ἀδύνατον . οὐκ ἄρα τὸ Γ σημεῖον κέντρον ἐστὶ τῆς σφαίρας . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλο πλὴν
ΑΒΓΔ κύκλον καὶ διὰ τοῦ κέντρου αὐτοῦ τε καὶ τῆς σφαίρας . Ἐν σφαίρᾳ οἱ μέγιστοι κύκλοι δίχα τέμνουσιν ἀλλήλους
7928403 ἐπιφανειας
ἧς δεῖ τὴν διάμετρον ἐκθέσθαι , καὶ εἰλήφθω ἐπὶ τῆς ἐπιφανείας τῆς σφαίρας δύο τυχόντα σημεῖα τὰ Α , Β
, πρότερον δὲ καταδεδυκότων διὰ τὴν κυρτότητα τῆς τοῦ ὕδατος ἐπιφανείας . Τούτου δὲ θεωρηθέντος , εἴ τις ἐφεξῆς καὶ
7857941 περιφερειας
τῶν ἄλλων μενόντων τῶν αὐτῶν τὴν μὲν διπλῆν τῆς ΖΗ περιφερείας γίνεσθαι μοιρῶν ρλη νθ μβ καὶ τὴν ὑπ '
κύκλῳ εὐθειῶν . ιβʹ . περὶ τῆς μεταξὺ τῶν τροπικῶν περιφερείας . ιγʹ . προλαμβανόμενα εἰς τὰς σφαιρικὰς δείξεις .
7378388 κυκλου
. καὶ διὰ τοῦ Θ καὶ τοῦ Ζ πόλου λοξοῦ κύκλου γεγράφθω μεγίστου κύκλου περιφέρεια ἡ ΖΘΗ . τὸ ἄρα
κατὰ τὸν τοῦ ὁρίζοντος πόλον ὑποκειμένου , καὶ τοῦ ΑΒΓ κύκλου ζῳδιακοῦ πρὸς ὀρθὰς τῷ ΖΒΕ διαμένοντος . Ἐὰν δὲ
7229633 διχοτομιας
, ὀρθότατος ἔσται πρὸς ἡμᾶς : ὅταν δὲ ἐπὶ τῆς διχοτομίας τοῦ ὑπὸ γῆν τμήματος τοῦ θερινοῦ τροπικοῦ , ταπεινότατος
τυχὸν σημεῖον τὸ Γ . εἰ μὲν οὖν ἐπὶ τῆς διχοτομίας ἐστὶ τὸ Γ , φανερόν ἐστι τὸ ζητούμενον .
7226052 ἡλιακης
ἡ ὑπὸ ΑΕΒ γωνία τὰς διπλασίονας ἔγγιστα περιέχῃ μόνης τῆς ἡλιακῆς ἀνωμαλίας μοίρας δ μϚ , καὶ ἐπιζευχθείσης ἐπὶ τῆς
φοῖνιξ καὶ τοῖς πατρῴοις ἔθεσι χρῆται , ὥστε ὑπὸ τῆς ἡλιακῆς μόνης αὐγῆς , πατρός τε καὶ μητρὸς χωρίς ,
6994300 τομης
τὸ Γ , καὶ εἰλήφθω τι σημεῖον ἐπὶ τῆς ΑΒ τομῆς τὸ Δ , καὶ δι ' αὐτοῦ ἤχθω παρὰ
ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς . ἔστω γὰρ τὰ αὐτὰ , καὶ τὸ Δ
6993424 γραμμης
, ἐνεργείᾳ δὲ λίθον εἶναι , καὶ τὸ ἥμισυ τῆς γραμμῆς δυνάμει τελείαν γραμμήν , καὶ σῖτον δυνάμει ἁδρὸν τὸν
καὶ ἐπὶ τῶν γεγονότων : ὡς γὰρ ἡ στιγμὴ πέρας γραμμῆς , οὕτω τὸ γεγονὸς πέρας ἐστὶ τῆς γενέσεως .
6988149 πυραμιδος
οὕτως ἡ ΑΒΓΗ πυραμὶς ἤτοι πρὸς ἔλασσόν τι τῆς ΔΕΖΘ πυραμίδος στερεὸν ἢ πρὸς μεῖζον . ἔστω πρότερον πρὸς ἔλασσον
ἀπὸ δὲ τοῦ Θ ἐπὶ τὸ ΗΕΚΛ . Ἔστω βάσις πυραμίδος τρίγωνον τὸ ΑΒΓ , καὶ τετμήσθω ἡ μὲν ΑΒ
6970751 κυκλων
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ
6795739 διαμετρου
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ
6771144 κορυφης
πολλάκις δυόμενος ἢ ἀνατέλλων φαντασίαν ἡμῖν ἀποπέμπει ὡς ψαύων τῆς κορυφῆς , τοσαύτας μυριάδας ἀφεστὼς ἀπὸ παντὸς μέρους τῆς γῆς
βάσεις ἴσας ἔχῃ , ἔχῃ δὲ καὶ τὰς ἀπὸ τῆς κορυφῆς ἐπὶ τὴν διχοτομίαν τῆς βάσεως ἠγμένας εὐθείας ἴσας ,
6763964 αβʹ
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ
6760422 κυκλος
ᾖ , μείζων φαίνεται ἡ ΔΚ τῆς ΓΖ . Ἔστω κύκλος , οὗ κέντρον τὸ Α , ὄμμα δὲ τὸ
ἄρα χρόνῳ ἀνατέλλει τὰ ΜΔΝ , ΕΒΖ ἡμικύκλια . ἔστω κύκλος ὁρίζων ὁ ΑΒΔΓ , καὶ θερινὸς μὲν τροπικὸς ὁ
6677765 κυκλον
δοθεὶς κύκλος ὁ ΑΒΓΔ : δεῖ δὴ εἰς τὸν ΑΒΓΔ κύκλον πεντεκαιδεκάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι . Ἐγγεγράφθω εἰς
τὴν σελήνην ἑξακοσιάκις μὲν καὶ πεντηκοντάκις ἔγγιστα καταμετρεῖν τὸν ἴδιον κύκλον , δὶς δὲ καὶ ἡμισάκις τὸν τῆς σκιᾶς καταμετρεῖν
6645583 σφαιρα
καὶ τὸ τίκτεται , διότι καὶ πρὸ τοῦ παχυνθῆναι ἡ σφαῖρα , ἦσαν πνεύματα , ἀλλὰ ταῦτα διεφοροῦντο . ἐπειδὰν
καὶ οὐδὲ τοῦτο ἁπλῶς : οὐδὲ γὰρ ἁπλῶς ἡ ἐξωτάτω σφαῖρα ἐν τόπῳ , ἀλλ ' ὡς ὅλη ἐν τόπῳ
6641082 σεληνης
ὡρισμένων καθ ' ἑκάστην τῶν ἐπὶ τοῦ ζῳδιακοῦ παρόδων τῆς σελήνης καὶ τῶν ἀπὸ τοῦ συνδέσμου διαστάσεων , ἀλλὰ καὶ
τοῦ ἡλίου μέγεθος τοῦ ἡλιακοῦ κύκλου ὥσπερ καὶ τὸ τῆς σελήνης μέγεθος τοῦ σεληναίου ἑπτακοσιοστὸν καὶ εἰκοστὸν μέρος ἀπεφήνατο κατά
6628897 ἀξονα
μένοντι ὡς οἱ κινούμενοι κῶνοι καὶ σφαῖραι περὶ τὸν ἴδιον ἄξονα . τῆς δ ' εἰς εὐθὺ φορᾶς πλείονά ἐστιν
. καὶ ὡς ἄρα ὁ ΗΘ ἄξων πρὸς τὸν ΚΛ ἄξονα , οὕτως ὅ τε ΑΒΗ κῶνος πρὸς τὸν ΓΔΚ
6623920 διακεκαυμενης
ἐὰν προσλάβωσι τὸ ἐπὶ τὴν Ταπροβάνην καὶ τοὺς ὅρους τῆς διακεκαυμένης , οὓς οὐκ ἐλάττους τῶν τετρακισχιλίων θετέον , ἐκτοπιοῦσι
τε Βάκτρα καὶ τὴν Ἀρίαν εἰς τοὺς ἀπέχοντας τόπους τῆς διακεκαυμένης σταδίους τρισμυρίους καὶ τετρακισχιλίους , ὅσους ἀπὸ τοῦ ἰσημερινοῦ
6619126 γωνιας
βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ
Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς
6590766 περιφορας
παραφερόμενοί τε καὶ καταφυόμενοι , διὰ τὰς ἐν ταῖς μασήσεσιν περιφορὰς τῆς γένυος ὑπὸ τῆς φύσεως γενόμενοι καὶ τῶν γνάθων
, ἀπεκρίνατο τοῦ τὸν κόσμον θεάσασθαι , τὰς χορείας καὶ περιφορὰς τῶν ἀστέρων αἰνιττόμενος , κατὰ δὲ τρίτον , ὡς
6584739 βασεως
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν :
6518107 παραλληλων
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν
6490697 σφαιροειδους
ἐχούσης τὰ μέσα τοῦ κόσμου , τοῦ δὲ πόλου ὄντος σφαιροειδοῦς , οὗ τὸ μὲν ἕτερον ἡμισφαίριον θεοὶ ἔλαχον οἱ
καὶ τῶν πέντε ἀστέρων . λέγει δὲ καὶ τὴν γῆν σφαιροειδοῦς σημείου τάξιν ἐπέχειν πρὸς τὸν ὅλον κόσμον , ἀκινητόν
6487501 συναφης
κυρτὸν εἶναι . νζʹ . Τετραγώνου ὑπάρχοντος ἐὰν ἀπὸ τῆς συναφῆς τῶν διαμέτρων πρὸς ὀρθάς τις ἀναχθῇ τῷ τοῦ τετραγώνου
ΚΠ , καὶ ἴσον ἀπέχουσιν αἱ ΔΜ , ΚΠ τῆς συναφῆς τοῦ θερινοῦ τροπικοῦ : ἐν ᾧ ἄρα χρόνῳ ἡ
6444062 ἐξωτατω
τριήρεσι πολλαῖς ὁρῶν πεφραγμένον τὸν ἔσπλουν , τρεῖς δὲ τὰς ἐξωτάτω ἐφορμούσας τῷ στόματι τριήρεις προσπεσόντες οἱ Φοίνικες καὶ ἀντίπρωροι
κατὰ τὸν χειμερινόν . Ἀναξιμένης καὶ Παρμενίδης τὴν περιφορὰν τὴν ἐξωτάτω τῆς γῆς εἶναι τὸν οὐρανόν . Ἐμπεδοκλῆς στερέμνιον εἶναι
6405799 κεντρον
γωνίας ἀπό τινος ὁρωμένου ἀφεθῇ τις εὐθεῖα , πρὸς τὸ κέντρον τοῦ ἐνόπτρου πεσεῖται . Οὐκέτι ὁρᾶται . , ]
ἐξ ἀμοιβῆς γὰρ ἄλλοτε ἄλλῃ συγκοιμῶνται . μέτρον : γράφεται κέντρον : ζῆλος . Περί : ἕνεκα . ὀλέκονται :
6389733 θεσεως
προτέρων μορίων τοῖς δευτέροις ὑπηρετούντων , ἀλλὰ τῇ τάξει τῆς θέσεως , ἣν ὁ τῆς τῶν ζῴων γενέσεως δημιουργὸς ἐμηχανήσατο
τῷ ἀδελφῷ σπονδῶν κατάρχειν ἐπέτρεψε καὶ κύριον αὐτὸν εἶναι τῆς θέσεως τοῦ ὀνόματος τῷ παιδίῳ . Μηριόνης , * *
6383011 καθετον
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ
6382941 κωνου
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ
6373157 ἀπλανους
τῶν κατὰ τὸν κόσμον , οἷον τὴν ἐσχάτην ἴτυν τῆς ἀπλάνους , ἀλλ ' ὡς εἰς τὴν ἁπλότητα αὐτοῦ πάντων
τῶν κατὰ τὸν κόσμον , οἷον τὴν ἐσχάτην ἴτυν τῆς ἀπλάνους , ἀλλ ' ὡς εἰς τὴν ἁπλότητα αὐτοῦ πάντων
6342675 καθετου
τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ
Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η
6324795 διαχθεισης
, καὶ τῇ ΑΔ ἴση κείσθω ἡ ΓΗ , καὶ διαχθείσης τῆς ΒΕΖ ἀπὸ τοῦ Η ἐπ ' αὐτὴν κάθετος
ΔΕΖ , τῇ ΓΔ ἴση κείσθω ἡ ΑΗ , καὶ διαχθείσης τῆς ΖΒ ἐπ ' αὐτὴν κάθετος ἤχθω ἡ ΗΘ
6289858 ζῳδιακου
ἄλλοτε δύνων . Ἐν γὰρ τούτοις τὴν πάροδον ἀφορίζει τοῦ ζῳδιακοῦ κύκλου , ἣν ποιεῖται κατὰ πλάτος ἐπὶ τῆς ἀνατολῆς
' ἥλιον καὶ σελήνην * * τὴν δὲ λόξωσιν τοῦ ζῳδιακοῦ γενέσθαι τῷ κεκλίσθαι τὴν γῆν πρὸς μεσημβρίαν : τὰ
6286375 φορας
ἔτι διὰ τοῦ τάχους τῆς ἐπὶ τὰ ἐναντία τῷ παντὶ φορᾶς , λέγων οὕτως : ἐπειδὴ δὲ τοῖς ἐν τῷ
. τὸν δὲ ἄνω τόπον τό τε ἔσχατον τῆς κύκλῳ φορᾶς καὶ εἴ τι πρὸς ἐκεῖνό ἐστιν . ᾧ μὲν
6280368 ἐφαπτομενης
ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς ἐφαπτομένης τὸ μεταξὺ τῆς ἁφῆς καὶ τῆς ἀνηγμένης πρὸς τὸ
οὕτως τὸ περιεχόμενον ὑπὸ τῶν μεταξὺ τῆς τομῆς καὶ τῆς ἐφαπτομένης πρὸς τὸ ἀπὸ τῆς ἀπολαμβανομένης πρὸς τῇ ἁφῇ τετράγωνον
6261572 ὁριζοντος
τοῦ αὐτοῦ σημείου τοῦ ἰσημερινοῦ ἀπό τινος τμήματος ἤτοι τοῦ ὁρίζοντος ἢ τοῦ μεσημβρινοῦ ἐπὶ τὸ αὐτὸ ἀποκατάστασις , νυχθήμερον
αὐτὰ δειχθήσεται καὶ ὅταν ὁ πόλος τῶν παραλλήλων ἐπὶ τοῦ ὁρίζοντος ᾖ , καὶ γραφομένων διὰ τῶν Κ , Θ
6257430 σφαιραν
χαλκεύς , οὐ ποιεῖ τὸν χαλκόν , οὕτως οὐδὲ τὴν σφαῖραν , τουτέστι τὸ εἶδος αὐτὸ καθ ' αὑτό ,
ἑκάστῳ τῶν τριῶν πλανήτων Ἄρεος καὶ Ἀφροδίτης καὶ Ἑρμοῦ προσετίθει σφαῖραν , τίνος ἕνεκεν προσετίθει , συντόμως καὶ σαφῶς ὁ
6252012 κορυφην
ἐϲ τὸ πρόϲωπον ϲκληροί , ὀξέεϲ : ἄλλοτε μὲν ἐϲ κορυφὴν λευκοί , ποιωδέϲτεροι δὲ τὴν βάϲιν . ϲφυγμοὶ ϲμικροί
αὐτῶν ἴσαι εἰσὶν διὰ τὸ ιεʹ , αἱ δὲ κατὰ κορυφὴν αὐτῶν εἰσιν ἐναλλάξ : ὀρθαὶ ἄρα : ὅπερ ἔδει
6247656 ἁφης
αἴσθησις ὡς τετράς , ἐπειδὴ τετραπλῆ κοινῆς πασῶν οὔσης τῆς ἁφῆς κατ ' ἐπαφὴν πᾶσαι ἐνεργοῦσιν αἱ αἰσθήσεις . ἐνάτη
ἢ τὸ ἀγώνιον : προφανῆ δὲ καὶ τὰ περὶ τῆς ἁφῆς , ὡς διαφόρως περὶ τὰ διάφορα τῶν σωμάτων διατίθεται
6225540 ὁριζων
δὲ πρὸς μεσημβρίαν δι ' ἐλάσσονος . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος
σφαίρᾳ μέγιστος κύκλος τῶν αὐτῶν ἅπτηται , ὧν καὶ ὁ ὁρίζων ἅπτεται , στρεφομένης τῆς σφαίρας ἐφαρμόσει ἐπὶ τὸν ὁρίζοντα
6191042 διαστασεως
συνεγγίζων τῷ Ε σημείῳ κατὰ τὸ πλάτος ἀπὸ τῆς ΕΖ διαστάσεως φαίνηται πρώτως , ὁ τούτου πλέον ἀφεστὼς ἀπ '
καὶ πρῶτον ἐπὶ τῆς ἐν ἀρχαῖς τοῦ Σκορπίου μεγίστης ἑσπερίας διαστάσεως . ἔστω γὰρ ἡ διὰ τοῦ Α ἀπογείου διάμετρος
6158360 καταγραφης
ἐπικύκλου ε ιγ ἔγγιστα . ἤχθω δὴ ἐπὶ τῆς ὁμοίας καταγραφῆς ἀπὸ τοῦ Κ κέντρου κάθετος ἐπὶ τὴν ΒΕ ἡ
ὕστερόν ἐστι βραχυτέρα . Ἔστω γὰρ ὡς ἐπὶ τῆς δευτέρας καταγραφῆς , καὶ τῶν αὐτῶν ὑποκειμένων ὁ ἥλιος ἔν τινι
6110307 ἀκτινος
ἕως ἂν ἀποχωρήσαντος τοῦ ἀστέρος ἢ τῆς ἀπ ' αὐτοῦ ἀκτῖνος τῇ δύσει εἰς τὸ μηδὲν καταντήσῃ : καὶ οἱ
. βλάστουσι ] πολλὰ τίκτει ὁ ἀὴρ ἐκ τῆς ἡλιακῆς ἀκτῖνος πτηνὰ καὶ ἑρπετά : εἰσὶ γὰρ ὄφεις ἐξ ἀέρος
6108680 πολων
. περὶ τῶν πρὸς τὸν αὐτὸν κύκλον τοῦ διὰ τῶν πόλων τοῦ ὁρίζοντος γινομένων γωνιῶν καὶ περιφερειῶν . ιγʹ .
, ἐπειδὴ κατὰ τὰς τοιαύτας σχέσεις οἵ τε διὰ τῶν πόλων τοῦ ὁρίζοντος καὶ τοῦ κέντρου τῆς σελήνης γραφόμενοι μέγιστοι
6103023 ἐπιπεδου
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ .
6059514 βορειοτερων
εἰ δέ τις ἄλλως θεωρίας ἕνεκεν καὶ περὶ τῶν ἔτι βορειοτέρων ἐγκλίσεων ἐπιζητοίη τινὰ τῶν ὁλοσχερεσλδʹ τέρων συμπτωμάτων , εὕροι
ὁρίζοντος , ἀλλ ' ἕνα τῶν παραλλήλων αὐτῷ καὶ ἤτοι βορειοτέρων ἢ νοτιωτέρων . ὡμολόγηται δέ γε ὑπὸ πάντων ἁπλῶς
6054098 ἐπιπεδον
τῶν ΔʹΚΑ , ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΜΘ
ἀσωμάτου καὶ σωματικῆς οὐσίας , τῆς μὲν ἀσωμάτου κατὰ τὴν ἐπίπεδον ἣν ἀποτελοῦσι τετράγωνοι , τῆς δὲ σωματικῆς κατὰ τὴν
6051095 στρεφομενης
δὲ καὶ τοῦτο , ποῖον τῶν φώτων ἐν τῇ γενέσει στρεφομένης τῆς τοῦ παντὸς φορᾶς πρῶτον ἔρχεται εἰς τὸ ὑπόγειον
. καὶ οἱ μὲν διὰ τῶν πόλων τῆς σφαίρας πάντες στρεφομένης τῆς σφαίρας ἐφαρμόζουσιν ἑαυτοῖς , οἱ δὲ λοξοὶ πάντες
6038898 ἀπλανων
, τούτων δὲ μίαν μὲν τὴν ὁμοίως κινουμένην τῇ τῶν ἀπλανῶν , ἑτέραν δὲ ἐναντίως μὲν ταύτῃ , περὶ ἄξονα
, ζʹ μὲν τῶν πλανωμένων , ἐκτὸς δὲ μίαν τῶν ἀπλανῶν ἐντὸς αὑτῆς περιέχουσαν τὰς ἄλλας : δηλοῖ δὲ τὴν
6038868 ἐκλειψεως
καὶ συνάγεται ὁ ἀπὸ τῆς ἐποχῆς μέχρι τοῦ μέσου τῆς ἐκλείψεως χρόνος ἐτῶν Αἰγυπτιακῶν χϚ καὶ ἡμερῶν ρκα καὶ ὡρῶν
ἀντιφράττεται : τοῦτο ἀνάλυσις ἀπὸ τοῦ αἰτιατοῦ , ἤγουν τῆς ἐκλείψεως , εἰς τὸ αἴτιον , ἤγουν τὴν ἀντίφραξιν .
6005248 γδʹ
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο
5968750 κυκλους
ἄτμητον φυλαχθῆναι , τὴν δ ' ἐντὸς ἑξαχῆ τμηθεῖσαν ἑπτὰ κύκλους τῶν λεγομένων πλανήτων ἀποτελέσαι : ὃ γάρ , οἶμαι
λόγων κεκαθαρμένων καὶ πρὸς εὐθύτητα ἀπεξεσμένων , ἐμβεβλημένων δὲ ξύλοις κύκλους ἀποτελοῦσιν : οἱ δὲ κύκλοι ἐκ τοῦ ἐδάφους ἀρχόμενοι
5960977 πολους
ἔστιν ἐπὶ τοῦ ἄξονος , κύκλους γράψει παραλλήλους τοὺς αὐτοὺς πόλους ἔχοντας τῇ σφαίρᾳ καὶ ἔτι ὀρθοὺς πρὸς τὸν ἄξονα
ὧν ὁ διὰ μέσων τῶν ζῳδίων κύκλος ἐφάπτεται τοὺς αὐτοὺς πόλους ἐχόντων τῇ σφαίρᾳ . ὁ δὲ διὰ μέσων τῶν
5956118 μενουσης
, δέδοικα μὴ ἀλῶσιν ἀπατηθέντες , τῆς ἑτέρας ἀμίδος λεπτῆς μενούσης : ἀλλ ' αὐτοῖς μὲν ἀρκούσης ἴσως τῆς ἀπαιδευσίας
καὶ ἀνακράζει , οὕτω τε ἀφίπτανται πᾶσαι , τῆς μιᾶς μενούσης , ἥπερ αὐτὰς ἥγνισεν ἀθροι - σθείσας : τὰς
5921760 περιεχουσης
εἰρημένων φάλαγγος συστήματα καὶ ἡγεμονίας καὶ τάξεις καὶ ἀριθμὸν ἐπιτήδειον περιεχούσης καὶ ὀνόματα χάριν τῶν παραγ - γελλομένων εἴς τε
σῶμα εἶναι . ταύτης δὲ τῆς ἐμβολῆς τὴν ἰσχυροτάτην ἀνάγκην περιεχούσης ὁ Βακχεῖος τὴν ἐπὶ τοῦ μοχλοειδοῦς ξύλου λεγομένην ἄμβην
5919737 διχοτομεισθαι
ζῳδιακὸν τῶν μεγίστων εἶναι ἐν τῇ σφαίρᾳ κύκλων , καὶ διχοτομεῖσθαι τὴν σφαῖραν ὑφ ' ἑκατέρου αὐτῶν , καὶ τὸ
ἀστὴρ ἐπέχει τοῦ Αἰγόκερω μοῖραν αʹ : οὐκ ἄρα δυνατὸν διχοτομεῖσθαι αὐτὸν ὑπὸ τοῦ προειρημένου κύκλου . ὁμοίως δὲ καὶ
5917129 ἐπικυκλος
δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω
τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα
5884995 ἐκβληθεισης
ἐλλείψεων . Κείσθω πάλιν ἡ καταγραφὴ τοῦ κώνου , καὶ ἐκβληθείσης τῆς ΓΒ ἐπὶ θάτερα δέον ἔστω ἀπ ' ἀμφοτέρων
ζῳδιακοῦ ἐπεζεύχθωσαν αἱ ΑΔ καὶ ΒΔ καὶ ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ
5877652 ὀψεως
φοβεροὶ μὲν εἰς τὸ θεαθῆναι τουτέστιν ἱκανοὶ φοβεῖν ἐκ τῆς ὄψεως , δεινοὶ δὲ καὶ ἐπιτήδειοι καὶ δεξιοὶ πρὸς πόλεμον
ὅλον οἶκον . ὅτι διὰ τὰς τρίχας τὰς κατὰ τῆς ὄψεως αὐτοῦ ὀρθῶς οὐχ ὁρᾷ ἀλλὰ πλαγίως . ὅτι ἡ
5876502 ἐλαχιστης
τὴν ἐνταῦθα ὑποκειμένην ἐπὶ τοῦ ἐπικύκλου μετάβασιν τὸν ἀπὸ τῆς ἐλαχίστης κινήσεως ἐπὶ τὴν μέσην χρόνον , μείζων ἐστὶν τῆς
δὴ ταῦτα ἀληθῆ λέγομεν , καὶ τὸ μέγεθος ὥρισται τῆς ἐλαχίστης σαρκός , ἀναγκαίως ἀδύνατον ἐν ἑκάστῳ πάντα μεμῖχθαι .
5857614 διαμετρον
ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ ,
κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης ,
5856838 τμημα
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ
5847120 ἐφαπτεται
κύκλῳ . ἀλλὰ καὶ παράλληλος : ὁ ΑΒΓ ἄρα κύκλος ἐφάπτεται καὶ ἑτέρου κύκλου τοῦ ΒΗ ἴσου τε καὶ παραλλήλου
πολλῶν τῶν κατ ' ἀλήθειαν σύν τισι Μούσαις καὶ Χάρισιν ἐφάπτεται ἑκάστοτε . Περὶ δὲ τῆς ἐρωτικῆς καὶ μουσικῆς τί
5842032 παραλληλους
αὐτοῦ τὸ παρίεμαι . παραλλήλους μὲν βίους λεκτέον καὶ ἄνδρας παραλλήλους , οὐκέτι δὲ κατὰ τὰς ἄλλας πτώσεις , οἷον
ἄρα ἐστὶν ἡ ΚΘ τῇ ΘΜ : καὶ ἐπεὶ εἰς παραλλήλους τὰς ΚΜ , ΖΗ εὐθεῖα ἐνέπεσεν ἡ ΘΗ ,
5840954 κατοπτρου
τῆς ὁρατικῆς ἐνεργείας τῷ μεταξὺ ἀέρι τοῦ τε προσώπου καὶ κατόπτρου καὶ μενούσης δι ' ὅλου τοῦ μεταξύ , καὶ
τὸν τύραννον , παῖε „ ἐβόα , οὐχ ὥσπερ ἐκ κατόπτρου τινὸς εἴδωλον ἀληθείας ἕλκων , ἀλλ ' αὐτὰ ὁρῶν
5830210 παραλληλου
δὲ ἐπὶ τῆς ἑτέρας αὐτὴν λαβόντες τοῦ παραλληλογράμμου πλευρᾶς τῆς παραλλήλου τῇ κοινῇ αὐτῶν βάσει τὸ αὐτὸ ἀποδείξομεν . δύο
ἔρριψα . τὸ δὲ “ ἀνείλετο λαβοῦσα ” ἢ ἐκ παραλλήλου , ὡς τὸ “ ἁγνεύσας ἐκάθηρε ” καὶ “
5816134 σκιας
: πανσέληνος γάρ . καὶ τὸ κέντρον τοῦ κύκλου τῆς σκιᾶς , ὅπερ ἐστὶν κατὰ διάμετρον τῷ ἡλίῳ , κατὰ
, εὑρήσει τὸν οὐρανὸν ἡμέραν αἰώνιον , νυκτὸς καὶ πάσης σκιᾶς ἀμέτοχον , ἅτε περιλαμπόμενον ἀσβέστοις καὶ ἀκηράτοις ἀδιαστάτως φέγγεσιν
5815001 διοπτρας
ὧν τὰ λαβία τοῖς μαχαιρίοις κατεσκεύαζον : ἄλλος δὲ εἰς διόπτρας βώλους μεγάλας ἐκδιδούς , ὥστε καὶ ἔξω κομίζεσθαι .
ἡ διόπτρα ἐργάζηται . δεῖ δὲ καθιέναι τὸν λωτὸν τῆς διόπτρας εἰς τὸ ἄνω μέρος τὸν κοχλίαν ἔχοντα , καὶ
5810952 μεσημβρινος
Βυζαντίου τῷ διὰ Μασσαλίας , ὁ δ ' αὐτὸς καὶ μεσημβρινός ἐστιν ὁ διὰ Βυζαντίου τῷ διὰ Βορυσθένους , ὅπερ
καὶ ἐὰν μεταξὺ μύριοι στάδιοι ὑπάρχωσιν , ὁ αὐτὸς μένει μεσημβρινός , κατὰ δὲ τὴν ἀπ ' ἀνατολῆς πρὸς δύσιν
5804209 νοτιωτατον
Συλλήβδην δ ' εἰπεῖν , τῆς καθ ' ἡμᾶς θαλάττης νοτιώτατον μέν ἐστι σημεῖον ὁ τῆς μεγάλης Σύρτεως μυχός ,
ἄκρα τῆς Τρῳάδος : καὶ σχεδὸν τοῦτ ' ἔστι τὸ νοτιώτατον ἄκρον τῆς Χερρονήσου , σταδίους μικρῷ πλείους τῶν τετρακοσίων
5799292 θερινου
τὸ μὲν ἀπὸ τῆς Συήνης , ἥπερ ἐστὶν ὅριον τοῦ θερινοῦ τροπικοῦ , εἰς Μερόην εἰσὶ πεντακισχίλιοι , τὸ δ
[ τὰς ] ἄρκτους αὐτοῦ κείμενος μικρῷ βορειότερός ἐστι τοῦ θερινοῦ τροπικοῦ : καὶ τῶν ἐν τοῖς μηροῖς καὶ σκέλεσι
5781605 περιαγωγης
ἐμβρύου καὶ τὰς ἀρχὰς ἀποδήσαντες πρὸς τὸν τύλον διὰ τῆς περιαγωγῆς τὴν ὁλκὴν ποιήσωνται , μὴ συνιέντες τὸ κοινόν ,
τοῦ ἐπικύκλου πρόσνευσιν ἴδιον τῆς μὲν τοῦ κέντρου τοῦ ἐπικύκλου περιαγωγῆς περὶ τὸ Ε κέντρον τοῦ διὰ μέσων τῶν ζῳδίων
5776224 περιαγομενη
, κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα
, κωνικὴν ποιήσει ἐπιφάνειαν τῆι ΑΠ εὐθείαι , ἣ δὴ περιαγομένη συμβαλεῖ τῆι κυλινδρικῆι γραμμῆι κατά τι σημεῖον : ἅμα
5775179 σφαιρᾳ
ἐπεζεύχθω ἡ ΗΘ . καὶ ἐπεί , ἐὰν ᾖ ἐν σφαίρᾳ κύκλος , ἡ διὰ τῶν πόλων αὐτοῦ ἀγομένη εὐθεῖα
κύκλον ἐγγραφομένων . ὅπερ ἔδει δεῖξαι . Δωδεκάεδρον συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν , ᾗ καὶ τὰ προειρημένα σχήματα , καὶ
5770741 οἰκησεως
καὶ αὐτὸς ὕστερον ἀπέθανε . Μετὰ ταῦτα ἐπισκαφείσης αὐτοῖς τῆς οἰκήσεως , ἀπ ' ἐκείνου ὁ χῶρος ἐκαλεῖτο Ἵππου καὶ
ὡρῶν πρὸς τὰς ἰσημερινὰς καὶ ἐν τῇ τῶν ἀπὸ ἑτέρας οἰκήσεως εἰς τὴν ἐν Ἀλεξανδρείᾳ μεσημβρίαν καὶ ἐν τῇ τῶν
5769396 ἀνισους
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως
5769026 ἀπωτερον
, ταῖς δὲ μείζοσι τῆς βαρύτητος διὰ τὴν παρὰ τὸ ἀπώτερον ἔκλυσιν , ὥστε ἀντιπεπονθέναι ταῖς διαστάσεσι τοὺς ψόφους .
ἐξαλλάττει τὸ φανερὸν ἡμισφαίριον ἡ ἔγγιον τοῦ θερινοῦ τροπικοῦ τῆς ἀπώτερον . ὡσαύτως δὲ καὶ ἐπὶ τοῦ μετὰ τὸν Αἰγόκερων
5766997 ἐφαψεται
, καὶ ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἀγομένη ἐφάψεται τῆς τομῆς . ἤχθω γὰρ ἐφαπτομένη ἡ ΔΖ ,
ἡ ἀπὸ τοῦ γενομένου σημείου ἐπὶ τὸ ληφθὲν σημεῖον ἐπιζευγνυμένη ἐφάψεται τῆς τομῆς . ἔστω παραβολή , ἧς διάμετρος ἡ
5764329 πλευρας
ἀπὸ τῆς διαμέτρου μονάδι ἔλαττον ἢ διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ μθʹ πρὸς κεʹ . πάλιν εἰ
, ἢ ἕως τῆς Τενέδου , ἔχων ἐκ τῆς ἑτέρας πλευρᾶς τὴν Ἴμβρον νῆσον ὑπὸ τῆς Θρᾴκης . Ὅπου στενὸς
5748598 ἀξων
, οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον
. ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ
5745678 σφαιρων
. 〚 Καὶ 〛 Ἀναξίμανδρος ὑπὸ τῶν κύκλων καὶ τῶν σφαιρῶν , ἐφ ' ὧν ἕκαστος βέβηκε , φέρεσθαι .
τῶν τοῦ εἰκοσαέδρου , καὶ ἤχθωσαν ἀπὸ τῶν κέντρων τῶν σφαιρῶν τῶν περιεχουσῶν τὰ στερεὰ σχήματα ἐπὶ τὰ ΔΕΖ ΑΒΓ
5742867 ζωδιακον
οἱ συλλαβόντες τὸν λοξὸν κύκλον τοῦ ἡλίου , τουτέστι τὸν ζωδιακὸν , ὃν ποιεῖ δι ' ἐνιαυτοῦ . Πρῶτοι δὲ
τοῖς δὲ δίς . Εἰσὶ δὲ ὁμοίως οἱ ὑπὸ τὸν ζωδιακὸν οἰκοῦντες ἀπὸ δύσεως μέχρις ἀνατολῶν ἅπαντες μέλανες τὰς χρόας
5739268 αἰωρας
χρῆσθαι ζεστοτέρῳ καὶ οἰναρίῳ συμμέτρῳ καὶ κινήσεσι ταῖς δι ' αἰώρας , φορείῳ τὸ πρῶτον καὶ καθέδρᾳ κἄπειτα ζευκτῷ ,
τὸ τοῦ παντὸς διαστήματος μέσον , ἐναιωρήματα , ἀπὸ τῆς αἰώρας , οἶμαι , τῶν ἀμφοτέρων , ὡς ἴσμεν ,
5737020 ἀξονος
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν .
5735434 κοιλοτητος
χώραν ἀπώσασθαι καὶ κατ ' εὐθὺ ποιῆσαι τῆς ὑποδεχομένης αὐτὸν κοιλότητος : ἐντεῦθεν γὰρ ἤδη καὶ οἱ περικείμενοι τῇ διαρθρώσει
οὐ βραχύ τι συντελέσει , στρεφομένης ἤδη τηνικαῦτα τῆς σιγμοειδοῦς κοιλότητος ἀπαντώσης τε τῷ πρὸς αὐτὴν ἀγομένῳ πέρατι τοῦ βραχίονος
5734201 σεληνιακης
εἶδος χωρίζεσθαι κατὰ τὴν ὑπόστασιν . οἷον ἐπεὶ εἶδος τῆς σεληνιακῆς ἐκλείψεως τὸ ἐν μέσῳ αὐτῆς καὶ τοῦ ἡλίου γεγονέναι
τὴν σεληνιακήν . καὶ ἐπειδὴ τὸ ἀπ ' αὐτῆς τῆς σεληνιακῆς ἕως ἐπὶ τὴν μέλλουσαν σύνοδον διάστημά ἐστι μοιρῶν λβʹ
5730283 πολου
ἔχρῃζον : τὸ γὰρ ὅμως ἐναντιωτικὸν ὂν παρίστησι τὸν Ταλθύβιον πολοῦ τὴν ζωὴν τιμώμενον , ὅσα καὶ φίλαυτον γέροντα :
ἐν ἱεροῖς βλασφημούντων . Ῥωπικὸν ὤνιον : ἐπὶ τῶν εὐτελῶν πολοῦ πιπρασκομένων . Σαλαμινία ναῦς : ἐπὶ τῶν ταχέων :
5724865 ΑΒΓΔ
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ
5705013 ἐφαπτομενην
τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα
παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν
5702097 διαμετρος
ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας
τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ
5695917 γραμμη
ὅταν διιστῆται , ποτὲ μὲν μία ἡ ἐπιφάνεια καὶ ἡ γραμμὴ καὶ τὸ σημεῖόν ἐστιν ἀθρόως : ὅταν γὰρ ἅπτωνται
σημείου τοῦ Ν ἐπὶ θέσει δεδομένην εὐθεῖαν τὴν ΓΔ εὐθεῖα γραμμὴ ἦκται ἡ ΝΜ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ ΝΜΔ
5694193 ΥΦ
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ
5681676 δυτικον
τὸ ἀνατολικὸν αὐτοῦ ἡμικύκλιον Καρκίνου ἀνατολικόν , κατὰ δὲ τὸ δυτικὸν Καρκίνου δυτικόν . τουτέστι , σημειωσώμεθα ἐπὶ τῶν ἡμικυκλίων
περὶ τοῦ γάμου νόει : πάντοτε δ ' Ἀφρογενὴς κέντρον δυτικὸν κατέχουσα . . . . ἐὰν δὲ ᾖ Ἀφροδίτη
5673706 ἰσημερινου
τοῦ ἰσημερινοῦ πρὸς βοῤῥᾶν μοιρῶν λξ : ἀπὸ δὲ τοῦ ἰσημερινοῦ πρὸς νότον μοιρῶν η ∠ ʹ ἢ θ γίνεται
τὸ Πράσον ὑπὸ τὸν παράλληλον τὸν ἀπέχοντα πρὸς μεσημβρίαν τοῦ ἰσημερινοῦ μοίρας ιϚʹ γʹʹ ιβʹʹ , διέστηκε δὲ τοῦ ἰσημερινοῦ
5672910 ὁμαλως
πρότερον ἄμεινον , ὡς τῶν ἀνθρώπων τὸ σῶμα τῶν μὲν ὁμαλῶς κέκρα - ται σύμπαν , ἐνίων δέ , καὶ
ἴση τῇ ΒΔ , καὶ διαπορευέσθω τὸ μὲν Ν σημεῖον ὁμαλῶς φερόμενον τὴν ΝΘ ἐν ὥραις δέκα , ἡ δὲ
5671611 στρεφεσθω
ὁ κόσμος ἀπὸ τῆς δʹ ἀνατολῆς ἐπὶ δύσιν τὴν γʹ στρεφέσθω , ὁ δὲ ἥλιος εἰς τὰ ἐναντία τῷ ζῳδιακῷ
, πόλοι δὲ αὐτῆς τὰ αʹ βʹ σημεῖα , καὶ στρεφέσθω ὁμαλῶς περὶ τὸν ἑαυτῆς ἄξονα τὸν αβʹ : λέγω
5665669 Συηνης
ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν , καὶ ἀπ ' αὐτῶν μέχρι Συήνης . , φησὶ δὴ [ . Ἵππαρχος ] τοῖς
τοῦ οἰκείου κύκλου . Δεῖ οὖν ἀναγκαίως καὶ τὸ ἀπὸ Συήνης εἰς Ἀλεξάνδρειαν διάστημα πεντηκοστὸν εἶναι μέρος τοῦ μεγίστου τῆς
5651453 ἡμικυκλιου
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω ,
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ
5643983 ἁρμονικης
. εἴπωμεν λοιπὸν περὶ τῆς μουσικῆς ὅ ἐστι περὶ τῆς ἁρμονικῆς ἀναλογίας . ἰστέον ὅτι ἐν τῇ γεωμετρικῇ ἡ ὑπεροχὴ
. Εἶτα διὰ τριῶν παραδειγμάτων , ἰατρικῆς , ποιητικῆς , ἁρμονικῆς , βούλεται ἀναιρεῖν τὰ λεγόμενα καὶ δεῖξαι ὅτι τὰ
5626377 περιφερεια
ἀναφερομένης : ἡλίκη γάρ ἐστιν ἡ μεταξὺ τῶν μερῶν τούτων περιφέρεια τούτου ἐπὶ τοῦ ὁρίζοντος , τηλικαύτη ἐστὶν ἡ κατὰ
νβ , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς ΒΛ περιφέρεια τοιούτων β νβ , οἵων ἐστὶν ὁ περὶ τὸ

Back