα ϲυνδιακοπεῖϲι πρόϲφυϲιϲ γίγνεται
6788080 τενοντα
τὸ ἐπίσειον καὶ ἐς τὸν κενεῶνα καὶ τὰς ἰξύας καὶ τένοντα καὶ κοιλίην καὶ στῆθος , καὶ τὰς ὠμοπλάτας καὶ
' ἀλλήλων διίστανται , αἱ δ ' ἀρχαὶ ἐπὶ τὸν τένοντα ἁμματίζονται . καὶ οἱ μὲν διὰ τῆς περιοδίας εὔχρηστοι
6770733 τροχον
ταῖς χοινικίσιν ἐμβαλ - λόμενα ἢ πασσαλίσκοι κωλύοντες ἐξιέναι τὸν τροχόν . ἐπίσωτρα λέγονται οἱ ἐπικείμενοι κύκλοι τοῖς τροχοῖς ,
“ συμβουλεύει γὰρ καλῶς : τὰς βασάνους παράστησον . φερέτω τροχόν : ἰδοὺ χεῖρες , τεινέτω . φερέτω καὶ μάστιγας
6745840 μετρειτωσαν
Α , Β , Γ ἐλάσσονα ὄντα τοῦ Ε . μετρείτωσαν τὸν Ζ . ἐπεὶ οἱ Α , Β ,
ἀριθμὸν οἱ Α , Β ἐλάσσονα ὄντα τοῦ Γ . μετρείτωσαν τὸν Δ . καὶ ὁσάκις μὲν ὁ Α τὸν
6745219 ΚΗΓΔ
πρὸς τὸν ΚΗΓΔ : ὁ ἄρα ΑΗΓΔ κῶνος πρὸς τὸν ΚΗΓΔ διπλασίονα λόγον ἔχει ἤπερ ὁ ΒΘΕΖ πρὸς τὸν ΚΗΓΔ
πρὸς τὸν ΚΗΓΔ : ὁ ἄρα ΑΗΓΔ κῶνος πρὸς τὸν ΚΗΓΔ τετραπλασίονα λόγον ἔχει ἤπερ τὸ ΒΕΖ τρίγωνον πρὸς τὸ
6729473 ΜΝΞ
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ
6710175 καρκινον
δ , μέλιτοϲ # Ϛ . Πίϲϲῃ ὑγρᾷ κατάχριε ἢ καρκίνον ποτάμιον ἢ θαλάϲϲιον καύϲαϲ ἐπ ' ἀνθράκων ἀπόξεϲον τὸ
τῶν μαλακοστράκων κάραβον , ἀστακόν , νύμφην , ἄρκτον , καρκίνον , πάγουρον . Διοκλῆς δ ' ὁ Καρύστιός φησι
6707643 Ὑδροχοον
Κρόνου καὶ τῷ τοῦ Διός . Τῶν δὲ περὶ τὸν Ὑδροχόον οἱ μὲν ἐν τοῖς ὤμοις ὁμοίως διατιθέασι τῷ τε
ἀλλ ' ἔτι ταύτης αἱ κατὰ τοὺς Διδύμους καὶ τὸν Ὑδροχόον περιγειότεραι καὶ ἀλλήλαις ἔγγιστα ἴσαι , δῆλον , ὅτι
6705300 ὀϲχεον
τῆϲ ἥβηϲ εὐθυτενῆ τὴν διαίρεϲιν παρέχοντεϲ παράλληλον τῇ διχοτομούϲῃ τὸν ὄϲχεον γραμμῇ διαιροῦντεϲ τέωϲ τὸν ἐλυτροειδῆ . ἐν ἐπιγενητῷ δὲ
δὲ τοῦτον τὸν τρόπον : ψιλώϲαντεϲ τὴν ἥβην καὶ τὸν ὄϲχεον , εἰ μὴ παῖϲ ᾖ , κατακλίνομεν αὐτὸν ὕπτιον
6689721 ὀνισκον
ἰχθὺν πολλῶν ὀνομασιῶν τετυχηκέναι : καλεῖσθαι γὰρ καὶ βάκχον καὶ ὀνίσκον καὶ χελλαρίην . οἱ μὲν οὖν μείζονες αὐτῶν ὀνομάζονται
, ἐπ ' ὀνίσκῳ δῆσον τὸν πόδα : καὶ τὸν ὀνίσκον * * * σοῦ στρέφοντος ἡ τάσις καὶ ἡ
6686121 ἀνατεταλκεναι
δεδυκέναι τά τε λοιπὰ τοῦ Ὕδρου καὶ τὸν Κένταυρον , ἀνατεταλκέναι δὲ τὸν νότιον Ἰχθὺν οὐχ ὅλον , ἀλλὰ παρὰ
Ὕδρου τὰ πρὸς τὴν οὐρὰν μόνον ὑπὸ γῆς εἶναι : ἀνατεταλκέναι δὲ τοῦ Ἐνγόνασι τὴν δεξιὰν κνήμην μόνον ἕως τοῦ
6681468 ΔΕΖ
: ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ ,
, καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ
6665434 μεσημβρινον
ἰδίας ἀκριβοῦς κινήσεως ἑξηκοστοῖς κε . καὶ πάλιν μετὰ τὸν μεσημβρινόν , ἐκ μὲν τῆς ὑπεροχῆς τῶν δύο παραλλάξεων ,
ποταμοῖς φυόμενον : ἐφ ' αἷς μεσημβρίζειν εἰώθασι . τὸ μεσημβρινόν : μεσημερινὸν καὶ ἐκβολῇ τοῦ ε καὶ προσθέσει τοῦ
6659614 ἐπικυκλον
ὁμόκεντρον ὁμαλῶς , ὑπεναντίως τῷ παντί , καὶ συναποφέροντος τὸν ἐπίκυκλον , ὁ ἥλιος ἐν ἴσῳ χρόνῳ διανύων τὸν εκηζ
κύκλον , τὴν δὲ πρὸς τὸν ἥλιον καὶ παρὰ τὸν ἐπίκυκλον , ἐγκεκλιμένους ἐπὶ πάντων ὑποτιθέμεθα τόν τε ἔκκεντρον πρὸς
6654224 ΣΘ
ΜΟ , ΕΣ . καί ἐστιν ἡ μὲν ΣΕ τῇ ΣΘ ἴση , ἡ δὲ ΣΘ τῇ ΟΠ : ἴσον
ὁμοίως δὴ δείξομεν , ὅτι καὶ ἡ ΝΛ περιφέρεια τῇ ΣΘ ἐστιν ἴση : ἴση ἄρα ἐστὶν ἡ μὲν ΝΟ
6651956 Ἡλος
ἀπώλεσα : ἐπὶ τῶν ἀτυχεστάτων . Ἧλιξ ἥλικα τέρπει . Ἧλος τὸν ἧλον , πάτταλος τὸν πάτταλον ἐξέκρουεν : ἐπὶ
Ζητῶν γὰρ ὄψον θοιμάτιον ἀπώλεσα : ἐπὶ τῶν ἀτυχεστάτων . Ἧλος τὸν ἧλον , πάτταλος τὸν πάτταλον ἐξέκρουεν : ἐπὶ
6650160 κωδωνα
μολύβδῳ τὸν κώδωνα τῆς σάλπιγγος πληρώσας ” . Γ τὸν κώδωνα τῆς σάλπιγγος συμβουλεύει αὐτῷ πωμάσαι μολύβδῳ καὶ ἐν μέσῳ
. Λάθρῃ κύων ἔδακνε : τῷ δὲ χαλκεύσας ὁ δεσπότης κώδωνα καὶ προσαρτήσας πρόδηλον εἶναι μακρόθεν πεποιήκει . ὁ κύων
6643338 ΥΘ
ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι
ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ
6639952 αβʹ
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ
6631177 μυκτηρα
πρὸς κράτημα τῆς εὐθείας , ἅμα δὲ συναπευθύνουσαν τὸν διαστραφέντα μυκτῆρα , μετὰ δὲ ταύτην ἄλλην συντελέσας περιείλησιν , τὸ
ἐστι : μαζοὶ δὲ αὐτῷ πρὸς ταῖς μασχάλαις εἰσί : μυκτῆρα δὲ κέκτηται χειρὸς παγχρηστότερον καὶ γλῶτταν βραχεῖαν : χολὴν
6624010 ἐγγεγραφθω
Η , Θ γωνιῶν τῆς πρὸς τῷ Ζ , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔΕ κύκλον τῷ ΖΗΘ τριγώνῳ ἰσογώνιον τρίγωνον
μεῖζον . ἔστω πρότερον πρὸς ἔλασσον τὸ Σ . καὶ ἐγγεγράφθω εἰς τὸν ΕΖΗΘ κύκλον τετράγωνον τὸ ΕΖΗΘ : τὸ
6601970 ΑΒΓΔΕ
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον
6599982 ΥΦ
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ
6598150 ἐκκεντρον
ἐπὶ τὰ αὐτὰ δὲ τῷ παντί , γράψει καὶ τὸν ἔκκεντρον ἴσον ὄντα τῷ μονξ ἐγκέντρῳ . διήχθωσαν γὰρ αἱ
βʹ φαινομένη διάστασις συνήγαγεν ἄν , εἰ πρὸς τὸν ΝΞ ἔκκεντρον ἐθεωρεῖτο , τοῦ ζῳδιακοῦ μοίρας ξη μβ . ὡσαύτως
6589494 καικιαν
κατὰ δὲ βορρᾶν Πόντον , Μαιῶτιν , Σαρμάτας : κατὰ καικίαν Κασπίαν θάλασσαν καὶ Σάκας . Ἔστι δὲ ἡ μεγάλη
. Ἰδιώτατα δ ' οὖν ὡς εἰπεῖν τὰ περὶ τὸν καικίαν [ ἀπαρκτίαν ] καὶ τὰ περὶ τὸν ζέφυρόν ἐστιν
6588275 ὁριζοντα
. ἕνεκεν μὲν τοίνυν τῆς ἑκάστοτε τοῦ ζῳδιακοῦ πρὸς τὸν ὁρίζοντα σχέσεως ἐπελογισάμεθα κατὰ τὸν ἐν τοῖς πρώτοις τῆς συντάξεως
ἐπὶ τὰ αὐτὰ μέρη θέσιν ἔχων ἅμα πρός τε τὸν ὁρίζοντα καὶ τὸν μεσημβρινόν : κἂν μεταξὺ γὰρ ᾖ τῶν
6585384 Τοξοτην
γὰρ Διὶ συναιρετιστῇ ὄντι καὶ τριγώνου συμπάθειαν κεκτημένῳ διὰ τὸν Τοξότην ὁ Ἥλιος τὴν ἡμίσειαν τῶν ρκʹ ἐτῶν ἐμέρισε καὶ
δόξει κινεῖσθαι περὶ τοὺς Διδύμους , βραδύτατα δὲ περὶ τὸν Τοξότην : φαίνεται δὲ τοὐναντίον : οὐκ ἄρα , τοῦ
6571098 περιναιον
μέρος ἀπὸ τῆς ὀσφύος ἄγεται ἐπὶ τὴν ἕδραν καὶ τὸν περίναιον , καὶ τότε καὶ τὰ σκέλη διὰ βουβώνων ἀχθέντα
Ἀρχὴ κατ ' ἐπιγαστρίου τὸ εἴλημα λοξῶς ἐπὶ κοτύλην παρὰ περίναιον ἐπὶ βουβῶνα κάτωθεν ἄνω κατὰ τῆς προεμβεβλημένης ἐπὶ ἰσχίον
6567790 κυλινδρων
κύλινδρος πρὸς τὸν ΖΔ κύλινδρον . Τῶν ἴσων κώνων καὶ κυλίνδρων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσι , καὶ ὧν κώνων
. αἱ μὲν οὖν τοῦ στέγους πλευραὶ κατὰ μέσον ἑκάστη κυλίνδρων ὡραΐζονται τμήμασιν , ὁ δὲ κύκλος ἀνειμένος ταῖς αὔραις
6567190 ἰσημερινον
μέλανες τὰς χρόας Αἰθίοπες , καὶ μάλιστα οἱ ὑπὸ τὸν ἰσημερινὸν κύκλον οἰκοῦντες , κατακόρως εἰσὶ μέλανες . Οἱ δ
καὶ αἱ ἀπεναντίον περιφέρειαι . Ἔστω γὰρ τοῖς ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν ὁρίζων ὁ ΑΒΓΔ : ὁ ΑΒΓΔ ἄρα διὰ
6565813 Ὀρνιθα
Ἀργὼ ὅλην καὶ τὸν Προκύνα , συνανατέλλειν δὲ τόν τε Ὄρνιθα , καὶ τὸν Ἀετόν , καὶ τὸν Ὀϊστόν ,
Ἀργὼ ὅλην καὶ τὸν Πρόκυνα , συνανατέλλειν δὲ τόν τε Ὄρνιθα , καὶ τὸν Ἀετόν , καὶ τὸν Ὀϊστόν ,
6551320 ἑωσφορον
τῷ ἡλίῳ καὶ συμπεριφέρεσθαι αὐτῷ : καὶ τότε μὲν προανατέλλοντα ἑωσφόρον φαίνεσθαι , τότε δὲ ἐπικαταδυόμενον ἕσπερον καλεῖσθαι . Μητρόδωρος
. Πλάτων καὶ οἱ μαθηματικοὶ ἰσοδρόμους εἶναι τὸν ἥλιον τὸν ἑωσφόρον τὸν στίλβοντα . Μητρόδωρος ἅπαντας τοὺς ἀπλανεῖς ὑπὸ τοῦ
6532930 πολλαπλασιασας
. Σύνθετος γὰρ ἀριθμὸς ὁ Α ἀριθμόν τινα τὸν Β πολλαπλασιάσας τὸν Γ ποιείτω : λέγω , ὅτι ὁ Γ
ὁ Ζ κύβος ἐστί . πάλιν ἐπεὶ ὁ Β ἑαυτὸν πολλαπλασιάσας τὸν Ε πεποίηκεν , τὸν δὲ Ε πολλαπλασιάσας τὸν
6517015 πολυγωνον
περιεχόντων τὴν πυραμίδα , ἧς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον , κορυφὴ δὲ τὸ Ν σημεῖον , ἓν τρίγωνον
[ . ] παρελάβομεν , διὰ τὸ ἴσον ὑποκεῖσθαι τὸ πολύγωνον τῶι κύκλωι ἐφαρμόζον αὐτῶι , ἐσόμεθα καὶ κύκλωι ἴσον
6507859 πενταγωνον
κάθετον ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὸ τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου τρίγωνον . γραπτέον δὲ καὶ
, ΥΦ εὐθείας διὰ ιηʹ τοῦ ιαʹ τελέως ἀποδεῖξαι τὸ πεντάγωνον ἐν ἑνὶ ὂν ἐπιπέδῳ ἢ διὰ αʹ τοῦ ιαʹ
6506234 ἀμφιζευκτον
λεὼς σμῆνος ὣς ἐκλέλοιπεν μελισσᾶν σὺν ὀρχάμῳ στρατοῦ , τὸν ἀμφίζευκτον ἐξαμείψας ἀμφοτέρας ἅλιον πρῶνα κοινὸν αἴας . λέκτρα δ
. μελισσᾶν ] ων . ὀρχάμῳ ] ἡγεμόνι . τὸν ἀμφίζευκτον ] τὸν ἀμφοτέρωθεν ἐζευγμένον διὰ τῶν πλοίων . ἐξαμείψας
6503773 τιτθον
τὴν πολιάν , ὀλοφυρομένης δὲ τῆς μητρὸς καὶ προϊσχομένης τὸν τιτθόν , ὅν , ἡνίκα παιδίον ἦν Ἕκτωρ , ἔφη
τεκμηράμενος ὅσον τὸν μαζὸν ἐκχωρήσει , καὶ οὕτως ἐντιθέναι τὸν τιτθόν : ἢν δὲ διαπύῃ , ἄμεινον τάμνειν , καὶ
6501225 ἀξων
, οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον
. ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ
6481421 ἱμαντα
οὐκ εἴρηκά σοι πρὸς τὴν θύραν μὴ προσιέναι ; τὸν ἱμάντα δός , γραῦ . μηδαμῶς , ἀλλ ' ἄφες
“ μία δὲ κληῒς ἐπαρήρει ” καὶ “ παρὰ κληῖδος ἱμάντα . ” καὶ κληῖδες αἱ θύραι , παρὰ τὸ
6473913 ὀρχιν
ἐξ ὧν αἱ προέσεις γίνονται . * πηρῖνα : τὸν ὄρχιν θοραίην δὲ σπερμαίνουσαν . θορὸς γὰρ τὸ σπέρμα ,
δὲ καὶ μετὰ χρόνον , φλεγμοναὶ μετ ' ὀδύνης ἐς ὄρχιν ἑτερόῤῥοπαι , τοῖσι δὲ ἐς ἀμφοτέρους : πυρε -
6468804 ΑΒΓ
ὁρίζοντές εἰσιν οἱ ΕΜΖ ΑΒΓ τούτῳ μόνον διαφέροντες τῷ τὸν ΑΒΓ πρὸς ἀνατολὰς μᾶλλον τετάχθαι ἤπερ τὸν ΕΜΖ , τὰ
: καὶ ἡ ἀπὸ τοῦ Η ἄρα κάθετος ἐπὶ τὸ ΑΒΓ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΟΜΝ ἐπιπέδου . διὰ
6466294 κιονα
οὖν ἐστιν , ὡς ὁ ΕΓ κίων πρὸς τὸν ΑΙ κίονα , ὁ ἀπὸ τῆς ΡΓ κύβος πρὸς τὸν ἀπὸ
λόγον ἡμῖν νενοημένης ; καθὰ γὰρ οὐκ ἂν εἴπαιμεν τὸν κίονα σωφρονεῖν , κατὰ τὸν αὐτὸν τρόπον οὐδὲ τὸν θεὸν
6463894 μυριωπον
† ἄλευ ' , ἆ δᾶ : φοβοῦμαι , τὸν μυριωπὸν εἰσορῶσα βούταν . ὁ δὲ πορεύεται δόλιον ὄμμ '
αὐτῆς τῆς Ἰοῦς ἐπιστατεῖν μεταμειφθείσης εἰς βοῦν . . τὸν μυριωπὸν ] τὸν διὰ παντὸς τοῦ σώματος ὀφθαλμοὺς ἔχοντα .
6457980 ἀνθερεωνα
παρειάδα ἀπευθύνουσαν τὴν διαστραφεῖσαν γένυν , εἶτ ' ἐπὶ τὸν ἀνθερεῶνα , ἀπὸ τοῦ ἀνθερεῶνος ἀντικειμένην παρειάδα ἀποτελέσαι , καὶ
τις χρῄζει . πολύρομβος . Θέντες τὴν ἀρχὴν ὑπ ' ἀνθερεῶνα ἄγομεν τὴν ἐπείλησιν εὐθεῖαν κατὰ μυκτῆρος καὶ βρέγματος ἐπὶ
6445157 διπλασιονα
διπλάσιος , ὁ δὲ δεκαὲξ τοῦ δ τετραπλάσιος . Τὸ διπλασίονα λόγον ἔχει , ὡς πολλάκις πρόσθεν εἴρηται , ἴσον
δή , ὅτι ὁ Η κύκλος πρὸς τὸν Θ κύκλον διπλασίονα λόγον ἔχει ἤπερ ὁ ΑΗΓΔ κῶνος πρὸς τὸν ΒΘΕΖ
6441926 μοτον
καὶ οἴνου συνεψήσας , ἕως πάχος σχῇ σύμμετρον , εἰς μοτὸν χρίων ἐπιτίθει . Ῥοιὰν γλυκεῖαν ἑψήσας ἐν οἴνῳ καὶ
καὶ γλίσχρον τῷ δακτύλῳ ψαυόμενον , καὶ ὀλίγον , ἐντιθέναι μοτὸν κασσιτέρινον κοῖλον : ἐπὴν δὲ παντάπασι ξηρανθῇ ἡ κοιλίη
6427804 σωληνα
: αὐχμήν γὰρ τὸ ἐντελέστερον . τῷ σωλῆνι , τὸν σωλῆνα , ὦ σωλήν . Δυϊκά . Τὼ σωλῆνε ,
ἔχοντα μέσον ἐν τῇ ἄνω ἐπιφανείᾳ ἐναρμόζουσιν εἰς τοῦτον τὸν σωλῆνα τὸν εἰρημένον τύλον , ὥστε τὸ μὲν ἕτερον ἄκρον
6427782 ὀβελισκον
. τῷ δὲ ὀβελίσκῳ ἐχρῶντο ἀντὶ δόρατος . καὶ τὸν ὀβελίσκον δὲ , φησὶν , ὅστις ἐστὶν ἠμῶν δόρυ ,
τρίμμα μετ ' αὐτοῦ . ὄπτα δ ' ἀμφ ' ὀβελίσκον ἑλὼν ὑπογάστριον αὐτοῦ . ΤΕΥΘΙΣ . Ἀριστοτέλης εἶναί φησι
6423861 Θαλασσιον
μενεῖ οἷόν ἐστιν . [ Πρὸς βεβρωμένους ὀδόντας . ] Θαλάσσιον σκορπίον λευκὸν θὲς ἐπ ' ἀνθράκων , χερσαῖον δὲ
κἂν τύχωμεν , οὐδὲν ἀηδὲς πεπονθέναι φήσομεν . Οἶσθά που Θαλάσσιον , ἐν ᾧ μοι τὰ μέγιστα : τί γὰρ
6417508 ἐξελκυϲομεν
δακτύλοιϲ ἐπιλαβόμενοι τῇδε κἀκεῖϲε καί ποτε καὶ κατὰ περιαγωγὴν κινοῦντεϲ ἐξελκύϲομεν καὶ μετὰ τὴν κομιδὴν πτύγμα δεύϲαντεϲ ὀξυκράτῳ καὶ ἐπιθέντεϲ
μήληϲ πυρῆνοϲ ῥαφαῖϲ πρὸϲ ἀλλήλαϲ ζυγώϲομεν , ἔπειτα τὸν πυρῆνα ἐξελκύϲομεν οὔτε τὸν περιτόναιον ἀποκόπτοντεϲ οὔτε τὸν δίδυμον ἀναβάλλοντεϲ οὔτε
6415908 οὐραγον
τὸν μετ ' αὐτόν , τουτέστι τὸν δεύτερον καὶ τὸν οὐραγὸν κοντάτους εἶναι , τοὺς δὲ λοιποὺς πάντας , τοὺς
λοχαγὸν τὸν κράτιστον τοῦ λόχου εἶναι , ἀλλὰ καὶ τὸν οὐραγὸν οὐ πολύ τι ἀποδέοντα ἐπιλέγεσθαι : πολλὰ γὰρ καὶ
6413290 σκιερον
ὀλίγων τῶν αὐγῶν προσπιπτουσῶν καὶ διασπωμένου τοῦ φωτός , τὸ σκιερὸν μέλαν φαίνεται . καὶ τὸ νέφος ὅταν ᾖ πυκνὸν
κύκλος ἐν τῇ σελήνῃ ὁ παρὰ τὸν διορίζοντα τό τε σκιερὸν καὶ τὸ λαμπρὸν ὁ ΗΘΚ . καὶ ἐπεὶ διχοτόμου
6408207 Ὠξον
Ἀνιέσεις μὲν παρὰ τὸν Ἰαξάρτην , Κιῤῥᾶδαι δὲ παρὰ τὸν Ὦξον , καὶ μεταξὺ τοῦ τε Καυκάσου ὄρους καὶ τοῦ
Σογδιανοὺς τὸν Ἰαξάρτην , καὶ Σογδιανοὺς δὲ καὶ Βακτριανοὺς τὸν Ὦξον , μεταξὺ δὲ Ὑρκανῶν καὶ Ἀρίων Ταπύρους οἰκεῖν :
6378685 κενεωνα
Περὶ δὲ τὰς πεντεκαίδεκα , ἀλγήματα γαστρὸς κατὰ σπλῆνα καὶ κενεῶνα ἀριστερόν : θερμῶν προσθέσιες ἧσσον ἢ ψυχρῶν ξυνέφερον :
Περὶ δὲ τὰς πεντεκαίδεκα γαστρὸς ἄλγημα κατὰ σπλῆνα καὶ κατὰ κενεῶνα ἀριστερόν : θερμῶν προσθέσιες ἧσσον ἢ ψυχρῶν προσωφέλεον :
6371202 κωνῳ
μέγιστον κύκλον . ποιείτω τὸν ΕΓΔΖ , ἐν δὲ τῷ κώνῳ εὐθείας τὰς ΑΓ , ΑΔ , ΔΓ : ὁ
, ΒΕΖ τρίγωνα ἴσα ἀλλήλοις ἐστίν . ἔστω τῷ ΑΗΓΔ κώνῳ ἰσοϋψὴς ὁ ΚΘΕΖ κῶνος . ἐπεὶ οὖν , ὡς
6369958 Τασσω
πλευρὰ διζ / , αὐτὸς ἄρα ἔσται ξδ͵δϠιγ / . Τάσσω πάλιν τὸν ἐν τῷ ἐμβαδῷ ʂ α , τὴν
ἔστιν δὲ τοῦτο ῥᾴδιον καὶ ἔστιν ὁ μβ δא . Τάσσω οὖν τὸν αον τῶν ἄκρων Μο μβ δא ,
6368714 Σαλμωνεα
τοὺς θεοὺς πάντας ἀπέρριψεν ἀπὸ τοῦ θεσπεσίου βηλοῦ καὶ τὸν Σαλμωνέα ἀντιβροντῶντα πρῴην κατεκεραύνωσε καὶ τοὺς ἀσελγεστάτους ἔτι καὶ νῦν
πη ἔχει ; ἢ οὐχ ὁρᾷς , ὡς οὐδὲ τὸν Σαλμωνέα εἴκασαν οἱ ποιηταὶ αὐτῷ , καίτοι κερανοὺς ἀφιέντα ,
6363849 Λακυδην
, παρατιθέμενον ἱστορεῖν Ἀρκεσίλαον τὸν Πιταναῖον ἐν οἷς ἔφασκε πρὸς Λακύδην τὸν Κυρηναῖον . . : τοῦτο τὸ βιβλίον Ἀνδρόνικος
. ἀποβὰς δὲ τῆς νεὼς ἀνέβαινον εἰς ἄστυ καὶ παρὰ Λακύδην τὸν ξένον : ὃ δὲ τυχὸν ἴσως , ἐπεὶ
6360171 Ἀργεστην
μάρτυρας Θρασυάλκην τε καὶ τὸν ποιητὴν αὐτὸν τῶι τὸν μὲν Ἀργεστὴν τῶι Νότωι προσνέμειν ἀργεστᾶο Νότοιο , τὸν δὲ Ζέφυρον
μάρτυρας Θρασυάλκην τε καὶ τὸν ποιητὴν αὐτὸν τῶι τὸν μὲν Ἀργεστὴν τῶι Νότωι προσνέμειν ἀργεστᾶο Νότοιο , τὸν δὲ Ζέφυρον

Back