μένοντι ὡς οἱ κινούμενοι κῶνοι καὶ σφαῖραι περὶ τὸν ἴδιον ἄξονα . τῆς δ ' εἰς εὐθὺ φορᾶς πλείονά ἐστιν | ||
. καὶ ὡς ἄρα ὁ ΗΘ ἄξων πρὸς τὸν ΚΛ ἄξονα , οὕτως ὅ τε ΑΒΗ κῶνος πρὸς τὸν ΓΔΚ |
, ἔστιν ἄρα ὡς ὁ ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον | ||
ἐπὶ τὴν τοῦ κύκλου περιφέρειαν διὰ τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ |
μήτε καλαθοειδῶς τῆς σκιᾶς πίπτειν δυναμένης , ἀλλὰ τὸν λεγόμενον κῶνον ἀποτελούσης . Ὃ δὴ πρῶτος Ὅμηρος ἐκ μιᾶς λέξεως | ||
ἂν ὑπεραίροι , οὔτε ἐλλείποι . ἐναρμόσει ἄρα εἰς τὸν κῶνον , καὶ περιληφθήσεται ὑπὸ τοῦ κώνου τοῦ περιλαμβάνοντος τὴν |
δοθεὶς κύκλος ὁ ΑΒΓΔ : δεῖ δὴ εἰς τὸν ΑΒΓΔ κύκλον πεντεκαιδεκάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι . Ἐγγεγράφθω εἰς | ||
τὴν σελήνην ἑξακοσιάκις μὲν καὶ πεντηκοντάκις ἔγγιστα καταμετρεῖν τὸν ἴδιον κύκλον , δὶς δὲ καὶ ἡμισάκις τὸν τῆς σκιᾶς καταμετρεῖν |
μέλανες τὰς χρόας Αἰθίοπες , καὶ μάλιστα οἱ ὑπὸ τὸν ἰσημερινὸν κύκλον οἰκοῦντες , κατακόρως εἰσὶ μέλανες . Οἱ δ | ||
καὶ αἱ ἀπεναντίον περιφέρειαι . Ἔστω γὰρ τοῖς ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν ὁρίζων ὁ ΑΒΓΔ : ὁ ΑΒΓΔ ἄρα διὰ |
' ἐπίνοιαν στήσαντες τὸν κόσμον νοήσωμεν τὰ πλανώμενα ὑπὸ τὸν ζῳδιακόν , ἀκίνητον ὄντα καθ ' ὑπόθεσιν , κινούμενα : | ||
ἀνταρκτικόν , θερινὸν τροπικόν , χειμερινὸν τροπικόν , ἰσημερινόν , ζῳδιακόν , καὶ προσέτι γαλαξίαν . ὁ γὰρ ὁρίζων πάθος |
. ἕνεκεν μὲν τοίνυν τῆς ἑκάστοτε τοῦ ζῳδιακοῦ πρὸς τὸν ὁρίζοντα σχέσεως ἐπελογισάμεθα κατὰ τὸν ἐν τοῖς πρώτοις τῆς συντάξεως | ||
ἐπὶ τὰ αὐτὰ μέρη θέσιν ἔχων ἅμα πρός τε τὸν ὁρίζοντα καὶ τὸν μεσημβρινόν : κἂν μεταξὺ γὰρ ᾖ τῶν |
ἐπέχουσα : τὸ δ ' ἑωθινὸν τῷ Ῥήνῳ ποταμῷ περιγραφομένη παράλληλον ἔχοντι τὸ ῥεῦμα τῇ Πυρήνῃ : τὸ δὲ νότιον | ||
ἂν εἶεν καὶ οἱ ἀπὸ Μασσαλίας ἐπὶ τὸν διὰ Βορυσθένους παράλληλον , ὅς γε διὰ τῆς Κελτικῆς παρωκεανίτιδος ἂν εἴη |
ὁ κόσμος ἀπὸ τῆς δʹ ἀνατολῆς ἐπὶ δύσιν τὴν γʹ στρεφέσθω , ὁ δὲ ἥλιος εἰς τὰ ἐναντία τῷ ζῳδιακῷ | ||
, πόλοι δὲ αὐτῆς τὰ αʹ βʹ σημεῖα , καὶ στρεφέσθω ὁμαλῶς περὶ τὸν ἑαυτῆς ἄξονα τὸν αβʹ : λέγω |
ἰδίας ἀκριβοῦς κινήσεως ἑξηκοστοῖς κε . καὶ πάλιν μετὰ τὸν μεσημβρινόν , ἐκ μὲν τῆς ὑπεροχῆς τῶν δύο παραλλάξεων , | ||
ποταμοῖς φυόμενον : ἐφ ' αἷς μεσημβρίζειν εἰώθασι . τὸ μεσημβρινόν : μεσημερινὸν καὶ ἐκβολῇ τοῦ ε καὶ προσθέσει τοῦ |
διεζῶσθαι κύκλοις , ὧν ὀνόματα εἶναι τάδε : ἀρκτικόν , ἀνταρκτικόν , θερινὸν τροπικόν , χειμερινὸν τροπικόν , ἰσημερινόν , | ||
δὲ τόν τε ἀρκτικὸν καὶ τὸν θερινὸν τροπικὸν καὶ τὸν ἀνταρκτικόν . ἀρκτικὸς δ ' ὁ αὐτὸς καὶ ἀεὶ φανερὸς |
ὁμόκεντρον ὁμαλῶς , ὑπεναντίως τῷ παντί , καὶ συναποφέροντος τὸν ἐπίκυκλον , ὁ ἥλιος ἐν ἴσῳ χρόνῳ διανύων τὸν εκηζ | ||
κύκλον , τὴν δὲ πρὸς τὸν ἥλιον καὶ παρὰ τὸν ἐπίκυκλον , ἐγκεκλιμένους ἐπὶ πάντων ὑποτιθέμεθα τόν τε ἔκκεντρον πρὸς |
τῶν ὅλων μέση , περὶ τὸν διὰ παντὸς τεταμένον σφιγγομένη πόλον , ἡμέρας φύλαξ καὶ νυκτός , πρεσβυτάτη τῶν ἐντὸς | ||
τὴν ἐνέργειαν , τὰ δὲ ἐπέκεινα πρὸς αὐτὸν τὸν βόρειον πόλον ἔτι λύει καὶ θάλπει καὶ ἀνορθοῖ πρὸς ἀναθυμίασιν , |
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω | ||
τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα |
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
, οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον | ||
. ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ |
τριήρεσι πολλαῖς ὁρῶν πεφραγμένον τὸν ἔσπλουν , τρεῖς δὲ τὰς ἐξωτάτω ἐφορμούσας τῷ στόματι τριήρεις προσπεσόντες οἱ Φοίνικες καὶ ἀντίπρωροι | ||
κατὰ τὸν χειμερινόν . Ἀναξιμένης καὶ Παρμενίδης τὴν περιφορὰν τὴν ἐξωτάτω τῆς γῆς εἶναι τὸν οὐρανόν . Ἐμπεδοκλῆς στερέμνιον εἶναι |
διαλείμματι τοῦ τε κατὰ τὸν ἰσημερινὸν καὶ τοῦ κατὰ τὸν θερινὸν τροπικὸν ὅλον διαφαίνεσθαι τὸ ἐγνωσμένον μέρος τῆς γῆς , | ||
τέσσαρα , Ἄρκτοι δύο Κηφεὺς ἀπὸ τῶν στηθῶν Δράκων , θερινὸν τροπικὸν πλεῖον ἔχοντα τὸ ὑπὲρ γῆν , ἧσσον δὲ |
Συλλήβδην δ ' εἰπεῖν , τῆς καθ ' ἡμᾶς θαλάττης νοτιώτατον μέν ἐστι σημεῖον ὁ τῆς μεγάλης Σύρτεως μυχός , | ||
ἄκρα τῆς Τρῳάδος : καὶ σχεδὸν τοῦτ ' ἔστι τὸ νοτιώτατον ἄκρον τῆς Χερρονήσου , σταδίους μικρῷ πλείους τῶν τετρακοσίων |
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
τῆς φαινομένης συνόδου προδιευκρινημένῃ πλατικῇ παρόδῳ , περὶ δὲ τὸν καταβιβάζοντα ἀφελοῦμεν ὁμοίως : ἐὰν δὲ ἡ κατὰ πλάτος παράλλαξις | ||
κατὰ πλάτος παραλλάξεως πρὸς ἄρκτους ἀποτελουμένης , περὶ μὲν τὸν καταβιβάζοντα ἡ ἀφαίρεσις γίνεται τῆς ἀπὸ τοῦ βορείου πέρατος πλατικῆς |
ἐν μετανοίᾳ γενόμενος εἰς ἑτέραν ἔννοιαν ἥξει , ἐὰν δὲ τροπικὸν ἀσυντέλεστος αὐτοῦ γίνεται ἡ ὁρμή . ἐὰν δὲ τὸν | ||
ἣ καλεῖται διακεκαυμένη . οἰκοῦμεν δὲ ἡμεῖς τὴν παρὰ θερινὸν τροπικὸν τεκμαιρόμενοι , ὅτι ἡμεῖς ταύτην ἔχοντες τὴν οἰκουμένην ἐν |
ἀδύνατον . οὐκ ἄρα τὸ Γ σημεῖον κέντρον ἐστὶ τῆς σφαίρας . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλο πλὴν | ||
ΑΒΓΔ κύκλον καὶ διὰ τοῦ κέντρου αὐτοῦ τε καὶ τῆς σφαίρας . Ἐν σφαίρᾳ οἱ μέγιστοι κύκλοι δίχα τέμνουσιν ἀλλήλους |
ἡ φλυκτὶϲ εἴτε διαβρωθείη ὑπὸ δριμύτητοϲ , ὡϲ ἑλκωθῆναι τὸν ὑμένα , ῥᾴϲτη μὲν ἡ ἐπιπολῆϲ ἕλκωϲιϲ ἰαθῆναι , χαλεπὴ | ||
ἧπαρ ἤρτηται : τὸ δὲ διάφραγμα τὸν ὑπὸ τῇϲι πλευρῇϲι ὑμένα βρίθει : ξυνῆπται γὰρ αὐτέῳ : ὁ δὲ ἐπὶ |
. πρὸς δὲ τὸ καταγόμενον ἔτος σκοπεῖν δεήσει τὸν καιρικὸν ἀναβιβάζοντα , ἐν ποίῳ τόπῳ τῆς γενέσεως τὴν ἐπέμβασιν πεποίηται | ||
δὲ τὰς καταγομένας ἡμέρας φυλακτέον τῆς Σελήνης διαπορευομένης τὸν καιρικὸν ἀναβιβάζοντα καὶ τὰ τούτου τετράγωνα καὶ διάμετρα , μάλιστα δὲ |
τοῦ αὐτοῦ σημείου τοῦ ἰσημερινοῦ ἀπό τινος τμήματος ἤτοι τοῦ ὁρίζοντος ἢ τοῦ μεσημβρινοῦ ἐπὶ τὸ αὐτὸ ἀποκατάστασις , νυχθήμερον | ||
αὐτὰ δειχθήσεται καὶ ὅταν ὁ πόλος τῶν παραλλήλων ἐπὶ τοῦ ὁρίζοντος ᾖ , καὶ γραφομένων διὰ τῶν Κ , Θ |
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ | ||
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν . |
τὸ ἐπίσειον καὶ ἐς τὸν κενεῶνα καὶ τὰς ἰξύας καὶ τένοντα καὶ κοιλίην καὶ στῆθος , καὶ τὰς ὠμοπλάτας καὶ | ||
' ἀλλήλων διίστανται , αἱ δ ' ἀρχαὶ ἐπὶ τὸν τένοντα ἁμματίζονται . καὶ οἱ μὲν διὰ τῆς περιοδίας εὔχρηστοι |
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
τριακοντάδα καὶ κατὰ τὴν τοῦ ἰσημερινοῦ πρόσθεσιν ἢ ἀφαίρεσιν σεληνιακὸν γνώμονα , ὃν ἐπισυνθέντας τῷ ἡλιακῷ καὶ τὴν ἡμίσειαν τῶν | ||
αὐτὸ πρὸς ἀστρολογίαν οἰόμενος , ὀνομάζει δὲ τὴν κάθετον ἀρχαϊκῶς γνώμονα , διότι καὶ ὁ γνώμων πρὸς ὀρθάς ἐστι τῷ |
, ἐν πλείστῳ δὲ χρόνῳ δύνειν Κριόν . Πάλιν ἐπεὶ ταπεινότατος γίνεται ὁ τῶν ζῳδίων κύκλος Αἰγόκερω αης μοίρας μεσουρανούσης | ||
κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ |
. Καὶ διὰ τοῦτο ἔθνος Αἰθιοπικὸν , ὡς παρακεῖσθαι μακρὸν ἀγκῶνα τῆς ἀοικήτου . Λέγει δὲ τὴν διακεκαυμένην . πρὸς | ||
δι ' αὐτῆς ἑλκέτω τὴν τοῦ βραχίονος κεφαλήν , τὸν ἀγκῶνα ἀντιμετάγων εἰς τὰ κλιμάκια : τοῦ δ ' ἐξελκυσμοῦ |
σφοδρότερον τῆς στύψεως ἀντιλαμβάνονται ; διότι μεμυκότα τὰ βλέφαρα τὸν κερατοειδῆ ὑμένα ἠρεμεῖν ποιοῦσιν : ἐπηρεμοῦντος οὖν τοῦ βολβοῦ , | ||
εὑρεῖν εὐθύγραμμον γωνίαν ὀρθὴν καὶ τρίχα τεμεῖν ἀδυνατήσει ἄν τις κερατοειδῆ γωνίαν τεμεῖν . τὸ δὲ νῦν πρόβλημά ἐστι τὴν |
δὲ πρὸς μεσημβρίαν δι ' ἐλάσσονος . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος | ||
σφαίρᾳ μέγιστος κύκλος τῶν αὐτῶν ἅπτηται , ὧν καὶ ὁ ὁρίζων ἅπτεται , στρεφομένης τῆς σφαίρας ἐφαρμόσει ἐπὶ τὸν ὁρίζοντα |
ἐπὶ τὰ αὐτὰ δὲ τῷ παντί , γράψει καὶ τὸν ἔκκεντρον ἴσον ὄντα τῷ μονξ ἐγκέντρῳ . διήχθωσαν γὰρ αἱ | ||
βʹ φαινομένη διάστασις συνήγαγεν ἄν , εἰ πρὸς τὸν ΝΞ ἔκκεντρον ἐθεωρεῖτο , τοῦ ζῳδιακοῦ μοίρας ξη μβ . ὡσαύτως |
καρχήσια καὶ τὰ τούτοις ὅμοια : ἕνα μὲν γὰρ εἶναι πυθμένα τὸν κατὰ τὸ κύτος συγκεχαλκευμένον ὅλῳ τῷ ἀγγείῳ , | ||
, ὀχῆεϲ τῆϲ ὑϲτέρηϲ ἐόντεϲ νευρώδεεϲ : οἱ μὲν κατὰ πυθμένα πρὸϲ τὴν ὀϲφὺν λεπτοί , οἱ δὲ κατὰ αὐχένα |
ὥστε οὐκ ἂν μέλοι τῷ ἰητρῷ , ὅκως χρὴ τὸν σπόνδυλον κατορθῶσαι , πολλῶν καὶ βιαίων ἄλλων κακῶν παρεόντων . | ||
, ποιέειν τάδε : πρῶτον μὲν σικύας προσβάλλειν πρὸς τὸν σπόνδυλον τὸν ἐν τῷ τραχήλῳ τὸν πρῶτον ἐπὶ τὰ καὶ |
ὁ μέσος γὰρ ὁ ἐν αὐτῇ στέφανος τῇ ἀράχνῃ ὁ ζῳδιακὸς προσκέκληται κύκλος ὁ ἐν τῷ πόλῳ , μεμέρισται εἰς | ||
ΜΓ . ὅταν μὲν δὴ ἡ ΜΓ ἀνατέλλῃ , ὁ ζῳδιακὸς ἕξει θέσιν τινά : ἐχέτω τὴν ΠΝΞ . ὅταν |
ὑγιῶς εἴρηται . τῶν δ ' ἐν τῇ οὐρᾷ τοῦ Νοτίου Ἰχθύος ὁ μάλιστα ἡγούμενος ἐπέχει τοῦ Αἰγόκερω πλεῖον ἢ | ||
ἐπέπλει . μετὰ δὲ ταῦτα καὶ οἱ Ἀθηναῖοι ἐκ τοῦ Νοτίου καθελκύσαντες τὰς λοιπὰς τριήρεις ἀνήχθησαν , ὡς ἕκαστος ἤνοιξεν |
τὸν αὐτὸν τοῖς ἄλλοις τῆς ἐποχῆς χρόνον τὸν τοῦ Διὸς ἀστέρα μέσως κατὰ μῆκος μὲν ἐπέχοντα Χηλῶν μοίρας δ μα | ||
φασίν , ἕνα τινὰ τῶν ἐν τῷ ζῳδιακῷ κύκλῳ λαμπρὸν ἀστέρα παρατηρήσαντες ἀνατέλλοντα οἱ πάλαι , εἶτα ἀμφορέα τετρημένον πληρώσαντες |
Ἄρατος . ἀκολούθως δὲ ταύτηι καὶ Ὄνους λέγουσι περὶ τὸν Καρκίνον ἀστέρας εἶναι . τοὺς δὲ κομήτας καὶ τοὺς τοιούτους | ||
' ἄλλοι δύο Χορευταὶ , ἰσολαμπεῖς οἱ πάντες . Ἰδὲ Καρκίνον Ἥλιος τέμνει κατὰ τὸ μέσον ἀπὸ Παϋνὶ τὰς δεκαεπτὰ |
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
γὰρ Διὶ συναιρετιστῇ ὄντι καὶ τριγώνου συμπάθειαν κεκτημένῳ διὰ τὸν Τοξότην ὁ Ἥλιος τὴν ἡμίσειαν τῶν ρκʹ ἐτῶν ἐμέρισε καὶ | ||
δόξει κινεῖσθαι περὶ τοὺς Διδύμους , βραδύτατα δὲ περὶ τὸν Τοξότην : φαίνεται δὲ τοὐναντίον : οὐκ ἄρα , τοῦ |
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω , | ||
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ |
τὸ ἀνατολικὸν αὐτοῦ ἡμικύκλιον Καρκίνου ἀνατολικόν , κατὰ δὲ τὸ δυτικὸν Καρκίνου δυτικόν . τουτέστι , σημειωσώμεθα ἐπὶ τῶν ἡμικυκλίων | ||
περὶ τοῦ γάμου νόει : πάντοτε δ ' Ἀφρογενὴς κέντρον δυτικὸν κατέχουσα . . . . ἐὰν δὲ ᾖ Ἀφροδίτη |
. Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις | ||
ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς |
ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ , | ||
κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης , |
ΕΖ ὕψος . λέγω , ὅτι ἴσος ἐστὶν ὁ ΑΒΞ κῶνος ἢ κύλινδρος τῷ ΓΘΔ κώνῳ ἢ κυλίνδρῳ . πάλιν | ||
ὁ ὑπὸ τοῦ ΒΓΖ τριγώνου γινόμενος ἀπὸ τῆς αὐτῆς βάσεως κῶνος , ὕψος ἔχων τήν τε ΒΔ καὶ ἅπαξ τὴν |
δεδυκέναι τά τε λοιπὰ τοῦ Ὕδρου καὶ τὸν Κένταυρον , ἀνατεταλκέναι δὲ τὸν νότιον Ἰχθὺν οὐχ ὅλον , ἀλλὰ παρὰ | ||
Ὕδρου τὰ πρὸς τὴν οὐρὰν μόνον ὑπὸ γῆς εἶναι : ἀνατεταλκέναι δὲ τοῦ Ἐνγόνασι τὴν δεξιὰν κνήμην μόνον ἕως τοῦ |
ᾖ , μείζων φαίνεται ἡ ΔΚ τῆς ΓΖ . Ἔστω κύκλος , οὗ κέντρον τὸ Α , ὄμμα δὲ τὸ | ||
ἄρα χρόνῳ ἀνατέλλει τὰ ΜΔΝ , ΕΒΖ ἡμικύκλια . ἔστω κύκλος ὁρίζων ὁ ΑΒΔΓ , καὶ θερινὸς μὲν τροπικὸς ὁ |
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
τῶν ἄλλων μενόντων τῶν αὐτῶν τὴν μὲν διπλῆν τῆς ΖΗ περιφερείας γίνεσθαι μοιρῶν ρλη νθ μβ καὶ τὴν ὑπ ' | ||
κύκλῳ εὐθειῶν . ιβʹ . περὶ τῆς μεταξὺ τῶν τροπικῶν περιφερείας . ιγʹ . προλαμβανόμενα εἰς τὰς σφαιρικὰς δείξεις . |
τὸν μετ ' αὐτόν , τουτέστι τὸν δεύτερον καὶ τὸν οὐραγὸν κοντάτους εἶναι , τοὺς δὲ λοιποὺς πάντας , τοὺς | ||
λοχαγὸν τὸν κράτιστον τοῦ λόχου εἶναι , ἀλλὰ καὶ τὸν οὐραγὸν οὐ πολύ τι ἀποδέοντα ἐπιλέγεσθαι : πολλὰ γὰρ καὶ |
τοιαύτας παραχωρήσεις , ὥστε οὐκ ἂν εἰδείης ὅπου ἐστὶ τὸ ἀρκτικὸν κλίμα , οὐδ ' εἰ ἀρχὴν ἐστίν : εἰ | ||
διδάσκει ὡς Ἴωνες , ὅταν ἀναδιπλῶσι ῥήματα , τὸ αὐτὸ ἀρκτικὸν ποιοῦνται πρώτης καὶ δευτέρας συλλαβῆς , λαβέσθαι λελαβέσθαι , |
κάθετον ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὸ τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου τρίγωνον . γραπτέον δὲ καὶ | ||
, ΥΦ εὐθείας διὰ ιηʹ τοῦ ιαʹ τελέως ἀποδεῖξαι τὸ πεντάγωνον ἐν ἑνὶ ὂν ἐπιπέδῳ ἢ διὰ αʹ τοῦ ιαʹ |
τοὺς ἀρκτικωτέρους τόπους καὶ τοῦ θερινοῦ τροπικοῦ κύκλου μείζονες οἱ ἀρκτικοὶ κύκλοι γίνονται : πέρας δέ ἐστί τις χώρα πρὸς | ||
ἡμῖν γινομένου ποτὲ δὲ ὑπὸ γῆς ὄντος , καὶ οἱ ἀρκτικοὶ συμμεταβάλλουσι , ποτὲ δὲ συνεκλείπουσι κατὰ τὰς τοιαύτας παραχωρήσεις |
. περὶ τῶν πρὸς τὸν αὐτὸν κύκλον τοῦ διὰ τῶν πόλων τοῦ ὁρίζοντος γινομένων γωνιῶν καὶ περιφερειῶν . ιγʹ . | ||
, ἐπειδὴ κατὰ τὰς τοιαύτας σχέσεις οἵ τε διὰ τῶν πόλων τοῦ ὁρίζοντος καὶ τοῦ κέντρου τῆς σελήνης γραφόμενοι μέγιστοι |
τὰς γὰρ ἀρχὰς φυλάττων παραλογίζεται τῷ μόνον μὲν ἐκεῖνον τὸν μηνίσκον τετραγωνίσαι ὃς γράφεται περὶ τὴν τοῦ τετραγώνου πλευρὰν τοῦ | ||
σεληνίτην , οὐ τὸν ὕδατι τεγγόμενον , εἶτα ἐκφαίνοντα τὸν μηνίσκον , καὶ διὰ τοῦτο ὑδροσεληνίτην καλούμενον , ἀλλὰ κατὰ |
καὶ ἔστω ἡ μὲν ΒΕ περιφέρεια ἐπὶ τοῦ μετὰ τὸν Αἰγόκερων ἡμικυκλίου , ἡ δὲ ΕΓ ἐπὶ τοῦ μετὰ τὸν | ||
χειμερινὸς τροπικός , ἐπειδὴ [ γὰρ ] τέμνει μέσον τὸν Αἰγόκερων . ὁ δὲ πέμπτος κύκλος ὁ καλούμενος ἀνταρκτικός . |
ἐξουσίᾳ . Τῆς δὲ Παρθένου ζῴδιον πληρώσαντες εὐθέως πρὸς τὸν Ζυγὸν εἰσέλθωμεν , ὃν καὶ Χηλὰς καλοῦσι . φύσει δ | ||
Δίδυμοι ἢ ὁ Ζυγός . ἀλλ ' ἀδύνατον εἶναι τὸν Ζυγὸν διὰ τὸ ὑπὸ γῆν εἶναι , ὁμοίως καὶ τοὺς |
, αἵτινες διὰ τὸ μέγεθος πολλὴν φέρουσαι ὑγρότητα βουβωνοῦσι τὸν ἀδένα . εʹ . Οἱ αἱμοῤῥαγοῦντες τελευτῶντες οὐκ ἐφιδροῦσι τὸ | ||
ἔνθα δὴ καὶ ψυχικὸν ἀκριβῶς γίνεται . Τὸν καλούμενον θύμον ἀδένα μέγιστόν τε ἅμα καὶ μαλακώτατον ὑπέτεινεν ἡ φύσις τοῖς |
χειρὶ δ ' ἔνθες ὀξύην , λαιόν τ ' ἔπαιρε πῆχυν , εὐθύνων πόδα . ἦ παιδαγωγεῖν γὰρ τὸν ὁπλίτην | ||
παλαιστὴν αʹ , ὅ ἐστι πήχεως Ϛʹʹ . Ἐὰν δὲ πῆχυν ἐπὶ δάκτυλον , ποίει χυδαῖον δάκτυλον αʹ , ὅ |
τῆς ὁρατικῆς ἐνεργείας τῷ μεταξὺ ἀέρι τοῦ τε προσώπου καὶ κατόπτρου καὶ μενούσης δι ' ὅλου τοῦ μεταξύ , καὶ | ||
τὸν τύραννον , παῖε „ ἐβόα , οὐχ ὥσπερ ἐκ κατόπτρου τινὸς εἴδωλον ἀληθείας ἕλκων , ἀλλ ' αὐτὰ ὁρῶν |
κελεύσεως ἐκεῖ ἔσται . μετελθεῖν δὲ αὐτῇ κέλευσον ἐπὶ τὸν ὠκεανόν , καὶ οὕτως ἐκεῖ πάλιν ταχέως ἔσται , οὐχ | ||
τῆς Πυρήνης ἀφεστὼς ὁδὸν ἡμερῶν πέντε ἐξίησιν ἐς τὸν βόρειον ὠκεανόν . Ζακανθαῖοι δέ , ἄποικοι Ζακυνθίων , ἐν μέσῳ |
αἴας κοινὸν , οἱ μὲν τὸν Ἑλλήσποντον , οἱ δὲ Ταῦρον , τὸ ὄρος . . ἐξοχήν . ἐνταῦθα καταχρηστικῶς | ||
. Τῆς δ ' Ἀρμενίας τὰ μὲν νότια προβέβληται τὸν Ταῦρον , διείργοντα αὐτὴν ἀφ ' ὅλης τῆς μεταξὺ Εὐφράτου |
ἕνεκα , τοῖσι δὲ γούνασι παρὰ τὸν ἀγκῶνα ἐς τὸν βραχίονα ἐμβάλλων , ἀντωθέοι πρὸς τὰς πλευράς : ξυμφέρει δὲ | ||
δὲ μετὰ τὴν αὐτάρκη τάσιν ταῖς καταλλήλοις μοχλείαις ἀρθρεμβολεῖν τὸν βραχίονα : εὐθετεῖ δ ' εἰς τὴν τῆς μασχάλης διαφορὰν |
, περὶ δὲ ἄστρων Πληιάδας εἰσορόωντι καὶ ὀψὲ δύοντα Βοώτην Ἄρκτον θ ' , ἣν καὶ Ἅμαξαν ἐπίκλησιν καλέουσιν ἠέλιόν | ||
ἑτέρωθεν ἐναντίοι ἠγερέθοντο ἀμφὶ μέγαν Πετραῖον ἰδ ' Ἄσβολον οἰωνιστὴν Ἄρκτον τ ' Οὔρειόν τε μελαγχαίτην τε Μίμαντα καὶ δύο |
τρόπον δὲ ἐπὶ ὤμου πλείονας ἐμβολὰς τάξας ἐπὶ πᾶσι κράτιστον καταρτισμὸν κατεχώρισεν , οὕτως καὶ ἐπὶ μηροῦ τὸ ὅμοιον πεποίηκεν | ||
, μετ ' ὃν τρόπον [ ταὐτῶν ] δεῖ τὸν καταρτισμὸν ποιεῖσθαι : ἐν δὲ τούτῳ τῷ βιβλίῳ περί τε |
δῆμον δ ' ὀνείρων , ὥς φησιν ἐκεῖνος , τὸν γαλαξίαν . Καὶ γὰρ τὸν Πυθαγόραν δι ' ἀπορρήτων Ἅιδην | ||
. . . . . . Ὁ δὲ μόνον τὸν γαλαξίαν ἐκ τῶν ψυχῶν συμπληροῖ τῶν ἐντεῦθεν εἰς οὐρανὸν ἀναβεβηκυιῶν |
ἐϲ τὸ πρόϲωπον ϲκληροί , ὀξέεϲ : ἄλλοτε μὲν ἐϲ κορυφὴν λευκοί , ποιωδέϲτεροι δὲ τὴν βάϲιν . ϲφυγμοὶ ϲμικροί | ||
αὐτῶν ἴσαι εἰσὶν διὰ τὸ ιεʹ , αἱ δὲ κατὰ κορυφὴν αὐτῶν εἰσιν ἐναλλάξ : ὀρθαὶ ἄρα : ὅπερ ἔδει |
ΜΝΞ ἴσον ἐστὶ τῷ ὑπὸ γῆν τοῦ ΟΕΡΠ κύκλου τῷ ΟΠΡ . πάλιν ἐπεὶ αἱ ΖΘ , ΕΗ ἴσαι τε | ||
ΝΖ περιφέρεια τῇ ΖΠ περιφερείᾳ : οἱ ἄρα ΜΝΞ , ΟΠΡ κύκλοι ἴσον ἀπέχουσιν ὁποτερασοῦν τῶν διχοτομιῶν . οἱ δὲ |
ὀλίγων τῶν αὐγῶν προσπιπτουσῶν καὶ διασπωμένου τοῦ φωτός , τὸ σκιερὸν μέλαν φαίνεται . καὶ τὸ νέφος ὅταν ᾖ πυκνὸν | ||
κύκλος ἐν τῇ σελήνῃ ὁ παρὰ τὸν διορίζοντα τό τε σκιερὸν καὶ τὸ λαμπρὸν ὁ ΗΘΚ . καὶ ἐπεὶ διχοτόμου |
, ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ | ||
δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ |
ἔχρῃζον : τὸ γὰρ ὅμως ἐναντιωτικὸν ὂν παρίστησι τὸν Ταλθύβιον πολοῦ τὴν ζωὴν τιμώμενον , ὅσα καὶ φίλαυτον γέροντα : | ||
ἐν ἱεροῖς βλασφημούντων . Ῥωπικὸν ὤνιον : ἐπὶ τῶν εὐτελῶν πολοῦ πιπρασκομένων . Σαλαμινία ναῦς : ἐπὶ τῶν ταχέων : |
[ ἀκολουθεῖ ] ῥῆμα μετάληψιν ἔχει τὴν εἰς τὸν εἴ σύνδεσμον : [ ἀκολουθεῖ ] τῷ ἡμέραν εἶναι τὸ φῶς | ||
σύνοδον ποιησαμένη καὶ πληρώσασα τὸν κύκλον ἐν τῷ διαμέτρῳ τὸν σύνδεσμον λύει . διὸ μᾶλλον ἔδοξε τῇ προκειμένῃ ἀγωγῇ χρήσασθαι |
Ἰβηρία τε πᾶσα καὶ Κελτίβηρες , ἐπὶ τὸν ἑσπέριον καὶ βόρειον ὠκεανὸν καὶ τὰς Ἡρακλέους στήλας τελευτῶντες . καὶ τούτων | ||
μὴ ἁλμυρὸν τοῖς γευομένοις . Καὶ ὅλως ἔτος βέλτιον νοτίου βόρειον καὶ ὑγιεινότερον . Καὶ ὅταν ὀχεύωνται πρόβατα ἢ αἶγες |
. καὶ διὰ τοῦ Θ καὶ τοῦ Ζ πόλου λοξοῦ κύκλου γεγράφθω μεγίστου κύκλου περιφέρεια ἡ ΖΘΗ . τὸ ἄρα | ||
κατὰ τὸν τοῦ ὁρίζοντος πόλον ὑποκειμένου , καὶ τοῦ ΑΒΓ κύκλου ζῳδιακοῦ πρὸς ὀρθὰς τῷ ΖΒΕ διαμένοντος . Ἐὰν δὲ |
παραλλάξεων , ὅταν μὲν τὸ κατὰ κορυφὴν σημεῖον ἐπὶ τοῦ μεσημβρινοῦ βορειότερον ᾖ τοῦ τότε μεσουρανοῦντος τοῦ διὰ μέσων τῶν | ||
εὐλογωτέρας τε καὶ ἐμφατικωτέρας παρειλήφαμεν τὰς ἀφοριζομένας ὑπό τε τοῦ μεσημβρινοῦ καὶ τῶν τοῦ διὰ μέσων ἀνατολῶν τε καὶ δύσεων |
Βυζαντίου τῷ διὰ Μασσαλίας , ὁ δ ' αὐτὸς καὶ μεσημβρινός ἐστιν ὁ διὰ Βυζαντίου τῷ διὰ Βορυσθένους , ὅπερ | ||
καὶ ἐὰν μεταξὺ μύριοι στάδιοι ὑπάρχωσιν , ὁ αὐτὸς μένει μεσημβρινός , κατὰ δὲ τὴν ἀπ ' ἀνατολῆς πρὸς δύσιν |
ἀπὸ τοῦ νότου . Καλοῖτο δ ' ἂν ἡ γραμμὴ ἰσημερινὸς , ὡς ἐπὶ ταύτῃ ἀεὶ ἰσημερίας γινομένης , καὶ | ||
δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν ΖΕΗ , ἰσημερινὸς δὲ κύκλος ἔστω ὁ ΖΘΗ : τὸ ἄρα ἀπολαμβανόμενον |
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
ὅτι τὸ ΓΔ ἔν τινι ἀποστήματι γενόμενον οὐκέτι ὁραθήσεται . γεγενήσθω γὰρ τὸ ΓΔ ἐν τῷ μεταξὺ διαστήματι τῶν ὄψεων | ||
ΥΑ : ἡ δὲ ΟΡ πρὸς μείζονα τῆς ΑΠ . γεγενήσθω δέ , καὶ ἔστωσαν αἱ ΓΕ , ΓΝ , |
εὐμεγέθη ποιεῖ . στρυφνὸν δὲ τὸν μεγαλόσχημον τραχύν τε καὶ πολυγώνιον καὶ ἀπεριφερῆ . ὀξὺν δὲ κατὰ τοὔνομα τὸν ὀξὺν | ||
, σκαληνὸν δὲ οὐκ ἔχειν . τὸν μὲν γὰρ δριμὺν πολυγώνιον ποιεῖν τῇ τραχύτητι θερμαίνειν καὶ διαχεῖν . [ διὰ |
διῃρημένος αὐτὸς ἐμπολίζεται πρὸς τὸν δι ' ἀμφοτέρων τῶν πόλων κρίκον τοῖς ἐξέχουσι κυλινδρίοις εἰς τὸ ἐντός : εἶτα ὁ | ||
αὐταῖς τεταγμένην ἡλικίαν , ὧν ταῖς πλείσταις νόμιμόν ἐστι χαλκοῦν κρίκον φέρειν ἐν τῷ χείλει τοῦ στόματος . ἐσθῆτι δέ |
ταῖς ἀφύαις συναλίσκεται : εἴη δ ' ἂν κατὰ τὸν κοχλίαν τὸν γυμνὸν τὸ εἶδος . Γὺψ νεκρῷ πολέμιος . | ||
ἥλους καὶ λαβὼν τοσούτους μύρμηκας δῆσον ἐν λίνῳ πανίῳ καὶ κοχλίαν ἕνα μετ ' αὐτῶν καὶ καύσας αὐτοὺς λείωσον σὺν |
ὀρθὰς τέμνοντες τούτους , γραφόμενοι δὲ διὰ τῶν πόλων , καταμετρεῖ τὴν μὲν οἰκήσιμον ἐμβατεύων , τὴν δ ' ἄλλην | ||
τοῦ Ϛ μέρη ἐστί , δύο τρίτα . οὐ γὰρ καταμετρεῖ ὁ δ τὸν Ϛ οὔτε μεθ ' ἑαυτοῦ ἤτοι |
τὸ φρουρεῖν τὴν ὁδόν : τὸ τῆς Ἑλένης : τὸν ἀνατολικόν φησιν : καὶ μὴν ἐγὼ τόνδ ' : ἡνιοχεῖ | ||
καὶ εἰς δύο τινὰ ἡμικύκλια διαιροῦντος , ὧν τὸ μὲν ἀνατολικόν , τὸ δὲ δυτικὸν ὀνομάζεται , συμβαίνει τὰς μεσημβρίας |
τῶν ΔʹΚΑ , ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΜΘ | ||
ἀσωμάτου καὶ σωματικῆς οὐσίας , τῆς μὲν ἀσωμάτου κατὰ τὴν ἐπίπεδον ἣν ἀποτελοῦσι τετράγωνοι , τῆς δὲ σωματικῆς κατὰ τὴν |
τῆς ῥινὸς συνιστάμενον . ῥήγνυται δὲ πολλάκις εἰς τὸν μέγαν κανθόν : ἔστι δὲ ὅτε καὶ λυμαίνουσι καὶ τερηδωνίζουσι τὰ | ||
κανθὸν μέροϲ τοῦ πτερυγίου , φυλαϲϲόμενοι τὰ βλέφαρα καὶ τὸν κανθόν . τοῖϲ μὲν γὰρ τὰ βλέφαρα ϲυνδιακοπεῖϲι πρόϲφυϲιϲ γίγνεται |
τῶν τεσσάρων στοιχείων . Σφαίρας δὲ οὔσης τοῦ Κόσμουὁ γὰρ ζωδιακὸς δείκνυσι τοῦτο , ἐπειδὴ σφαίρας πάσης τὸ κάτω μέσον | ||
. ὙΠΕΡΤΑΤΑ ΔΩΜΑΤΑ . Τῆς εἱμαρμένης τῆς ἐξ ἀστέρων ὁ ζωδιακὸς κύκλος ἐστὶν , ἐξ οὗ καταπέμπεται τά τε εὐκληρήματα |
συμπάθεια γένηται καὶ διαγανάκτησις , ἄμεινον ἀδεισιδαιμονέστερον σμιλίῳ μᾶλλον τὸν ὀμφαλὸν κόπτειν . εἶτα τὸ ἐν αὐτῷ περιεχόμενον ἐκθλίβειν , | ||
, ἔπειτα κομιϲάμενοι τὸ ἐγκείμενον ἔξωθεν τοῦ περιτοναίου κατὰ τὸν ὀμφαλὸν κατὰ ϲυϲϲάρκωϲιν τὴν θεραπείαν ποιηϲόμεθα . τοὺϲ δὲ κατὰ |
ποταμοῦ τῶν ἐκβολέων σταδίους ἐς διακοσίους . κατὰ τοῦτον τὸν παράπλουν λέγει Νέαρχος ὀφθῆναι κῆτος ἐκβεβλημένον ἐς τὴν ἠιόνα , | ||
αὐτοῦ καὶ τῶν ἄλλων λέγων συγγραφέων . Τὸν μὲν οὖν παράπλουν ἅπαντα τὸν Ἰλλυρικὸν σφόδρα εὐλίμενον εἶναι συμβαίνει καὶ ἐξ |
Ἀργὼ ὅλην καὶ τὸν Προκύνα , συνανατέλλειν δὲ τόν τε Ὄρνιθα , καὶ τὸν Ἀετόν , καὶ τὸν Ὀϊστόν , | ||
Ἀργὼ ὅλην καὶ τὸν Πρόκυνα , συνανατέλλειν δὲ τόν τε Ὄρνιθα , καὶ τὸν Ἀετόν , καὶ τὸν Ὀϊστόν , |
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
ἐστιν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΞΒ πρὸς ΒΧ : καὶ ὡς ἄρα ἡ ΧΑ πρὸς | ||
ἄρα ἴση ἐστὶν τῇ ΛΜ . ἔστι δὲ καὶ ἡ ΞΒ ἴση τῇ ΒΛ , διὰ τὸ τὸ Β σημεῖον |
ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν , καὶ ἀπ ' αὐτῶν μέχρι Συήνης . , φησὶ δὴ [ . Ἵππαρχος ] τοῖς | ||
τοῦ οἰκείου κύκλου . Δεῖ οὖν ἀναγκαίως καὶ τὸ ἀπὸ Συήνης εἰς Ἀλεξάνδρειαν διάστημα πεντηκοστὸν εἶναι μέρος τοῦ μεγίστου τῆς |
ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους ὀρθῆς ἐστιν | ||
τινα τῶν ἐν τῇ σφαίρᾳ κύκλων τὸν γδβʹ αἰεὶ δίχα τεμνέτω , μηδέτερος δὲ αὐτῶν μήτε πρὸς ὀρθὰς ἔστω τῷ |