ΒΔΕ κύκλον τῇ ΑΓ εὐθείᾳ μὴ μείζονι οὔσῃ τῆς τοῦ ΒΔΕ κύκλου διαμέτρου ἴση εὐθεῖα ἡ ΒΔ : καὶ ἐπεζεύχθωσαν | ||
ἐπεὶ τὸ ὑπὸ τῶν ΑΔΓ ἴσον ἐστὶν τῷ ὑπὸ τῶν ΒΔΕ , ἀνάλογον ἄρα ἐστὶν ὡς ἡ ΑΔ πρὸς τὴν |
μήτε καλαθοειδῶς τῆς σκιᾶς πίπτειν δυναμένης , ἀλλὰ τὸν λεγόμενον κῶνον ἀποτελούσης . Ὃ δὴ πρῶτος Ὅμηρος ἐκ μιᾶς λέξεως | ||
ἂν ὑπεραίροι , οὔτε ἐλλείποι . ἐναρμόσει ἄρα εἰς τὸν κῶνον , καὶ περιληφθήσεται ὑπὸ τοῦ κώνου τοῦ περιλαμβάνοντος τὴν |
ἔλαττόν ἐστιν , τὸ ΕΖΓ ἄρα τρίγωνον πρὸς τὸν ΕΖΗ τομέα μείζονα λόγον ἔχει ἤπερ τὸ ΕΖΔ τρίγωνον πρὸς τὸν | ||
περιφέρειαν , τουτέστιν ἤπερ ὁ ΑΒΓ κύκλος πρὸς τὸν ΒΔΕ τομέα , ἕξει δηλονότι καὶ ὁ ΑΒΓ κύκλος πρὸς τὸν |
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
ὁρίζοντές εἰσιν οἱ ΕΜΖ ΑΒΓ τούτῳ μόνον διαφέροντες τῷ τὸν ΑΒΓ πρὸς ἀνατολὰς μᾶλλον τετάχθαι ἤπερ τὸν ΕΜΖ , τὰ | ||
: καὶ ἡ ἀπὸ τοῦ Η ἄρα κάθετος ἐπὶ τὸ ΑΒΓ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΟΜΝ ἐπιπέδου . διὰ |
δὲ τῇ τοῦ τετραγώνου πλευρᾷ γεγράφθω μεγίστου κύκλου τμῆμα τὸ ΖΗΘ . καὶ προσαναπεπληρώσθω τό τε ΕΓΗ τεταρτημόριον καὶ τὸ | ||
πρὸς τὸν ΖΗΘ κύκλον καὶ ἐξ οὗ ὃν ἔχει ὁ ΖΗΘ κύκλος πρὸς τὸ ὑπὸ τῶν ΖΒΘ εὐθειῶν καὶ τῆς |
ὁρίζοντι , ὅταν δὲ κατὰ τὸ Ο , δύνει τῷ ΔΒΓ ὁρίζοντι . Τὰ ἄρα ἀπλανῆ ἄστρα , ὅσα ἐστὶ | ||
ΠΞ : μεσημβρινὸς γάρ ἐστιν ὁ ΔΑΠ ἐν ἑκατέρῳ τῶν ΔΒΓ ΑΒΓ ὁριζόντων : λοιπὴ ἄρα ἡ ΜΝ ἴση ἐστὶν |
ΕΖ ὕψος . λέγω , ὅτι ἴσος ἐστὶν ὁ ΑΒΞ κῶνος ἢ κύλινδρος τῷ ΓΘΔ κώνῳ ἢ κυλίνδρῳ . πάλιν | ||
ὁ ὑπὸ τοῦ ΒΓΖ τριγώνου γινόμενος ἀπὸ τῆς αὐτῆς βάσεως κῶνος , ὕψος ἔχων τήν τε ΒΔ καὶ ἅπαξ τὴν |
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
ΔΖΕ μείζονι περιφερείᾳ , ἡ δὲ ΑΗΒ ἐλάττων περιφέρεια τῇ ΔΘΕ . Εἰλήφθω γὰρ τὰ κέντρα τῶν κύκλων τὰ Κ | ||
ὑπὸ ΑΗΒ πρὸς τὸ ὑπὸ ΒΓΗ , οὕτως τὸ ὑπὸ ΔΘΕ πρὸς τὸ ὑπὸ ΕΖΘ . Ἐπεὶ γάρ ἐστιν ὡς |
, ἔστιν ἄρα ὡς ὁ ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον | ||
ἐπὶ τὴν τοῦ κύκλου περιφέρειαν διὰ τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ |
τῆς ΖΘ τετράγωνον , οὕτως ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον , ἀλλὰ μὴν καὶ ὡς τὸ ἀπὸ τῆς | ||
ΕΖΗΘ πυραμίς : καὶ ἡ ΑΒΓΔ ἄρα πυραμὶς πρὸς τὴν ΕΖΗΘ πυραμίδα τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν |
ἡ ΗΒ ἐλάττων τῆς ἐκ τοῦ κέντρου , τὸ ἄρα ΗΓΔ οὐκ ἔσται μέγιστον τῶν παραλλήλους αὐτῷ βάσεις ἐχόντων : | ||
καὶ τὸ ΑΓΔ τοῦ ΑΕΖ , εἰ δὲ μεῖζον τὸ ΗΓΔ τοῦ ΗΕΖ , μεῖζον καὶ τὸ ΑΓΔ τοῦ ΑΕΖ |
ἄρα πρὸς τὴν ΕΔ μείζονα λόγον ἔχει ἤπερ ὁ ΕΗΘ τομεὺς πρὸς τὸν ΕΖΘ τομέα . ὡς δὲ ὁ τομεὺς | ||
κέντρου τοῦ κύκλου διπλάσιόν ἐστιν τοῦ τομέως . Ἔστω γὰρ τομεὺς κύκλου ὁ ΑΒΓ . καὶ τοῦ ὑπὸ τῆς ΑΕΒ |
καὶ ἤχθωσαν αὐτῆς δύο συζυγεῖς διάμετροι , ὀρθία μὲν ἡ ΑΕΓ , πλαγία δὲ ἡ ΒΕΔ , καὶ παρὰ τὰς | ||
ὁ ΑΒΓΔ περὶ κέντρον τὸ Ε καὶ διάμετρος αὐτοῦ ἡ ΑΕΓ ἐκβεβλημένη ἐπὶ τὸ Ζ κέντρον τοῦ διὰ μέσων τῶν |
τὰ αὐτά . ὁμοίως δὴ δείξομεν ὅτι ἐστὶν ὡς ὁ ΛΘΕ τομεὺς πρὸς τὸν ΔΘΕ , οὕτως ὁ ΔΘΕ τομεὺς | ||
ΛΘΕ , πρὸς τὴν ὑπὸ ΔΘΕ , τουτέστιν ἤπερ ὁ ΛΘΕ τομεὺς πρὸς τὸν ΔΘΕ , ὡς δὲ ὁ ΛΘΕ |
πλευρὰς ἀνάλογον . ὅμοιον ἄρα ἐστὶ τὸ ΑΒΓΔΕ πολύγωνον τῷ ΘΚΛΜΝ πολυγώνῳ . εἰς ἄρα τὸν δοθέντα κύκλον τὸν ΘΚΛΜΝ | ||
αἱ τῶν τριγώνων ἴσαι εἰσίν . τὰ ἄρα ΑΒΓΔΕ , ΘΚΛΜΝ πολύγωνα ἴσας ἔχει τὰς γωνίας κατὰ μίαν καὶ τὰς |
Ξ τῇ πρὸς τῷ Ε , περιεχομένῃ δὲ ὑπὸ τῶν ΓΕΔ , ἐλάσσων ἄρα φανήσεται ἡ ΓΔ τῆς ΗΘ . | ||
τῇ ὑπὸ ΔΗΓ , καὶ συναμφότεραι ἄρα ἥ τε ὑπὸ ΓΕΔ καὶ ἡ ὑπὸ ΓΗΒ ἴσαι εἰσὶν τῇ ὑπὸ ΔΕΖ |
ὅτι τὸ ΓΔ ἔν τινι ἀποστήματι γενόμενον οὐκέτι ὁραθήσεται . γεγενήσθω γὰρ τὸ ΓΔ ἐν τῷ μεταξὺ διαστήματι τῶν ὄψεων | ||
ΥΑ : ἡ δὲ ΟΡ πρὸς μείζονα τῆς ΑΠ . γεγενήσθω δέ , καὶ ἔστωσαν αἱ ΓΕ , ΓΝ , |
ΑΗ ἴση : ὡς ἄρα ὁ ΑΗΓΔ κῶνος πρὸς τὸν ΒΘΕΖ , οὕτως ὁ ΒΘ ἄξων πρὸς τὸν ΑΗ : | ||
τὸ ΒΕΖ τρίγωνον πρὸς τὸ ΚΓΔ . ἔχει δὲ ὁ ΒΘΕΖ κῶνος πρὸς τὸν ΚΗΓΔ κῶνον ἰσοϋψῆ διπλασίονα λόγον ἤπερ |
ἀπὸ ΗΓ ἐστιν ἴσον , καί ἐστιν ὡς τὸ ὑπὸ ΗΘΖ πρὸς τὸ ἀπὸ ΘΕ , ἡ ὀρθία πρὸς τὴν | ||
καί ἐστιν ὁ τοῦ ΕΘΠ πόλος μεταξὺ τῶν ΒΓ , ΗΘΖ , μείζων ἐστὶν ἡ ΠΥ περιφέρεια τῆς ΥΝΞ περιφερείας |
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι | ||
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ |
περιεχόντων τὴν πυραμίδα , ἧς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον , κορυφὴ δὲ τὸ Ν σημεῖον , ἓν τρίγωνον | ||
[ . ] παρελάβομεν , διὰ τὸ ἴσον ὑποκεῖσθαι τὸ πολύγωνον τῶι κύκλωι ἐφαρμόζον αὐτῶι , ἐσόμεθα καὶ κύκλωι ἴσον |
ὡς ἄρα τὸ ΔΒΕ τρίγωνον πρὸς τὸ ΗΘΙ , τὸ ΔΒΕ πρὸς τὸ ΓΒΘ . ἴσον ἄρα ἐστὶ τὸ ΗΘΙ | ||
ΒΕ , ΔΓ , ΖΗ : ἴσον ἄρα ἐστὶν τὸ ΔΒΕ τρίγωνον τῷ ΔΓΕ τριγώνῳ . κοινὸν προσκείσθω τὸ ΔΑΕ |
ἐκ τῶν ΑΓ Ε Ζ τρίγωνον συστήσασθαι . συνεστάτω τὸ ΑΓΔ * * * [ καὶ φανερὸν ὅτι εἰ μὲν | ||
τομεὺς τοῦ ΑΓΕ τομέως : μείζονα ἄρα λόγον ἔχει ὁ ΑΓΔ τομεὺς πρὸς τὸ ΑΒΓ τρίγωνον ἤπερ ὁ ΑΓΕ τομεὺς |
κύκλος πρὸς τὸν Θ κύκλον , τουτέστιν ἡ βάσις τοῦ ΑΗΓΔ κώνου πρὸς τὴν βάσιν τοῦ ΒΘΕΖ κώνου , διπλασίονα | ||
πρὸς τὸν ΒΘΕΖ κῶνον : ἰσοϋψεῖς γάρ : καὶ ὁ ΑΗΓΔ ἄρα κῶνος πρὸς τὸν ΒΘΕΖ κῶνον διπλασίονα λόγον ἔχει |
χωλῶν δρόμος : τὸ ἄδηλον δηλοῖ . Ζητῶν Ἑρμῆν γλύψαι Κέρκωπα ἔγλυψα . Ἣ Ζεὺς ἢ Χάρων : ἢ εὐδαίμονος | ||
πρὸς Κῦρον : ἦν δὲ Ἐφέσιος : οἱ δὲ τὸν Κέρκωπα τὸν ἕτερον . Διότιμος Ἡρακλέους ἐν ἄθλοις : Κέρκωπές |
καὶ οἴνου συνεψήσας , ἕως πάχος σχῇ σύμμετρον , εἰς μοτὸν χρίων ἐπιτίθει . Ῥοιὰν γλυκεῖαν ἑψήσας ἐν οἴνῳ καὶ | ||
καὶ γλίσχρον τῷ δακτύλῳ ψαυόμενον , καὶ ὀλίγον , ἐντιθέναι μοτὸν κασσιτέρινον κοῖλον : ἐπὴν δὲ παντάπασι ξηρανθῇ ἡ κοιλίη |
πρὸς τὸν ΚΗΓΔ : ὁ ἄρα ΑΗΓΔ κῶνος πρὸς τὸν ΚΗΓΔ διπλασίονα λόγον ἔχει ἤπερ ὁ ΒΘΕΖ πρὸς τὸν ΚΗΓΔ | ||
πρὸς τὸν ΚΗΓΔ : ὁ ἄρα ΑΗΓΔ κῶνος πρὸς τὸν ΚΗΓΔ τετραπλασίονα λόγον ἔχει ἤπερ τὸ ΒΕΖ τρίγωνον πρὸς τὸ |
ἔσται τῷ εὐθυγράμμῳ τῷ συγκειμένῳ ἐκ τῶν τριῶν τριγώνων τῶν ΒΖΗ ΒΖΚ ΕΚΖ . τὰ γὰρ ἀπὸ τῶν εὐθειῶν ἐφ | ||
δὲ ὑπὸ ΒΑΕ ἴση ἐστὶν τῇ ἐκτὸς τετραπλεύρου τῇ ὑπὸ ΒΖΗ : καὶ ἡ ὑπὸ ΘΖΒ ἄρα γωνία ἴση ἐστὶν |
τῷ ΑΔΕ τριγώνῳ , τὸ ἄρα ΑΒΓ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΑ πρὸς ΑΔ | ||
τὸ ἀπὸ ΑΔ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον . Ἐπεὶ γὰρ ὅμοιόν ἐστιν τὸ ΑΒΓ τρίγωνον |
τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ | ||
τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ : |
μολύβδῳ τὸν κώδωνα τῆς σάλπιγγος πληρώσας ” . Γ τὸν κώδωνα τῆς σάλπιγγος συμβουλεύει αὐτῷ πωμάσαι μολύβδῳ καὶ ἐν μέσῳ | ||
. Λάθρῃ κύων ἔδακνε : τῷ δὲ χαλκεύσας ὁ δεσπότης κώδωνα καὶ προσαρτήσας πρόδηλον εἶναι μακρόθεν πεποιήκει . ὁ κύων |
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
πρὸς τὴν Θ , οὕτως ὁ ΑΗΓΔ κῶνος πρὸς τὸν ΚΘΕΖ , ὁ ἄρα ΑΗΓΔ κῶνος πρὸς τὸν ΒΘΕΖ διπλασίονα | ||
τὸ ΚΕΖ : ὡς ἄρα ὁ ΑΗΓΔ κῶνος πρὸς τὸν ΚΘΕΖ κῶνον , οὕτως ὁ ΚΘΕΖ πρὸς τὸν ΒΘΕΖ . |
ΜΝΞ ἴσον ἐστὶ τῷ ὑπὸ γῆν τοῦ ΟΕΡΠ κύκλου τῷ ΟΠΡ . πάλιν ἐπεὶ αἱ ΖΘ , ΕΗ ἴσαι τε | ||
ΝΖ περιφέρεια τῇ ΖΠ περιφερείᾳ : οἱ ἄρα ΜΝΞ , ΟΠΡ κύκλοι ἴσον ἀπέχουσιν ὁποτερασοῦν τῶν διχοτομιῶν . οἱ δὲ |
τῶν πόλων τῶν παραλλήλων . λέγω , ὅτι καὶ ὁ ΒΘΔ κύκλος διὰ τῶν πόλων ἐστὶ τῶν παραλλήλων , τουτέστιν | ||
ὑπὸ ΛΑΓ , ἥ ἐστιν ἴση συναμφοτέραις ταῖς ὑπὸ ΒΑΓ ΒΘΔ . καὶ ἔστι τοῦτο καθολικώτερον πολλῷ τοῦ ἐν τοῖς |
ὡς ἄρα τὸ ΑΒΕ πρὸς τὸ ΖΗΛ , οὕτως τὸ ΒΕΓ πρὸς τὸ ΗΛΘ καὶ τὸ ΕΓΔ πρὸς τὸ ΛΘΚ | ||
ὑπὸ τῶν ΑΕΔ τῷ ὑπὸ τῶν ΑΓΔ καὶ τῷ ὑπὸ ΒΕΓ . Τετμήσθω ἡ ΒΓ δίχα κατὰ τὸ Ζ σημεῖον |
οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ κύκλον . Οἱ τῶν αὐτῶν ἐφαπτόμενοι μέγιστοι κύκλοι ὧν | ||
εἰσι τῶν ἀληθινῶν . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς |
πλέον αὐτοῦ ἐν ἀγγείῳ τινὶ ἐκκρίναντεϲ ἀνατείναντέϲ τε ἀγκίϲτροιϲ τὸν ἐλυτροειδῆ περιέλωμεν ὅλον , μάλιϲτα τὸ λεπτότατον αὐτοῦ μέροϲ . | ||
ἕτερον ἢ χυμοί τινες γλίσχροι τε καὶ παχεῖς ἐπὶ τὸν ἐλυτροειδῆ χιτῶνα κατασκήψαντες , ἢ καὶ αὐτὸ τὸ ὄσχεον , |
οὖν παράλληλός ἐστιν ἡ ΑΔ τῇ ΕΓ , ἡ ὑπὸ ΑΔΓ γωνία τῇ ὑπὸ ΕΓΔ ἴση ἐστί . δοθεῖσα δὲ | ||
κέντρον τὸ Β διὰ τῶν Α Γ κύκλος γεγράφθω ὁ ΑΔΓ , καὶ ἐκβε - βλήσθω ἡ ΑΒ ἐπὶ τὸ |
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ | ||
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ |
ἐδείχθη δὲ καὶ ἡ ΘΣ τῆς ΝΒ διπλῆ . καὶ συναμφότεραι ἄρα αἱ ΘΣ , ΠΡ τῆς ΝΒΜ ὅλης διπλασίους | ||
δ ' ἐπὶ τοῦ τριγώνου τῆς βάσεως αἱ εὐθεῖαι συνίστανται συναμφότεραι μείζους τῶν ἐκτὸς αἱ ἐντός , ἀλλὰ καὶ ἐπὶ |
ὡς δέ τινες , ὑποσχομένης ποιήσειν ἀθάνατον , καὶ τὸν ἧλον ἐξελούσης , διαῤῥυέντος τοῦ ἰχῶρος σὺν ὅλῳ τῷ αἵματι | ||
καρύα , οἱονδήποτε κλάδον δάκε , καὶ ξηρανθήσεται . ἢ ἧλον πεπυρωμένον εἰς τὴν ῥίζαν ἔμπηξον οἱουδήποτε δένδρου . ἢ |
τὸ ΒΓ διὰ παντὸς φαίνεται τοῦ ὄμματος μεθισταμένου ἐπὶ τῆς ΒΓΔ περιφερείας . μγʹ . Ἔστι τις τόπος , οὗ | ||
τῇ ὑπὸ ΒΓΖ . δύο δὴ τρίπλευρά ἐστιν τό τε ΒΓΔ καὶ τὸ ΒΓΖ τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς |
ὥσπερ οἱ δεδιότες , ἀλλ ' ὡς εἰκὸς ἦν τὸν ἀγωνιῶντα μὲν ὑπὲρ τῆς ἑαυτοῦ δόξης , θαρροῦντα δὲ τῷ | ||
μὴ ὥσπερ σὺ χαυνοῦντα καὶ διαθρύπτοντα . κατιδὼν οὖν αὐτὸν ἀγωνιῶντα καὶ τεθορυβημένον ὑπὸ τῶν λεγομένων , ἀνεμνήσθην ὅτι καὶ |
χρὴ ὑπώσαντα τὴν κεφαλὴν τοῦ ξύλου ὑπὸ τὴν μασχάλην ὡς ἐσωτάτω μεσηγὺ τῶν πλευρέων καὶ τῆς κεφαλῆς τοῦ βραχίονος , | ||
, καὶ εἶθ ' οὕτως προστίθεται . ἐντιθέσθω δὲ ταῦτα ἐσωτάτω περὶ τὸ στόμιον τῆς μήτρας . Ἄλλο . Κηκίδων |
, παρὰ τὸν πυρόν . ὁ δὲ Ἀπίων τὰ μὲν πύρνα σιτία , τὸν δὲ πύρνον ψωμόν . ῥήτρην ξ | ||
Ἀθήνη ἄγχι παρισταμένη Λαερτιάδην Ὀδυσῆα ὤτρυν ' , ὡς ἂν πύρνα κατὰ μνηστῆρας ἀγείροι γνοίη θ ' οἵ τινές εἰσιν |
κγʹ πρόβλημά ἐστι σύστασιν ἀπαιτοῦν γωνίας ἴσης ἄλλῃ δοθείσῃ γωνίᾳ εὐθυγράμμῳ πρὸς τῇ δοθείσῃ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ δοθέντι | ||
τῷ δοθέντι τριγώνῳ ἴσον παραλληλόγραμμον παραβαλεῖν ἐν τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἡ ΑΒ , |
ἡ Η , τὸ ὑπὸ τῶν ΑΖΓ τοῦ ὑπὸ τῶν ΒΖΕ ὑπερέχει τῷ ὑπὸ τῶν Η ΔΖ . Ἐπεὶ γὰρ | ||
ΑΒΓ περίμετρος αὐτοῦ πρὸς τὴν ΒΖ περιφέρειαν ἐλάσσονα οὖσαν τῆς ΒΖΕ περιφερείας . λέγω δὴ ὅτι οὐδὲ πρὸς μείζονα τῆς |
ἓν μὲν παιδικῶν : καὶ τὰ λοιπά . ἀβόλοις . ἄβολος , νέος οὐδέπω γνώμονα ἔχων . γνώμονα δ ' | ||
' οὐδ ' ἂν εἰπεῖν τὸ μέγεθος δύναιτό τις . ἄβολος : νέος οὐδέπω γνώμονα ἔχων . γνώμονα δὲ ἔλεγον |
ἀλλὰ καὶ τὸν καταπαγέντα ἐκκροῦσαι πλήξαντα κατὰ τὴν κεφαλὴν ἑτέρῳ παττάλῳ : ὅθεν καὶ ἡ παροιμία ἥλῳ τὸν ἧλον , | ||
παττάλῳ : ὅθεν καὶ ἡ παροιμία ἥλῳ τὸν ἧλον , παττάλῳ τὸν πάτταλον . ἔνιοι δὲ τῶν Δωριέων ποιητῶν τὸν |
τὰ ἄρα τρίγωνα , ὧν βάσεις μὲν αἱ ΘΚ , ΟΞ , ὕψη δὲ αἱ ΛΑ , ΑΝ , ἴσα | ||
. ἐπεὶ οὖν δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΟΞ , ΞΠ ἴσαι εἰσίν , καὶ βάσις ἡ ΑΓ |
κύλινδρος πρὸς τὸν ΖΔ κύλινδρον . Τῶν ἴσων κώνων καὶ κυλίνδρων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσι , καὶ ὧν κώνων | ||
. αἱ μὲν οὖν τοῦ στέγους πλευραὶ κατὰ μέσον ἑκάστη κυλίνδρων ὡραΐζονται τμήμασιν , ὁ δὲ κύκλος ἀνειμένος ταῖς αὔραις |
εὐλαβουμένῳ , μὴ προαισθόμενός τις κωλύσῃ : τοὐναντίον μὲν οὖν κωλύσοντά μέ τινα περιῄειν ζητῶν καὶ πολλοῖς ἐξεπίτηδες τὴν περὶ | ||
εὐλαβουμένῳ , μὴ προαισθόμενός τις κωλύσῃ : τοὐναντίον μὲν οὖν κωλύσοντά μέ τινα περιῄειν ζητῶν καὶ πολλοῖς ἐξεπίτηδες τὴν περὶ |
τῇ ὑπὸ ΔΖΕ γωνίᾳ . ἔστιν δὲ καὶ ἡ ὑπὸ ΑΖΓ γωνία τῇ ὑπὸ ΒΖΕ γωνίᾳ : ὅλη ἄρα ἡ | ||
καὶ ἐπεζεύχθωσαν αἱ ΔΚ ΚΒ ΚΕ ἐπεὶ οὖν τὸ ὑπὸ ΑΖΓ μετὰ τοῦ ἀπὸ ΖΚ ἴσον ἐστὶν τῷ ἀπὸ ΑΚ |
ἐγχωριαν θεὸν ἐπικαλεῖται αὐτὴν . . ? . ἀνίαχεν . ἐβόησας * μετὰ τῶν στηθῶν καὶ τὴν κεφαλὴν ἐκτύπησεν : | ||
γάρ , ὡς ἐπίστασαι καλῶς , ἐμέ τε καὶ Θαλάσσιον ἐβόησας , ἀπείχοντ ' ἂν ἡμῶν οἱ νῦν βάλλοντες : |
ΟΜ ἴση καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ ΖΕΘ ἴση τῇ ὑπὸ ΝΟΜ . ὅλη ἄρα ἡ ὑπὸ | ||
σημείῳ τῷ Ε τῇ ὑπὸ ΗΕΖ γωνίᾳ ἴση ἡ ὑπὸ ΖΕΘ , καὶ ἐπεζεύχθω ἡ ΖΘ . ἐπεὶ οὖν ἴση |
: τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ : | ||
κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου |
αὐτὰ κατασκευάσωμεν , ἔσται ὡς ὁ ΔΒΓ τομεὺς πρὸς τὸν ΕΒΘ , οὕτως ὁ ἀπὸ τοῦ ΡΦ παραλληλογράμμου κύλινδρος περὶ | ||
ἐπεὶ οὖν μείζονα λόγον ἔχει τὸ ΕΒΖ τρίγραμμον πρὸς τὸ ΕΒΘ τρίγραμμον ἤπερ πρὸς τὸν ΕΑΒ τομέα , καὶ συνθέντι |
βάσιν . λέγω , ὅτι τὸ ΑΓΔ τρίγωνον πρὸς τὸ ΒΕΖ τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΖ πρὸς τὴν ΓΔ | ||
τὴν ΕΖ , οὕτως τὸ ΚΓΔ τρίγωνον , τουτέστι τὸ ΒΕΖ τρίγωνον , πρὸς τὸ ΑΓΔ τρίγωνον : καὶ ὡς |
ΘΚ ἐστιν ἴση ] , ἰσόπλευρον ἄρα ἐστὶ τὸ ΖΗΘΚ τετράπλευρον . λέγω δή , ὅτι καὶ ὀρθογώνιον . ἐπεὶ | ||
ἐστιν , ὡς μὲν τὸ ὑπὸ ΚΖΕ πρὸς τὸ ΖΞ τετράπλευρον , τὸ ἀπὸ ΑΓ πρὸς ΓΠΒ , διὰ δὲ |
. Δημήτριος δὲ νησίον εἶναί φησι καὶ Τιμοσθένης λέγων ” Ἀρτάκη τοῦτο μὲν ὄρος ἐστὶ τῆς Κυζικηνῆς , τοῦτο δὲ | ||
αὐτοφυοῦς ὅρμοιο , κακῷ δ ' ἐνέκυρσαν ἑτοίμῳ . : Ἀρτάκη , πόλις Φρυγίας , ἄποικος Μιλησίων . . . |
τοῦ ἄξονος παραλληλόγραμμον τὸ ΘΛ , ἔσται καὶ ἐν τῷ κυλίνδρῳ τομή , ἧς διάμετρός ἐστιν ἡ ΖΕ . ὁμοίως | ||
ἄρα ὁ ΑΒΖ κῶνος ἢ κύλινδρος τῷ ΓΔΘ κώνῳ ἢ κυλίνδρῳ : ὅπερ ἔδει δεῖξαι . Δύο κύκλων περὶ τὸ |
δέρμα : εἶτα μετὰ τὴν ἔκπτωϲιν τῆϲ ἐϲχάραϲ ἐκγλυφομένου τῷ κυαθίϲκῳ τῆϲ μηλωτρίδοϲ τοῦ χιτῶνοϲ τοῦ περιέχοντοϲ τὸ ὑγρόν . | ||
ϲμιλίῳ ϲτενῷ κατὰ κορυφὴν διαιροῦντα τὸ δέρμα , ἔπειτα ἐκγλύφειν κυαθίϲκῳ μηλωτρίδοϲ τὸν ἐγκείμενον ὄγκον . εἶτα χαλκῷ κεκαυμένῳ λείῳ |
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
ἰχθὺν πολλῶν ὀνομασιῶν τετυχηκέναι : καλεῖσθαι γὰρ καὶ βάκχον καὶ ὀνίσκον καὶ χελλαρίην . οἱ μὲν οὖν μείζονες αὐτῶν ὀνομάζονται | ||
, ἐπ ' ὀνίσκῳ δῆσον τὸν πόδα : καὶ τὸν ὀνίσκον * * * σοῦ στρέφοντος ἡ τάσις καὶ ἡ |
ἐν Χρυσίππῳ λέγει πρόσαγε τὸν πῶλον ἀτρέμα , προσλαβών τὸν ἀγωγέα βραχύτερον : οὐχ ὁρᾷς ὅτι ἄβολός ἐστιν ; τὴν | ||
, λαλῆσαι μηδενί . Πρόσαγε τὸν πῶλον ἀτρέμα προσλαβὼν τὸν ἀγωγέα βραχύτερον : οὐχ ὁρᾷς ὅτι ἔτ ' ἄβολός ἐστι |
ΘΗ , ΖΗ πρὸς τὴν ΗΑ . ἔστω τῷ ὑπὸ ΘΗΖ ἴσον τὸ ὑπὸ ΗΑ , Κ . καὶ ἐπεί | ||
τῇ ὑπὸ τῶν ΘΖΓ ἐστὶν ἴση : καὶ ἡ ὑπὸ ΘΗΖ ἄρα τῇ ὑπὸ ΘΖΗ ἐστὶν ἴση . καὶ κάθετος |
καὶ τὸν εὐκτὸν τῆς νίκης ἀναδήσασθαι στέφανον . Τινὲς δὲ κύρτῳ ζῶσαν ἐμβάλλοντες θήλειαν σκάρον , πλείστους ἄλλους ἀγρεύουσι προσδήσαντες | ||
τὸ σχῆμα : περιτίθησι γὰρ ὁ ποιητὴς ὥσπερ τῷ ἀψύχῳ κύρτῳ ἦθος , εἰπὼν , ὅτι φέρει ὁ κύρτος τῷ |
ΑΕΗ τρίγωνον τῷ ΛΔ τετραπλεύρῳ καὶ τὸ ΒΛΓ τρίγωνον τῷ ΑΓΘ . ἐπεὶ οὖν ἡ ΖΚ τῇ ΚΔ ἐστιν ἴση | ||
ΑΘ ὄψις τῇ ΓΚ ὄψει , ἴση ἐστὶ καὶ ἡ ΑΓΘ περιφέρεια τῇ ΓΘΚ περιφερείᾳ . ὥστε καὶ ἡ Μ |
δοθείσῃ ἐλλείψει τοῦ δοθέντος κώνου : ὅπερ ἔδει ποιῆσαι . Κυλίνδρου δοθέντος καὶ ἐλλείψεως ἐν αὐτῷ εὑρεῖν κῶνον τεμνόμενον τῇ | ||
, καί εἰσιν ὅμοιαι ἀλλήλαις : ὅπερ ἔδει δεῖξαι . Κυλίνδρου δοθέντος εὑρεῖν κῶνον καὶ τεμεῖν ἀμφοτέρους ἑνὶ ἐπιπέδῳ ποιοῦντι |
χώρας ἔστε ἐπὶ θάλασσαν σατράπην ἀπέδειξεν [ Ὀξυάρτην καὶ ] Πείθωνα ξὺν τῇ παραλίᾳ πάσῃ τῆς Ἰνδῶν γῆς . Καὶ | ||
ἐπιταχῦναι πρὸς τοὺς βασιλέας . οὔπω δὲ καταλαβόντος ἡ Εὐρυδίκη Πείθωνα καὶ Ἀρριδαῖον μηδὲν ἄνευ αὑτῆς ἠξίου πράττειν . οἱ |
δυσὶν ὀρθαῖς ἴσαι εἰσίν : καὶ αἱ ὑπὸ ΑΓΒ , ΓΒΑ , ΓΑΒ ἄρα δυσίν ὀρθαῖς ἴσαι εἰσίν . Παντὸς | ||
τῶν ΔΗΕ , περὶ δὲ ἄλλας γωνίας τὰς ὑπὸ τῶν ΓΒΑ , ΕΔΗ τὰς πλευρὰς ἀνάλογον , τῶν δὲ λοιπῶν |
ΜΟ , ΕΣ . καί ἐστιν ἡ μὲν ΣΕ τῇ ΣΘ ἴση , ἡ δὲ ΣΘ τῇ ΟΠ : ἴσον | ||
ὁμοίως δὴ δείξομεν , ὅτι καὶ ἡ ΝΛ περιφέρεια τῇ ΣΘ ἐστιν ἴση : ἴση ἄρα ἐστὶν ἡ μὲν ΝΟ |
Σωκράτους , ὅτι ὡς πρὸς τὰς προηγουμένας καὶ ἀληθεῖς καὶ ἀναγωγοὺς ἐνεργείας τοῦ ἔρωτος οὐδὲν ὑγιὲς οὐδὲ ἀληθὲς εἶχεν οὐδ | ||
. Πᾶσα γὰρ ἦν : ἀντὶ τοῦ : εἶχε τὰς ἀναγωγοὺς δυνάμεις . Τὸ δὲ ζεῖ οὖν : ὥσπερ ἐνταῦθα |
ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω , | ||
ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς |
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
, ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη ἄρα τῶν ἀνεσταμένων πυραμίδων μείζων | ||
τὸ ΕΖΗΘ , καὶ ἀνεστάτω ἀπὸ τοῦ ΕΖΗΘ τετραγώνου πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἡ ἄρα ἀνεσταμένη πυραμὶς μεῖζόν ἐστιν |
ἐκβληθῇ , ἀπὸ δὲ τῆς κορυφῆς ἀναχθεῖσα εὐθεῖα παρὰ τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ | ||
τῇ ΑΓ . ἤχθω γὰρ ἀπὸ τοῦ Β παρὰ τεταγμένως κατηγμένην ἡ ΒΖ . ἔστιν ἄρα , ὡς τὸ ὑπὸ |
Πολύκλειτος εἰς λίμνην τινὰ συμβάλλειν τόν τε Χοάσπην καὶ τὸν Εὔλαιον καὶ ἔτι τὸν Τίγριν , εἶτ ' ἐκεῖθεν εἰς | ||
διάβασιν ἀνέζευξεν ἐπὶ πόλεως Βαδάκης , ἣ κεῖται παρὰ τὸν Εὔλαιον ποταμόν . οὔσης δὲ τῆς ὁδοιπορίας ἐμπύρου διὰ τὸ |
εἴρηται , τὸ πρίσμα τὸ ἀνασταθὲν ἀπὸ τοῦ τετραγώνου τοῦ ἐγγραφέντος ἐν τῷ κύκλῳ ἥμισυ τοῦ λοιποῦ πρίσματος , οὐκ | ||
ἐστιν ἡ συγκειμένη ἐκ τῆς ΒΔ τῆς ἀνασταθείσης ἀπὸ τοῦ ἐγγραφέντος ἐν τῷ κύκλῳ τετραγώνου καὶ ἀπὸ τῶν πυραμίδων τῶν |
τῇ Θ , ἰσογώνιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΒΑ πρὸς τὴν | ||
ἄρα ἐστὶν καὶ ἡ ὑπὸ ΑΚΓ , τουτέστιν ἡ ὑπὸ ΔΕΘ , τῇ ὑπὸ ΑΒΓ . ἀλλὰ καὶ ἡ ὑπὸ |
τῇ ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΒΓ , ΒΔ , ΒΖ , ΒΚ , ἔστω δὲ πρότερον ἡ ΒΑ τῆς | ||
' ἡ ΖΒ τετραπλασία τῆς ΒΘ : καὶ ἔστιν τῆς ΒΖ διπλασίων ἡ ΖΓ : λόγος ἄρα τῆς ΖΓ πρὸς |
ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι | ||
ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ |
ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος | ||
μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν |
ἔφην . ὁ δὲ τί οὖν οὐ γράφεις πρὸς τὸν Ἀνδρόνικον ; ἔφη . πείθομαι δὴ καὶ ἐπιστέλλω καὶ λέγω | ||
φυγὴν ἐξορμήσας ἑάλω , ἤδη δὲ καὶ οἱ περὶ τὸν Ἀνδρόνικον ὑπὸ τῶν πολεμίων πλεονεκτούμενοι ἐτράπησαν πρὸς τὸ φεύγειν . |
ὁ ΕΑΒ τομεὺς πρὸς τὸν ΑΗΒ τομέα ἤπερ τὸ ΔΑΒ τρίγραμμον πρὸς τὸν ΑΗΒ τομέα . τὸ δὲ ΔΑΒ τρίγραμμον | ||
ΑΗΒ τομέα , ὁ ἄρα ΔΘΕ τομεὺς πρὸς τὸ ΔΕΚ τρίγραμμον μείζονα λόγον ἔχει ἤπερ ὁ αὐτὸς τομεὺς πρὸς τὸν |
ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν , ἔσται ὡς ὁ | ||
ΥΤ τὴν ΩΨ καὶ τὰς λοιπάς , καὶ ἐπιζεύξαντες τὰς ΡΧ ΥΩ ΤΨ ἕξομεν τὰς τῶν ὀδόντων λοξώσεις . καὶ |
εἴπερ ἀποβλέψειας εἰς τὸν ὑπὲρ τοῦτον ἀέρα , οὐκ ὄψει πεφωτισμένον , εἰ μή τι στερεὸν ἀντιβαίνοι οἷον ὄροφος ἢ | ||
αὐτὸ ἐν τῷ αὐτῷ χρόνῳ θερμόν τε καὶ ψυχρόν , πεφωτισμένον τε καὶ ἀφώτιστον . ὑποκείσθω γὰρ διπηχυαῖον διάστημα , |
βραχύν τινα χρόνον σκεψάμενοι καὶ πρὸς ἀλλήλους διαλεχθέντες , τὸν τραχύτατον ὧν ᾔδεσαν καὶ φαυλότατον ἐξήνεγκαν , ἰδιωτικὸν καὶ τοῦτον | ||
περιϲτερεῶνι ἐν ἡλίῳ ϲὺν ὄξει τριβέντι κατάχριε ἢ ἀλκυόνιον τὸ τραχύτατον καύϲαϲ καὶ λειώϲαϲ ϲὺν ἐλαίῳ ἀπὸ λύχνου κατάχριε ἢ |
ψυχρῷ . εἰ δὲ μὴ παρείη βαλανεῖον , ὑδρελαίῳ ἢ ὑδροροδίνῳ διαβρέξανταϲ ὅλον τὸ ϲῶμα καὶ προανατρίψανταϲ μαλακαῖϲ χερϲὶν ἐπὶ | ||
. εἰ δὲ διακαίοιντο τὴν γαστέρα μετὰ τὸν ἔμετον , ὑδροροδίνῳ ποτίσας αὖθις ἐμεῖν κέλευε . δίδου δὲ , εἰ |
ἐς τὸν νεφρὸν , τελευτῶσι δὲ ἐς τὸν ἀρ - χὸν αὗται ἑκάτεραι . Αἱ δὲ τέταρται ἀπὸ τοῦ ἔμπροσθεν | ||
ἢ τὸν ἰδιώτην λέγει : ἀλλὰ καθόλου τὸν μοι - χὸν ἀπεῖπεν : κἀκεῖνος τὸ αὐτὸ λέγει , ὅτι οὐ |
* ἐσχατιῇ : τελευτῇ * ἐσχατιῇ μογέουσιν : περὶ θάνατον ἐγγίζουσιν * μογέουσιν : μοχθοῦσι κακοπαθοῦσι τρόμον : καὶ γὰρ | ||
οἱ μὲν ἔμπροσθεν τεταγμένοι ἐκ πλαγίου εἰς τὰ βούκουλα ἀλλήλοις ἐγγίζουσιν , οἱ δὲ ὄπισθεν κατὰ νώτου ἀλλήλοις σχεδὸν κεκόλληνται |
ἡ ΗΔ τῇ ΕΖ ἐστὶν ἴση : ἡ ΗΚ ἄρα συναμφοτέρῳ τῇ ΓΔ ΕΖ ἐστὶν ἴση [ ἡ δὲ ΔΖ | ||
τῇ ΑΕ , ἡ δὲ ΚΗ τῇ ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ |
δυσὶν ὀρθαῖς ἴσαι εἰσίν : καὶ αἱ ὑπὸ ΑΓΕ , ΑΓΒ ἄρα δυσὶν ὀρθαῖς ἴσαι εἰσίν . πρὸς δή τινι | ||
: ἡ ἄρα ὑπὸ ΒΓΔ μετὰ τῶν ὑπὸ ΓΒΔ , ΑΓΒ οὐ μείζονές εἰσι δυεῖν ὀρθῶν , ὅ ἐστιν αἱ |
καὶ φλοιὸν λεῖον καὶ παχύν , φύλλον δ ' ἀσχιδὲς προμηκέστερον ἀπίου καὶ ἐπακάνθιζον ἐξ ἄκρου , ῥίζας οὔτε πολλὰς | ||
δὲ τὴν ὀρειπτελέαν . φύλλον δὲ ἀσχιδὲς περικεχαραγμένον ἡσυχῆ , προμηκέστερον δὲ τοῦ τῆς ἀπίου , τραχὺ δὲ καὶ οὐ |
πλαγία πρὸς τὴν ὀρθίαν , ἀλλὰ καὶ ὡς τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ , ἡ πλαγία πρὸς τὴν | ||
ἐπὶ τὸ Α ἐπιζευγνυμένη εὐθεῖα ἐκ τοῦ πόλου ἐστὶ τοῦ ΑΗΒ κύκλου , ἡ δὲ ἀπὸ τοῦ Ξ ἐπὶ τὸ |
, καὶ ἐπιστήμης εὖ μάλα ἱππικῆς . Πειρῶνται δὲ οἱ προήκοντες εἰς ἄκρον τῆσδε τῆς σοφίας καὶ ἅρμα οὕτως περικυκλεῖν | ||
: ὡς δὲ λύκοι ἄρνεσσιν ἐπέχραον , ἀρνειοὶ δὲ οἱ προήκοντες τῇ ἡλικίᾳ : ἀρνειῷ μιν ἔγωγε ἐΐσκω πηγεσιμάλλῳ ὅς |
ἐπειδήπερ ἐὰν κέντρῳ τῷ Β καὶ διαστήματι τῷ ΑΒ κύκλον γράψωμεν , αἱ διάμετροι ἀνίσους ἀπολήψονται τοῦ κύκλου περιφερείας . | ||
ἐὰν διὰ τοῦ Κ πόλου τοῦ ὁρίζοντος καὶ τοῦ Ε γράψωμεν τὸ ΚΘ τεταρτημόριον , γίνεται ἡ ὑπὸ ΚΕΘ γωνία |
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ | ||
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο |