δὲ ἐπὶ τῆς ἑτέρας αὐτὴν λαβόντες τοῦ παραλληλογράμμου πλευρᾶς τῆς παραλλήλου τῇ κοινῇ αὐτῶν βάσει τὸ αὐτὸ ἀποδείξομεν . δύο | ||
ἔρριψα . τὸ δὲ “ ἀνείλετο λαβοῦσα ” ἢ ἐκ παραλλήλου , ὡς τὸ “ ἁγνεύσας ἐκάθηρε ” καὶ “ |
μίαν καὶ τὴν αὐτὴν εὐθεῖαν γίνεσθαι τὴν ἀπό τε τοῦ κέντρου τῆς γῆς καὶ τῆς ὄψεως τοῦ θεωροῦντος ἐπὶ τὸ | ||
τῷ κέντρῳ τριγώνου ἴσον ἔσται τῷ ἀπὸ τῆς ἐκ τοῦ κέντρου τριγώνῳ ὁμοίῳ τῷ ἀποτεμνομένῳ . ἔστω ὑπερβολὴ ἢ ἔλλειψις |
ἔχρῃζον : τὸ γὰρ ὅμως ἐναντιωτικὸν ὂν παρίστησι τὸν Ταλθύβιον πολοῦ τὴν ζωὴν τιμώμενον , ὅσα καὶ φίλαυτον γέροντα : | ||
ἐν ἱεροῖς βλασφημούντων . Ῥωπικὸν ὤνιον : ἐπὶ τῶν εὐτελῶν πολοῦ πιπρασκομένων . Σαλαμινία ναῦς : ἐπὶ τῶν ταχέων : |
τὸ Ε , ἀφ ' οὗ ἡ ἐπὶ τὸ κέντρον ἐπιζευγνυμένη πρὸς ὀρθὰς τῇ ΓΔ , πρὸς δὲ τὴν ΑΒ | ||
κύκλων , ἡ ἄρα ἀπὸ τοῦ αʹ ἐπὶ τὸ εʹ ἐπιζευγνυμένη εὐθεῖα διάμετρός ἐστι τῆς σφαίρας : ἀλλὰ καὶ ἡ |
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει | ||
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ |
. Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις | ||
ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς |
, ὀρθότατος ἔσται πρὸς ἡμᾶς : ὅταν δὲ ἐπὶ τῆς διχοτομίας τοῦ ὑπὸ γῆν τμήματος τοῦ θερινοῦ τροπικοῦ , ταπεινότατος | ||
τυχὸν σημεῖον τὸ Γ . εἰ μὲν οὖν ἐπὶ τῆς διχοτομίας ἐστὶ τὸ Γ , φανερόν ἐστι τὸ ζητούμενον . |
τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ | ||
Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η |
γὰρ τῆς σφαίρας καὶ ἐπὶ τοῦ κατὰ τὸ ἡμικύκλιον ἑτέρου σημείου τὴν μοῖραν περιαγαγούσης , αἱ αὐταὶ ἔγγιστα καιρικαὶ ὧραι | ||
γίνεται δὲ τὰ ἀπ ' ἀρχῆς ἄχρι τέλους ἀπὸ τοῦ σημείου : καὶ αὔξεται ἀπὸ τῶν περιστατικῶν : πόθεν δὲ |
κεκλιμένοι . πάλιν , ἐπεὶ ἡ ἀπὸ τοῦ Ψ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς | ||
ταπεινότατός ἐστιν . ἐπεὶ γὰρ ἡ ἀπὸ τοῦ Ϡ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς |
τούτῳ δ ' ἀκολουθεῖν τὸ ἀφεστάναι ἴσον τὰς Κασπίους πύλας Θαψάκου τε καὶ τοῦ Κασπίου : τοῦ δὲ Κασπίου πολὺ | ||
τεινούσης πλευρᾶς καὶ τῆς ἀπὸ Βαβυλῶνος καθέτου ἐπὶ τὴν διὰ Θαψάκου μεσημβρινὴν γραμμὴν ἠγμένης καὶ αὐτῆς τῆς διὰ Θαψάκου μεσημβρινῆς |
. καὶ διὰ τοῦ Θ καὶ τοῦ Ζ πόλου λοξοῦ κύκλου γεγράφθω μεγίστου κύκλου περιφέρεια ἡ ΖΘΗ . τὸ ἄρα | ||
κατὰ τὸν τοῦ ὁρίζοντος πόλον ὑποκειμένου , καὶ τοῦ ΑΒΓ κύκλου ζῳδιακοῦ πρὸς ὀρθὰς τῷ ΖΒΕ διαμένοντος . Ἐὰν δὲ |
παραλλάξεων , ὅταν μὲν τὸ κατὰ κορυφὴν σημεῖον ἐπὶ τοῦ μεσημβρινοῦ βορειότερον ᾖ τοῦ τότε μεσουρανοῦντος τοῦ διὰ μέσων τῶν | ||
εὐλογωτέρας τε καὶ ἐμφατικωτέρας παρειλήφαμεν τὰς ἀφοριζομένας ὑπό τε τοῦ μεσημβρινοῦ καὶ τῶν τοῦ διὰ μέσων ἀνατολῶν τε καὶ δύσεων |
τὸ ἔγγιστα τοῦ ἀπείρου ὅτι εἵλκετο καὶ ἐπεραίνετο ὑπὸ τοῦ πέρατος . ἀλλ ' ἐπειδὴ κοσμοποιοῦσι καὶ φυσικῶς βούλονται λέγειν | ||
τε ἀπείρου καὶ τοῦ πέρατος , κρατούσης ἀεὶ τῆς τοῦ πέρατος ἰδέας τοῦ ἀπείρου καὶ περιοριζούσης αὐτὴν ἐν ἑαυτῇ : |
τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
ὅσον διήκει τὴν πρὸς ἀνατολὴν ἐπειγόμενον , τοσοῦτον τὰ ἐκ πλαγίου ἐφ ' ἑκατέρου μέρους ὑποκείμενα διαφεύγει τῆς γῆς . | ||
καὶ ὁ γνώμων τοῦ τρυπάνου εὐχερῶς ὑπὸ τοῦ κανόνος ἐρείδηται πλαγίου τῇ γῇ ἐπικειμένου ἀντερειδούσῃ . καὶ ἡ κλίσις τῶν |
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ | ||
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν |
τῶν ἄλλων μενόντων τῶν αὐτῶν τὴν μὲν διπλῆν τῆς ΖΗ περιφερείας γίνεσθαι μοιρῶν ρλη νθ μβ καὶ τὴν ὑπ ' | ||
κύκλῳ εὐθειῶν . ιβʹ . περὶ τῆς μεταξὺ τῶν τροπικῶν περιφερείας . ιγʹ . προλαμβανόμενα εἰς τὰς σφαιρικὰς δείξεις . |
' οὗ γραφήσεται ὁ ἀφορίζων τὸ βόρειον πέρας καὶ διὰ Θούλης τῆς νήσου πίπτων . Καὶ δὴ προσεκβαλόντες τὴν ἐπ | ||
Εἶτα ὁ εἰκοστὸς πρῶτος ὁ βορειότερος , ὁ καὶ διὰ Θούλης γραφόμενος , οὗ βορειότερον οὐδὲν ἐγνωρίσθη παρὰ ἀνθρώπων , |
Ε σημεῖα . ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος , μείζων ἡ Ζ γωνία τῆς Θ γωνίας . | ||
ὁ αὐτὸς δὲ γίνεται καὶ τοῦ περὶ τὴν γῆν ὁμοίου τμήματος πρὸς τὸν ἐν αὐτῇ μέγιστον κύκλον . Οἱ μὲν |
ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν , καὶ ἀπ ' αὐτῶν μέχρι Συήνης . , φησὶ δὴ [ . Ἵππαρχος ] τοῖς | ||
τοῦ οἰκείου κύκλου . Δεῖ οὖν ἀναγκαίως καὶ τὸ ἀπὸ Συήνης εἰς Ἀλεξάνδρειαν διάστημα πεντηκοστὸν εἶναι μέρος τοῦ μεγίστου τῆς |
τουτέστι τὸ διὰ τοῦ ἄξονος ἰσοσκελὲς τοῦ διὰ τῆς ΑΖ ἰσοσκελοῦς : οὐκ ἄρα τὸ διὰ τοῦ ἄξονος ἰσοσκελὲς μέγιστόν | ||
διὰ τὸ ιεʹ πάλιν Ἀρχιμήδους θεώρημα [ παντὸς γὰρ κώνου ἰσοσκελοῦς ἡ ἐπιφάνεια , χωρὶς τῆς βάσεως , ἴση ἐστὶν |
: οὔτε γὰρ ἡ Θηβαῒς μέχρι Συήνης καὶ τῶν ἐγγὺς Μερόης οὔτε τῆς Ἰνδικῆς τὰ ἀπὸ τῆς Παταληνῆς μέχρι τοῦ | ||
κατοικοῦσιν ἐν τῇ Λιβύῃ , μέγα ἔθνος , ἀπὸ τῆς Μερόης ἀρξάμενοι μέχρι τῶν ἀγκώνων , οὐχ ὑποταττόμενοι τοῖς Αἰθίοψιν |
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ | ||
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ . |
τὴν μὲν τῶν χορδῶν κοινὴν ἀπόδεσιν , τὴν ἐκ τοῦ διαγωνίου πασσάλου , εἰς τὸν τοῦ ὀργάνου βατῆρα , ὃν | ||
πρὸ ἐκείνου τετραγώνου τοῦ δʹ , παρὰ τὸν εʹ , διαγωνίου κειμένου αὐτῷ ἑνὸς τριγώνου . ὁ δ ' ὑπὸ |
τὸ Γ , καὶ εἰλήφθω τι σημεῖον ἐπὶ τῆς ΑΒ τομῆς τὸ Δ , καὶ δι ' αὐτοῦ ἤχθω παρὰ | ||
ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς . ἔστω γὰρ τὰ αὐτὰ , καὶ τὸ Δ |
ἔλαττον ἡμισφαιρίου . Κυλίνδρου ὁπωσδηποτοῦν ὑπὸ ἑνὸς ὄμματος ὁρωμένου ἔλαττον ἡμικυλινδρίου ὀφθήσεται . ἔστω κύλινδρος , οὗ ἔστω κέντρον τῆς | ||
, ἐπὶ δὲ τῆς ΑΔ ἡμικύκλιον ὀρθὸν ἐν τῷ τοῦ ἡμικυλινδρίου παραλληλογράμμῳ κείμενον : τοῦτο δὴ τὸ ἡμικύκλιον περιαγόμενον ὡς |
δύναμιν θέσθαι τὴν ἡμετέραν σπουδάσωμεν καὶ ὥσπερ ὑπ ' ὄψιν ἀγάγωμεν . Δείκνυσι γάρ σου περιφανῶς τὴν ψυχήν , περὶ | ||
, καὶ γίνονται πεντάκις ε κε . ἐὰν τοίνυν διάμετρον ἀγάγωμεν ἐν τῷ τετραγώνῳ , ὅ ἐστι διαγώνιον , τὸ |
ἐπικύκλου ε ιγ ἔγγιστα . ἤχθω δὴ ἐπὶ τῆς ὁμοίας καταγραφῆς ἀπὸ τοῦ Κ κέντρου κάθετος ἐπὶ τὴν ΒΕ ἡ | ||
ὕστερόν ἐστι βραχυτέρα . Ἔστω γὰρ ὡς ἐπὶ τῆς δευτέρας καταγραφῆς , καὶ τῶν αὐτῶν ὑποκειμένων ὁ ἥλιος ἔν τινι |
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω , | ||
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ |
ἐὰν προσλάβωσι τὸ ἐπὶ τὴν Ταπροβάνην καὶ τοὺς ὅρους τῆς διακεκαυμένης , οὓς οὐκ ἐλάττους τῶν τετρακισχιλίων θετέον , ἐκτοπιοῦσι | ||
τε Βάκτρα καὶ τὴν Ἀρίαν εἰς τοὺς ἀπέχοντας τόπους τῆς διακεκαυμένης σταδίους τρισμυρίους καὶ τετρακισχιλίους , ὅσους ἀπὸ τοῦ ἰσημερινοῦ |
τὰς γωνίας ἐξεθέμεθα , καὶ διεγράψαμεν κατὰ τὸ εὐθεώρητον ἀντὶ κανονίου κύκλους η περὶ τὸ αὐτὸ κέντρον ἐν τῷ τοῦ | ||
προχειρότερον τὸ ὡριαῖον μέγεθος λαμβανομένης ἐκ τοῦ προκειμένου τῶν ἀναφορῶν κανονίου τῆς ὑπεροχῆς τῶν παρακειμένων ἐπισυναγωγῶν , ἡμέρας μὲν τῇ |
. Ὁμοίως δὴ δείξομεν τοῖς πρότερον καὶ ἐπὶ τοῦ ἀφανοῦς ἡμισφαιρίου . Φανερὸν δέ , ὅτι , ἐὰν μέσου ἡμέρας | ||
νουμηνίαν , τότε μηνοειδὴς ἡ σελήνη θεωρεῖται : τοῦ γὰρ ἡμισφαιρίου τοῦ πεφωτισμένου μικρὸν μέρος παρακλίνεται πρὸς τὴν ἡμετέραν ὅρασιν |
πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος | ||
. Καὶ μὴν εἰς δύο διαιρουμένων ἴσα , τοῦ μὲν περισσοῦ μονὰς ἐν μέσῳ περίεστι , τοῦ δὲ ἀρτίου κενὴ |
παρελθεῖν , ὡς ἂν ἐκ τῆς ἐναντίας ζώνης διὰ τῆς ἀοικήτου φερομένου τοῦ ποταμοῦ . μαρτυρεῖν δὲ τούτοις καὶ τὴν | ||
καὶ διατοῦτο ἔθνος Αἰθιοπικόν , ὡς παρακεῖσθαι μακρὸν ἀγκῶνα τῆς ἀοικήτου . . λέγει δὲ τὴν διακεκαυμένην . . αὐλὼν |
: λοιπαὶ γʹ , ὥστε εἶναι τὸν Ἥλιον τῆς τοῦ βορρᾶ ἀναβάσεως ἐπὶ βαθμοῦ τοῦ ἀνέμου γʹ . τοῦτο μὲν | ||
πολλὴν χίονα , ἤτοι ὅτι τοῦ Καυκάσου καταπνεομένου ἐκ τοῦ βορρᾶ πήγνυται οὗτος ὁ ποταμός . Τὸν Καύκασον περὶ τὴν |
διαστήμασιν ἐκείνοις Ἵππαρχος ἐπὶ τοῦ διὰ Μερόης καὶ Ἀλεξανδρείας καὶ Βορυσθένους μεσημβρινοῦ , μικρὸν παραλλάττειν φήσας παρὰ τὴν ἀλήθειαν . | ||
Καρίας παράπλουν καὶ Ἰωνίας μέχρι τῆς Τρωιάδος καὶ Βυζαντίου καὶ Βορυσθένους . λαβόντες οὖν τὰ διαστήματα γνώριμα καὶ πλεόμενα σκοποῦσι |
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ | ||
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν . |
, ὄρος συνεχὲς τῷ Ἀμανῷ , καὶ ἡ Ῥωσὸς μεταξὺ Ἰσσοῦ καὶ Σελευκείας ἱδρυμένη . ἐκαλεῖτο δ ' ἡ Σελεύκεια | ||
μέχρι τοῦ Κύδνου κατηγάγομεν , τὴν αὐτὴν ἀποφαίνομεν τῇ μέχρι Ἰσσοῦ , οὐδὲν παρὰ τοῦτο ποιούμενοι , καὶ τὸν Ταῦρόν |
γζʹ αἱ γʹ νικῶσιν . γηʹ αἱ ηʹ νικῶσιν . γθʹ αἱ γʹ νικῶσιν . δδʹ ὁ ἐγκαλούμενος νικᾷ καὶ | ||
ἐστὶν ἡμίσους ζῳδίου . Καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ γθʹ , καὶ ἡ ηγκʹ , καὶ ἔτι ἥ τε |
εἰ δέ τις ἄλλως θεωρίας ἕνεκεν καὶ περὶ τῶν ἔτι βορειοτέρων ἐγκλίσεων ἐπιζητοίη τινὰ τῶν ὁλοσχερεσλδʹ τέρων συμπτωμάτων , εὕροι | ||
ὁρίζοντος , ἀλλ ' ἕνα τῶν παραλλήλων αὐτῷ καὶ ἤτοι βορειοτέρων ἢ νοτιωτέρων . ὡμολόγηται δέ γε ὑπὸ πάντων ἁπλῶς |
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
τὸ ἀνατολικὸν αὐτοῦ ἡμικύκλιον Καρκίνου ἀνατολικόν , κατὰ δὲ τὸ δυτικὸν Καρκίνου δυτικόν . τουτέστι , σημειωσώμεθα ἐπὶ τῶν ἡμικυκλίων | ||
περὶ τοῦ γάμου νόει : πάντοτε δ ' Ἀφρογενὴς κέντρον δυτικὸν κατέχουσα . . . . ἐὰν δὲ ᾖ Ἀφροδίτη |
πολλάκις δυόμενος ἢ ἀνατέλλων φαντασίαν ἡμῖν ἀποπέμπει ὡς ψαύων τῆς κορυφῆς , τοσαύτας μυριάδας ἀφεστὼς ἀπὸ παντὸς μέρους τῆς γῆς | ||
βάσεις ἴσας ἔχῃ , ἔχῃ δὲ καὶ τὰς ἀπὸ τῆς κορυφῆς ἐπὶ τὴν διχοτομίαν τῆς βάσεως ἠγμένας εὐθείας ἴσας , |
κύκλου καὶ τοῦ ἰσημερινοῦ , πλείονα χρόνον ὑπὲρ τὸν ὁρίζοντα ἐνεχθήσεται τοῖς πρὸς μεσημβρίαν ἢ τοῖς πρὸς ἄρκτον οἰκοῦσιν . | ||
ἄνωθεν ἀρχὴν μόνην ἀποτέμοις τοῦ μυός , ἐπὶ τὸ πέρας ἐνεχθήσεται , καὶ εἰ τὴν κάτω τελευτήν , ἐπὶ τὴν |
ἀπὸ δὲ τοῦ κέντρου τῆς σφαίρας ἐπ ' αὐτὸν κάθετος ἀχθῇ καὶ ἐκβληθῇ ἐπ ' ἀμφότερα τὰ μέρη , ἐπὶ | ||
' αὐτῆς σημεῖον ληφθῇ ὡς τὸ Γ , κάθετος δὲ ἀχθῇ ἡ ΓΔ , ἴσον εἶναι τὸ ὑπὸ Ρ , |
ἀδύνατον . οὐκ ἄρα τὸ Γ σημεῖον κέντρον ἐστὶ τῆς σφαίρας . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλο πλὴν | ||
ΑΒΓΔ κύκλον καὶ διὰ τοῦ κέντρου αὐτοῦ τε καὶ τῆς σφαίρας . Ἐν σφαίρᾳ οἱ μέγιστοι κύκλοι δίχα τέμνουσιν ἀλλήλους |
ΓΕ ἴση ἡ ΔΖ , καὶ ἐπεζεύχθω ἡ ΓΖ : παράλ - ληλος ἄρα ἐστὶν τῇ ΔΕ , καὶ συμπίπτει | ||
ὑπὸ ἐπιπέδου τοῦ ΑΓ τέμνεται , αἱ κοιναὶ αὐτῶν τομαὶ παράλ - ληλοί εἰσιν . παράλληλος ἄρα ἐστὶν ἡ ΑΒ |
καὶ θεωρία ἐκεῖνο . Ἡ ἄρα πρᾶξις ἕνεκα θεωρίας καὶ θεωρήματος : ὥστε καὶ τοῖς πράττουσιν ἡ θεωρία τέλος , | ||
ἀνεκλείπτου περιφερείας δεδειγμέναις μοίραις ρνζ , ὡς ἐπὶ τοῦ προκειμένου θεωρήματος σελήνης , ἑκατέρα τῶν ΕΓΗ , ΖΑΘ περιφερειῶν [ |
τοῦ αὐτοῦ σημείου τοῦ ἰσημερινοῦ ἀπό τινος τμήματος ἤτοι τοῦ ὁρίζοντος ἢ τοῦ μεσημβρινοῦ ἐπὶ τὸ αὐτὸ ἀποκατάστασις , νυχθήμερον | ||
αὐτὰ δειχθήσεται καὶ ὅταν ὁ πόλος τῶν παραλλήλων ἐπὶ τοῦ ὁρίζοντος ᾖ , καὶ γραφομένων διὰ τῶν Κ , Θ |
εὐλόγου γεννῶντες αὐτῶν τὰς διαφοράς , ἔπειτα προσάγοντες διὰ τοῦ κανόνος ταῖς ἀπὸ τῶν φαινομένων μαρτυρίαις , ἀλλὰ ἀνάπαλιν πρότερον | ||
ὅλου χρῆσίς τε καὶ ἀνάκρισις γίνοιτο τῶν λόγων διὰ πεντεκαιδεκαχόρδου κανόνος . Μέθοδοι πρὸς τὴν διὰ μόνων τῶν ὀκτὼ φθόγγων |
σμύρνα , σίδιον αὖον . Ἕτερον : ἄνθος χαλκοῦ ὀπτὸν ἡμιμοίριον , σμύρνης δύο ἡμιμοίρια , κρόκου τρεῖς μοῖραι , | ||
κατήντησεν . ἡ μεταφορὰ ἀπὸ τῶν καθορμιζομένων πλοίων εἴρηται . ἡμιμοίριον : τὸ ἥμισυ τῆς δραγμῆς . ἠρύγγη , πόλιον |
ἑτέρῳ ἡμισφαιρίῳ τῷ τοῦ ἀέρος τοῦ θερμομιγοῦς πεπληρωμένῳ , ἀπὸ κυκλοτεροῦς τῆς γῆς κατ ' ἀνάκλασιν γιγνομένην εἰς τὸν ἥλιον | ||
] ὑφαίνει [ : κατασκευάζει ] . περιηγέος [ : κυκλοτεροῦς λίμνης , ] ἥτις ἐστὶν ἐν Δήλῳ . ἀγρώσσουσα |
, ἐνεργείᾳ δὲ λίθον εἶναι , καὶ τὸ ἥμισυ τῆς γραμμῆς δυνάμει τελείαν γραμμήν , καὶ σῖτον δυνάμει ἁδρὸν τὸν | ||
καὶ ἐπὶ τῶν γεγονότων : ὡς γὰρ ἡ στιγμὴ πέρας γραμμῆς , οὕτω τὸ γεγονὸς πέρας ἐστὶ τῆς γενέσεως . |
ἀπογείου τοῦ ἐκκέντρου ὄντος , τῆς δὲ σελήνης μεταξὺ τοῦ ἀπογείου καὶ περιγείου τοῦ ἐπικύκλου οὔσης , διαφοραὶ τῶν τοιούτων | ||
ἣν ἡ μέση κίνησίς ἐστιν , καὶ τεταρτημόριον ἀπὸ τοῦ ἀπογείου τοῦ φαινομένου . Καὶ πάλιν αἱ πρὸς τῷ Β |
, ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ | ||
δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ |
ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
. ) Ὅτι ὁ Ἀντίοχος διὰ στρατηγήματος ἀμφιδοξουμένου ἐκυρίευσε τοῦ Πηλουσίου . πᾶς γὰρ πόλεμος ἐκβεβηκὼς τὰ νόμιμα καὶ δίκαια | ||
δὲ θαυμάζειν , πῶς ἐθάρρησεν εἰπεῖν ἑξακισχιλίων σταδίων τὸ ἀπὸ Πηλουσίου εἰς Θάψακον , πλειόνων ὄντων ἢ ὀκτακισχιλίων , οὐκ |
τῆς μοναδικῆς . οὔτε οὖν διάστημα χρὴ καλεῖν τὴν τοῦ διαστήματος γεννητικὴν ἀρχὴν οὔτε μόρια τοῦ διαστήματος ἐπινοεῖν , ἀφ | ||
καὶ τῆς εὐθείας μέρος τὸ κατὰ τούτου μὲν φερόμενον τοῦ διαστήματος , μὴ κυκλογραφοῦν δέ . ὅπερ ἐστὶν ἄτοπον . |
ἐλάσσων ἡ αδʹ , τοῦτο γὰρ φανερόν : ἡ ἄρα αδʹ εὐθεῖα ἐλαχίστη ἐστὶ πασῶν τῶν ἀπὸ τοῦ δʹ πρὸς | ||
ὁρίζοντι . Συμβαλλέτω κατὰ τὸ λʹ σημεῖον καὶ ἐπεζεύχθωσαν αἱ αδʹ δλʹ αγʹ . Ἐπεὶ ἐν σφαίρᾳ μέγιστος κύκλος ὁ |
Ἐπὶ δὲ τοῦ ιβʹ θεωρήματος φανερὸν ὅτι ἐπὶ μόνης τῆς λοξῆς θέσεως συμβαίνει τε καὶ ἁρμόζει . [ Δεῖ μέντοι | ||
ἰσοκώλους ἔχει . παρεκτεινούσης δ ' αὐτῆς παρὰ τὴν Εὐρώπην λοξῆς , τὸ μὲν ἐλάχιστον ἀπὸ τῆς ἠπείρου διεστηκὸς ἀκρωτήριον |
Ἀνδρομέδας ἀστέρων καὶ ἐκ τοῦ παρακειμένου αὐτῷ ἀπ ' ἄρκτου Τριγώνου . λέγει γὰρ οὕτως περὶ αὐτοῦ : καὶ Κριοῖο | ||
ἐπιζευγνυμένη εὐθεῖα παρὰ τὴν λοιπὴν ἔσται τοῦ τριγώνου πλευράν . Τριγώνου γὰρ τοῦ ΑΒΓ παράλληλος μιᾷ τῶν πλευρῶν τῇ ΒΓ |
συνεγγίζων τῷ Ε σημείῳ κατὰ τὸ πλάτος ἀπὸ τῆς ΕΖ διαστάσεως φαίνηται πρώτως , ὁ τούτου πλέον ἀφεστὼς ἀπ ' | ||
καὶ πρῶτον ἐπὶ τῆς ἐν ἀρχαῖς τοῦ Σκορπίου μεγίστης ἑσπερίας διαστάσεως . ἔστω γὰρ ἡ διὰ τοῦ Α ἀπογείου διάμετρος |
ἑνὸς σημείου μετ ' ὀλίγων καβαλλαρίων , τοὺς δὲ ἐκ πλαγίων ἑκατέρωθεν αὐτῆς περιπατεῖν , ἵνα μὲν καὶ σκουλκεύουσιν καὶ | ||
. Εἰ δὲ καὶ βαρυθῶσιν ὑπὸ τῶν ἐχθρῶν διὰ τῶν πλαγίων καὶ τοῦ νώτου τῆς παρατάξεως προστρέχειν , καὶ μὴ |
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ | ||
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ |
, ἡ δὲ ἐπ ' εὐθείας αὐτῇ ἐκτός . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον , | ||
ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ κῶνος ἔσται . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον , |
ζῳδιακὸν τῶν μεγίστων εἶναι ἐν τῇ σφαίρᾳ κύκλων , καὶ διχοτομεῖσθαι τὴν σφαῖραν ὑφ ' ἑκατέρου αὐτῶν , καὶ τὸ | ||
ἀστὴρ ἐπέχει τοῦ Αἰγόκερω μοῖραν αʹ : οὐκ ἄρα δυνατὸν διχοτομεῖσθαι αὐτὸν ὑπὸ τοῦ προειρημένου κύκλου . ὁμοίως δὲ καὶ |
ἱκέτης αὐτοῦ γεγονὼς λόγος ὀνομάζεται Λευίτης : τοῦτον ἐκ τοῦ μεσαιτάτου καὶ ἡγεμονικωτάτου τῆς ψυχῆς λαβών , τουτέστι προσλαβόμενος καὶ | ||
τὸ βλέφαρον . καὶ ὁ μὲν ἀνοίγων μῦς κατὰ τοῦ μεσαιτάτου βλεφάρου τέτακται πανσόφως ὑπὸ τῆς φύσεως τοῦτο μηχανευσαμένης . |
ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς ἐφαπτομένης τὸ μεταξὺ τῆς ἁφῆς καὶ τῆς ἀνηγμένης πρὸς τὸ | ||
οὕτως τὸ περιεχόμενον ὑπὸ τῶν μεταξὺ τῆς τομῆς καὶ τῆς ἐφαπτομένης πρὸς τὸ ἀπὸ τῆς ἀπολαμβανομένης πρὸς τῇ ἁφῇ τετράγωνον |
τοῦ ἰσημερινοῦ πρὸς βοῤῥᾶν μοιρῶν λξ : ἀπὸ δὲ τοῦ ἰσημερινοῦ πρὸς νότον μοιρῶν η ∠ ʹ ἢ θ γίνεται | ||
τὸ Πράσον ὑπὸ τὸν παράλληλον τὸν ἀπέχοντα πρὸς μεσημβρίαν τοῦ ἰσημερινοῦ μοίρας ιϚʹ γʹʹ ιβʹʹ , διέστηκε δὲ τοῦ ἰσημερινοῦ |
προσπέσῃ ὄψις ἴσας ποιοῦσα γωνίας , αὐτὴ δι ' ἑαυτῆς ἀνακλασθήσεται . ἔστω ἔνοπτρον ἐπίπεδον τὸ ΑΓ , ὄμμα δὲ | ||
παράλληλος ἤχθω ἡ ΖΗ . λέγω , ὅτι ἡ ΖΗ ἀνακλασθήσεται πρὸς ἴσην γωνίαν μεταξὺ τῶν Ε , Θ . |
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ | ||
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν : |
τοῦ ἰσημερινοῦ πόλος τὸ Γ , καὶ γεγράφθω τοῦ διὰ μέσων τῶν ζῳδίων κύκλου δύο τμήματα τό τε ΑΔΕ καὶ | ||
μοίρας ε με , βορειότερον δ ' ἦν τοῦ διὰ μέσων μοίραις ε , ἐφαίνετο δ ' ἐν Ἀλεξανδρείᾳ κατὰ |
τὸ καὶ Ὄκριον ἄκρον ιβʹ ναʹ ∠ ʹʹ Τῆς ἐφεξῆς μεσημβρινῆς πλευρᾶς περιγραφὴ , ᾗ ὑπόκειται Πρεττανικὸς Ὠκεανός : μετὰ | ||
ἐν παντὶ τόπῳ καὶ χρόνῳ δείκνυται προχείρως ἥ τε τῆς μεσημβρινῆς γραμμῆς θέσις , καὶ διὰ ταύτης αἱ τῶν ἀνυομένων |
ἐπέχουσα : τὸ δ ' ἑωθινὸν τῷ Ῥήνῳ ποταμῷ περιγραφομένη παράλληλον ἔχοντι τὸ ῥεῦμα τῇ Πυρήνῃ : τὸ δὲ νότιον | ||
ἂν εἶεν καὶ οἱ ἀπὸ Μασσαλίας ἐπὶ τὸν διὰ Βορυσθένους παράλληλον , ὅς γε διὰ τῆς Κελτικῆς παρωκεανίτιδος ἂν εἴη |
ἐπ ' Ἀμμωνίους ἀποσταλέντες στρατεύεσθαι , ἐπείτε ὁρμηθέντες ἐκ τῶν Θηβέων ἐπορεύοντο ἔχοντες ἀγωγούς , ἀπικόμενοι μὲν φανεροί εἰσι ἐς | ||
τρισχιλίων , ὅσον δέ τι ἀπὸ θαλάσσης ἐς μεσόγαιαν μέχρι Θηβέων ἐστί , σημανέω : στάδιοι γάρ εἰσι εἴκοσι καὶ |
εἶδός ἐστιν , εἰς τὸ κοινὸν ὂν ἕκαστον ἀναφέρεται , ἐκπίπτον δ ' αὐτῆς καὶ τοῦ ὄντος ἐκπίπτει ἁπλῶς εἰς | ||
. ὁρίζων δὲ καλείσθω τὸ διὰ τῆς ὄψεως ἡμῶν ἐπίπεδον ἐκπίπτον εἰς τὸν κόσμον καὶ ἀφορίζον τὸ ὑπὲρ γῆν ὁρώμενον |
πνεῖ . ιʹ . ὡρῶν ιε : ὁ λαμπρὸς τοῦ βορείου Στεφάνου ἑῷος ἀνατέλλει . Ἱππάρχῳ νότος . ιαʹ . | ||
τινες ποιοῦντες , εἰ μὲν ἄῤῥεν τις βουληθείη τεχθῆναι , βορείου ὄντος τοῦ ἀέρος τὴν ὀχείαν κατασκευάζουσιν : εἰ δὲ |
τὸ μὲν ἀπὸ τῆς Συήνης , ἥπερ ἐστὶν ὅριον τοῦ θερινοῦ τροπικοῦ , εἰς Μερόην εἰσὶ πεντακισχίλιοι , τὸ δ | ||
[ τὰς ] ἄρκτους αὐτοῦ κείμενος μικρῷ βορειότερός ἐστι τοῦ θερινοῦ τροπικοῦ : καὶ τῶν ἐν τοῖς μηροῖς καὶ σκέλεσι |
ἐν τῷ ιγʹ βιβλίῳ τῶν στοιχείων ἤτοι τῆς συστάσεως τοῦ δωδεκαέδρου , ὅτι ἡ ἀπὸ τοῦ Κ κάθετος ἀγομένη ἐπὶ | ||
ποτε ζητοῦντες τὸ ὑπὸ Ἀπολλωνίου συγγραφὲν περὶ τῆς συγκρίσεως τοῦ δωδεκαέδρου καὶ τοῦ εἰκοσαέδρου τῶν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφομένων |
: ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου , | ||
τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ |
. Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ | ||
τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου |
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
Μεγαλοπολίτης τὴν εἴλην ἔταξεν ἐξ ἱππέων ξδ μήτε ζυγούντων μήτε στοιχούντων : καὶ διὰ τί τῶν ἱππέων ἡ μὲν ἐπὶ | ||
καὶ γενήσεται ἡ εἴλη ἐκ ζυγούντων μέν , οὐκέτι δὲ στοιχούντων . Τάσσονται δὲ αἱ εἶλαι , ὥσπερ τὰ ψιλά |
πρὸς ὀρθὰς γωνίας τέμνει , τέσσαρα μὲν ἔσται σημεῖα τοῦ λοξοῦ κύκλου , δύο μὲν τὰ ὑπὸ τοῦ ἰσημερινοῦ κατὰ | ||
τὸ κέντρον τῆς σελήνης ἐν ἀμφοτέραις ταῖς ἐκλείψεσιν ἐπὶ τοῦ λοξοῦ κύκλου , τουτέστιν ἡ μὲν ΑΕ μοιρῶν θ καὶ |
οἱ μακρότατοι αὐτῶν πηχέων δύο , οἱ δὲ πλεῖστοι ἑνὸς ἡμίσεως πήχεος . κόμην δὲ ἔχουσι μακροτάτην μέχρις ἐπὶ τὰ | ||
ἔχῃ : Χίῳ δ ' ἐγκεράσας τάδε μίγματα πικρὸν ἐχίδνης ἡμίσεως δραχμῆς ἰὸν ἀποσκεδάσεις : τῷ δὲ ποτῷ καὶ δεινὰ |
τὸ ὕψωμα τῆς ῥινός : εἶθ ' ὑπὸ λοβὸν ὠτὸς ἀντικειμένου καὶ ἐπὶ ἰνίον . ταύτῃ τῇ ἐπιδέσει ἔνιοι καὶ | ||
οὐκ ἐκ τοῦ αὐτοῦ μέρους , ἀλλ ' ἐκ τοῦ ἀντικειμένου καὶ ἀντεστραμμένου , ἀμφοτέροις τε περιλαμβάνοντες ἀναβαλοῦμεν . ἰστέον |
πάσχοντος διεκβάλλονται χεῖρες , διὰ δὲ τοῦ λοιποῦ τῆς καιρίας χαλάσματος ἀσφαλίζεται τὸ σῶμα . Ἕνεκα τῆς πλοκῆς τῶν ὤτων | ||
παρειμένη ἐᾶται . καὶ ἀπὸ μὲν τοῦ ἀντικειμένου τῆς καιρίας χαλάσματος μικρὸν πλέκεται ἀγκύλιον καὶ κατὰ τῆς ἀριστερᾶς τίθεται χειρός |
τὸ φαινόμενον τῆς σελήνης ὥστε ἐφάπτεσθαι . . . τοῦ ἡλιακοῦ κατὰ τὸ Ζ σημεῖον , ἡ ΑΕ περιφέρεια ἣν | ||
ἐστὶν ὁ ΕΖΗΘ κύκλος τξ , τοιούτων ἐπὶ μὲν τοῦ ἡλιακοῦ ἀποστήματος ἔσται # α κε , ἐπὶ δὲ τῶν |
, τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν | ||
τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν |
. ἀπὸ τῆς δυνούσης μοίρας λαβὼν κατὰ τὰς ἀναφορὰς τοῦ κλίματος ἕως τοῦ διαμέτρου τούτων τὴν ἡμίσειαν ἀπόλυε ἀπὸ τῆς | ||
τὸν ζωτικὸν ἀπολήψεται χρόνον καὶ τὴν ποσότητα κατὰ τὴν τοῦ κλίματος ἁρμονίαν : ὅτε δέ τις κατὰ μόνας αὐτοὺς ἀνακυκλήσῃ |
ἀπὸ μικρᾶς πράξεως τὸ ἦθος : ὁμοία , Ἐκ τοῦ κρασπέδου τὸ πᾶν ὕφασμα : Ἐκ γεύματος γινώσκεις : Τὸν | ||
τὸ αὐτὸ ἀεὶ συνέβαινε . καὶ οὕτω δὴ ἀπὸ τοῦ κρασπέδου θοἰμάτιον , εἰ δὲ βούλει , τὸν λέοντα ἀπὸ |
τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
ἄλλοτε δύνων . Ἐν γὰρ τούτοις τὴν πάροδον ἀφορίζει τοῦ ζῳδιακοῦ κύκλου , ἣν ποιεῖται κατὰ πλάτος ἐπὶ τῆς ἀνατολῆς | ||
' ἥλιον καὶ σελήνην * * τὴν δὲ λόξωσιν τοῦ ζῳδιακοῦ γενέσθαι τῷ κεκλίσθαι τὴν γῆν πρὸς μεσημβρίαν : τὰ |
καὶ ἐὰν μὲν ὁ λόγος ᾖ ἴσος πρὸς ἴσον , παραβολῆς , ἐὰν δὲ ἐλάσσων πρὸς μείζονα , ἐλλείψεως , | ||
ΓΔ τῇ ΔΕ . δεῖξαι , ὅτι τὸ Δ ἅπτεται παραβολῆς . ἤχθω κάθετος ἡ ΓΖ : θέσει ἄρα ἐστί |
ἐστίν . μόνοι δὴ λοιπὸν δοκοῦσι καθικνεῖσθαι τῆς ἐννοίας τοῦ δεδομένου οἱ γνώριμον ἅμα καὶ πόριμον αὐτὸ εἶναι ἀποφηνάμενοι : | ||
ἐστὶ καὶ ἡ ὑπὸ τῶν ΑΕΓ γωνία . Ἐὰν κύκλου δεδομένου τῇ θέσει ἐπὶ τῆς περιφερείας δοθὲν σημεῖον ληφθῇ , |
τῶν πρὸς Ἀδαῖον ποτήρια , φησί , παραπλήσια Σελευκίς , Ῥοδιάς , Ἀντιγονίς . ΣΚΑΛΛΙΟΝ κυλίκιον μικρόν , ᾧ σπένδουσιν | ||
Μενδαῖος Ἰουδαῖος . Ῥοδία , πόλις Λυκίας . τὸ ἐθνικὸν Ῥοδιάς Ῥοδιεύς . καὶ τῆς Ῥόδης Ῥοδεύς . ἄμεινον δὲ |
εἰκοσάεδρον , καὶ ἔστω ἓν μὲν τοῦ δωδεκαέδρου πεντάγωνον τὸ ΓΔΕΖΗ , τοῦ εἰκοσαέδρου δὲ τρίγωνον τὸ ΚΛΘ . λέγω | ||
δεκαπέντε τοῖς ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ περὶ τὸ ΓΔΕΖΗ κύκλου : ὥστε καὶ τὸ ἓν τῷ ἑνὶ ἴσον |
ἐν τῇ ἑτέρᾳ ἐπιφανείᾳ τοῦ τυμπάνου περὶ τὸν κότραφον ὁμοίως γραφομένου τοῦ ΧΩ κύκλου , καὶ ἀπὸ τοῦ Σ τῇ | ||
, καίπερ ἐκ τοῦ εἴδω τοῦ διὰ τῆς ει διφθόγγου γραφομένου γεγονός : ἰθμός : ἱστίον : ἴσπω : ἴσχω |
. Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
τῶν ΓΒ ΒΖ . καὶ γὰρ τοῦτο φανερὸν ἐκ τῶν προδεδειγμένων . ιδʹ . Πάλιν ἔστωσαν δύο εὐθεῖαι αἱ ΑΒ | ||
τοσαῦτα καὶ περὶ τὴν τοῦ κυλίνδρου τομὴν ἐκ τῶν ἐνταῦθα προδεδειγμένων εὑρήσει συμβαίνοντα . διόπερ τούτου μὲν ἀποστάς , ὀλίγα |