τὴν μὲν τῶν χορδῶν κοινὴν ἀπόδεσιν , τὴν ἐκ τοῦ διαγωνίου πασσάλου , εἰς τὸν τοῦ ὀργάνου βατῆρα , ὃν | ||
πρὸ ἐκείνου τετραγώνου τοῦ δʹ , παρὰ τὸν εʹ , διαγωνίου κειμένου αὐτῷ ἑνὸς τριγώνου . ὁ δ ' ὑπὸ |
τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ | ||
Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η |
τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον | ||
ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου |
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει | ||
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ |
πολλάκις δυόμενος ἢ ἀνατέλλων φαντασίαν ἡμῖν ἀποπέμπει ὡς ψαύων τῆς κορυφῆς , τοσαύτας μυριάδας ἀφεστὼς ἀπὸ παντὸς μέρους τῆς γῆς | ||
βάσεις ἴσας ἔχῃ , ἔχῃ δὲ καὶ τὰς ἀπὸ τῆς κορυφῆς ἐπὶ τὴν διχοτομίαν τῆς βάσεως ἠγμένας εὐθείας ἴσας , |
καὶ ἐὰν μὲν ὁ λόγος ᾖ ἴσος πρὸς ἴσον , παραβολῆς , ἐὰν δὲ ἐλάσσων πρὸς μείζονα , ἐλλείψεως , | ||
ΓΔ τῇ ΔΕ . δεῖξαι , ὅτι τὸ Δ ἅπτεται παραβολῆς . ἤχθω κάθετος ἡ ΓΖ : θέσει ἄρα ἐστί |
δὲ ἐπὶ τῆς ἑτέρας αὐτὴν λαβόντες τοῦ παραλληλογράμμου πλευρᾶς τῆς παραλλήλου τῇ κοινῇ αὐτῶν βάσει τὸ αὐτὸ ἀποδείξομεν . δύο | ||
ἔρριψα . τὸ δὲ “ ἀνείλετο λαβοῦσα ” ἢ ἐκ παραλλήλου , ὡς τὸ “ ἁγνεύσας ἐκάθηρε ” καὶ “ |
τοῦ ἀπὸ τῆς ΑΜ κύβου πρὸς τὸν ἀπὸ τῆς ΜΗ κύβον . ἀλλ ' ὡς μὲν ἡ ΓΜ πρὸς ΜΗ | ||
προσδήσαντες εἶτα μέντοι ἀπαλλάττονται , τοῦτο δήπου τὸ λεγόμενον ἀτεχνῶς κύβον ἀναρρίψαντες . οἱ δὲ τίγρεις ἐντυχόντες αὐταῖς , ἀθηρίᾳ |
ιϚ , ὅπερ ἴσον ἐστὶ τῷ δʹ τοῦ ἀπὸ τῆς ἐλάσσονος κατὰ μῆκος . καὶ τὰ λοιπὰ τὰ ἐκ τῆς | ||
διποδίας : τὸ δεύτερον ἐκ διιάμβου καὶ ἰωνικοῦ ἀπ ' ἐλάσσονος δίμετρον ἀκατάληκτον ἢ ἰαμβικὸν ἑφθημιμερές : τὸ τρίτον ἰαμβικὸν |
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
ΓΕ ἴση ἡ ΔΖ , καὶ ἐπεζεύχθω ἡ ΓΖ : παράλ - ληλος ἄρα ἐστὶν τῇ ΔΕ , καὶ συμπίπτει | ||
ὑπὸ ἐπιπέδου τοῦ ΑΓ τέμνεται , αἱ κοιναὶ αὐτῶν τομαὶ παράλ - ληλοί εἰσιν . παράλληλος ἄρα ἐστὶν ἡ ΑΒ |
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ | ||
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν : |
πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος | ||
. Καὶ μὴν εἰς δύο διαιρουμένων ἴσα , τοῦ μὲν περισσοῦ μονὰς ἐν μέσῳ περίεστι , τοῦ δὲ ἀρτίου κενὴ |
δὲ τρία τῶν τεσσάρων πρῶτα . καὶ ἄλλως : πᾶν τετράγωνον εἰς δύο τρίγωνα ὀρθογώνια διαιρεῖται : ὥστε ἀναιρουμένου τοῦ | ||
ʂ α . λοιπόν ἐστι καὶ τὸν ἀπὸ τοῦ ἐλάσσονος τετράγωνον τῆς ὑπεροχῆς αὐτῶν εἶναι Ϛπλ . : ΔΥ ἄρα |
τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ | ||
ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ |
τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
κόρακα εἰς τὸ κατάλληλον τρῆμα . ἡ κοινὴ τοῦ τονίου πλινθίου κατασκευή ἐστιν αὕτη , ἐγὼ δὲ καὶ ἄλλως τὸ | ||
τοῦ τρίτου . οἱ δ ' ἐκ τῆς τρίτης τοῦ πλινθίου ἀριθμοὶ οἱ Ϛʹ δʹ αʹ τὴν μεσότητα περιέχουσιν αὐτήν |
αη ηβ : καὶ ἐπεὶ τὸ γδ τοῦ εζ ἐστι τριπλάσιον , ἴσον δὲ τὸ αη τῷ γδ , καὶ | ||
, πρῶτον διπλάσιον ἐν ἑνὶ στίχῳ , εἶτα ἐν δευτέρῳ τριπλάσιον , εἶτα τετραπλάσιον ἐν τρίτῳ καὶ μέχρι δεκαπλασίων , |
ἀπὸ τῆς διαμέτρου μονάδι ἔλαττον ἢ διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ μθʹ πρὸς κεʹ . πάλιν εἰ | ||
, ἢ ἕως τῆς Τενέδου , ἔχων ἐκ τῆς ἑτέρας πλευρᾶς τὴν Ἴμβρον νῆσον ὑπὸ τῆς Θρᾴκης . Ὅπου στενὸς |
. Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις | ||
ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς |
ἐπειδὴ τὸν μὲν κε ὁ ε ἐποίησεν ἐφ ' ἑαυτὸν πολλαπλασιασθείς , τὸν δὲ μθ ὁ ζ . οἱ δὲ | ||
ὁ γ τὸν θ , οὔτε μετ ' ἄλλου τινὸς πολλαπλασιασθείς . Μέρη λέγω τοὺς ὑπολόγους , ὑποεπιτρίτους , ὑποεπιτετάρτους |
πρώτην δὲ προηγουμένην αἰτίαν εἶναι καὶ τοῦ πλάνου καὶ τῆς ἕλικος τὴν κατὰ λοξοῦ τοῦ ζῳδιακοῦ κύκλου κίνησιν : καὶ | ||
βουλήσεσιν , ὥς φησι Διονύσιος . Σ . Ο : ἕλικος : Τὸ ἁπλοῦν ἀντὶ συνθέτου , ὡς καὶ Διονύσιός |
λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν . Ἅπαξ ἄρα τὰ ἐλάσσονα , ἤτοι τὸν π | ||
κβ . Δεῖ τοίνυν τὸν ἀπὸ τῆς ὑπεροχῆς αὐτῶν τετράγωνον Ϟόν , ἤτοι καθ ' ὑπόθεσιν τὸν ιϚ , ἐλάττονα |
τὰ οὖν ΗΘ ΘΙ τμήματα ἐλάττω ἐστὶ τοῦ περὶ τὴν ΗΙ τμήματος τοῖς τμήμασι [ καὶ ] τοῖς ὑπὸ τοῦ | ||
τμήμασιν ἀπὸ τοῦ ἐντὸς κύκλου . τὸ γὰρ ἐπὶ τῆς ΗΙ τμῆμα ἴσον ἦν τοῖς τε ΗΘ ΘΙ τμήμασι καὶ |
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
ὅσον διήκει τὴν πρὸς ἀνατολὴν ἐπειγόμενον , τοσοῦτον τὰ ἐκ πλαγίου ἐφ ' ἑκατέρου μέρους ὑποκείμενα διαφεύγει τῆς γῆς . | ||
καὶ ὁ γνώμων τοῦ τρυπάνου εὐχερῶς ὑπὸ τοῦ κανόνος ἐρείδηται πλαγίου τῇ γῇ ἐπικειμένου ἀντερειδούσῃ . καὶ ἡ κλίσις τῶν |
τετραγώνου : καί ἐστιν ὁ κύλινδρος ἐλάττων τοῦ πρίσματος τοῦ ἀνασταθέντος ἀπὸ τοῦ περὶ τὸν ΑΒΓΔ κύκλον περιγραφέντος τετραγώνου : | ||
ἐπὶ τοῦ ΑΒΓΔ ἄρα τετραγώνου ἀνασταθὲν πρίσμα ἥμισύ ἐστι τοῦ ἀνασταθέντος πρίσματος ἀπὸ τοῦ περὶ τὸν ΑΒΓΔ κύκλον περιγραφέντος τετραγώνου |
ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
προσλαβὸν τὴν ἡμίσειαν τῆς ὅλης πενταπλάσιον δύναται τοῦ ἀπὸ τῆς ἡμισείας τετραγώνου : ὅπερ ἔδει δεῖξαι . Ἐὰν εὐθεῖα γραμμὴ | ||
ἐνδεχομένου καὶ ἀναγκαίου , ὅτι πάντες ἀτελεῖς καὶ τὸ ἐξ ἡμισείας ἐνδεχόμενον συνάγουσι . Καὶ τελειοῦνται διὰ τῶν πρώτων σχημάτων |
τετάρτης ἴσον ἐστὶ τῷ ὑπὸ τῆς δευτέρας καὶ τρίτης , πολλαπλασιάζομεν τὴν τοῦ Ϛ πλευρὰν μετὰ τῆς εὑρεθείσης μέσης , | ||
παραδείγματα τὰ καὶ ἐν τῷ προλαβόντι κεʹ ληφθέντα θεωρήματι : πολλαπλασιάζομεν αὐτὰς πρὸς ἀλλήλας καὶ τοῦ ὑπ ' αὐτῶν γινομένου |
: λευρὸν οἱ μὲν τὸ πλατύ : βέλτιον δὲ τὸ πλάγιον ἀκούειν , ἵνα νοήσωμεν οὐχὶ τὸ καθ ' ἑαυτὸ | ||
ἐπὶ τῶν τιμωριῶν προσέταξεν ἐκδεῖραι ζῶντα καὶ τὸ μὲν σῶμα πλάγιον διὰ τριῶν σταυρῶν ἀναπῆξαι , τὸ δὲ δέρμα χωρὶς |
καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ τῆς κατηγμένης καὶ τῆς ἐφαπτομένης , ἕξει πρὸς αὐτὴν ἡ κατηγμένη | ||
τῶν δύο εὐθειῶν , ὧν ἐστιν ἡ μὲν μεταξὺ τῆς κατηγμένης καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ |
ἢ ὅλως εὐθύγραμμον ἢ μικτήν : καὶ λόγῳ , ὅταν διπλασίαν λέγωμεν τῆσδε καὶ τριπλασίαν ἢ ὅλως μείζονα καὶ ἐλάσσονα | ||
ὧν πολὺς ἐφ ' ἱππομαχίᾳ λόγος . Ἀσπίδα δὲ ἄγομεν διπλασίαν δυνάμεως τῆς ἱππικῆς , οὐδ ' ἐν τούτοις ταῖς |
στερεῶν σωμάτων λόγοι δῆλοι , ἐπεὶ καὶ ὁ τοῦ αʹ κύβος τοῦ αὐτοῦ ἐστιν αʹ , ὁ δ ' ἀπὸ | ||
οἱ ἕνα διαλείποντες πάντες , ὁ δὲ τέταρτος ὁ Γ κύβος καὶ οἱ δύο διαλείποντες πάντες , ὁ δὲ ἕβδομος |
μέριμναν μετὰ κέρδους . Στόμα ὅλον πάλλον χαρὰν σημαίνει . Οὐρανίσκος ἐὰν ἅλληται εὐφρασίαν δηλοῖ . Βρόχθος πάλλων ἔπαινον καὶ | ||
ἀπὸ τοῦ Ὠρίωνος , Νότιος Στέφανος , ὑπὸ δέ τινων Οὐρανίσκος προσαγορευόμενος . Πάλιν δὲ καὶ ἐν τούτοις τινὲς ἀστέρες |
καὶ Πολυνείκης ἀλλήλους ἀνεῖλον , Καπανεὺς δὲ βιαζόμενος καὶ διὰ κλίμακος ἀναβαίνων ἐπὶ τὸ τεῖχος ἐτελεύτησεν , Ἀμφιάραος δὲ χανούσης | ||
ἔχον καταπαύσαντες περιήλθομεν εἰς τὰς ἄλλας πύλας : μακραύχενος γὰρ κλίμακος : ὁ Καπανεὺς θέλων μιμήσασθαι τὸν Δία ἀνῆλθεν εἰς |
. Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ | ||
τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου |
: οὔτω γὰρ σαφὴς ἔσται ὁ ἀριθμὸς ὁ ἐξ αὐτῶν συγκείμενος τῶν ἀντιθέσεων . τὸ τοίνυν ὑποκείμενον ἢ καθ ' | ||
τῷ στομάχῳ γειτνιῶν , ὥσπερ δ ' ἐκ κύκλων πολλῶν συγκείμενος χιτῶνας καὶ οὗτος ἔχει τέτταρας , συμπεπλεγμένος ἐκ νεύρων |
σμύρνα , σίδιον αὖον . Ἕτερον : ἄνθος χαλκοῦ ὀπτὸν ἡμιμοίριον , σμύρνης δύο ἡμιμοίρια , κρόκου τρεῖς μοῖραι , | ||
κατήντησεν . ἡ μεταφορὰ ἀπὸ τῶν καθορμιζομένων πλοίων εἴρηται . ἡμιμοίριον : τὸ ἥμισυ τῆς δραγμῆς . ἠρύγγη , πόλιον |
δὲ οἱ τριάδι ἀλλήλων ὑπερέχοντες ἐν τῇ συνθέσει ἀπὸ μονάδος πενταγώνους ἀποτελοῦσιν , ἑξαγώνους δὲ οἱ τετράδι , ἀεί τε | ||
πυραμίδας τριγώνους βάσεις ἐχούσας . καί εἰσι ιβ μὲν πυραμίδες πενταγώνους βάσεις ἔχουσαι τὸ στερεὸν τοῦ δωδεκαέδρου , εἴκοσι δὲ |
, καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν , | ||
ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ |
μίαν καὶ τὴν αὐτὴν εὐθεῖαν γίνεσθαι τὴν ἀπό τε τοῦ κέντρου τῆς γῆς καὶ τῆς ὄψεως τοῦ θεωροῦντος ἐπὶ τὸ | ||
τῷ κέντρῳ τριγώνου ἴσον ἔσται τῷ ἀπὸ τῆς ἐκ τοῦ κέντρου τριγώνῳ ὁμοίῳ τῷ ἀποτεμνομένῳ . ἔστω ὑπερβολὴ ἢ ἔλλειψις |
ΞΠ τῇ ΑΒ ἴση ἡ ΧΞ , καὶ ἐπεζεύχθω ἡ ΧΚ καὶ ἡ ΧΦ , καὶ ἀπὸ τοῦ Σ τῇ | ||
τὸ ἀπὸ ΚΕ τὸν συγκείμενον ἔχει λόγον ἐκ τοῦ τῆς ΧΚ πρὸς ΚΕ καὶ τοῦ τῆς ΖΚ πρὸς ΚΕ , |
δεδομένῳ εὐθεῖα γραμμὴ ἀχθῇ δεδομένην ποιοῦσα γωνίαν , δέδοται ἡ ἀχθεῖσα τῇ θέσει . πρὸς θέσει γὰρ δεδομένῃ εὐθείᾳ τῇ | ||
, ἡ δὲ ἀπὸ τῆς τομῆς ἐπὶ τὴν δευτέραν διάμετρον ἀχθεῖσα παράλληλος τῇ διαμέτρῳ δυνήσεται χωρίον , πρὸς ὃ τὸ |
τῆς μοναδικῆς . οὔτε οὖν διάστημα χρὴ καλεῖν τὴν τοῦ διαστήματος γεννητικὴν ἀρχὴν οὔτε μόρια τοῦ διαστήματος ἐπινοεῖν , ἀφ | ||
καὶ τῆς εὐθείας μέρος τὸ κατὰ τούτου μὲν φερόμενον τοῦ διαστήματος , μὴ κυκλογραφοῦν δέ . ὅπερ ἐστὶν ἄτοπον . |
τούτῳ δ ' ἀκολουθεῖν τὸ ἀφεστάναι ἴσον τὰς Κασπίους πύλας Θαψάκου τε καὶ τοῦ Κασπίου : τοῦ δὲ Κασπίου πολὺ | ||
τεινούσης πλευρᾶς καὶ τῆς ἀπὸ Βαβυλῶνος καθέτου ἐπὶ τὴν διὰ Θαψάκου μεσημβρινὴν γραμμὴν ἠγμένης καὶ αὐτῆς τῆς διὰ Θαψάκου μεσημβρινῆς |
τὸ Γ , καὶ εἰλήφθω τι σημεῖον ἐπὶ τῆς ΑΒ τομῆς τὸ Δ , καὶ δι ' αὐτοῦ ἤχθω παρὰ | ||
ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς . ἔστω γὰρ τὰ αὐτὰ , καὶ τὸ Δ |
τὰς γωνίας ἐξεθέμεθα , καὶ διεγράψαμεν κατὰ τὸ εὐθεώρητον ἀντὶ κανονίου κύκλους η περὶ τὸ αὐτὸ κέντρον ἐν τῷ τοῦ | ||
προχειρότερον τὸ ὡριαῖον μέγεθος λαμβανομένης ἐκ τοῦ προκειμένου τῶν ἀναφορῶν κανονίου τῆς ὑπεροχῆς τῶν παρακειμένων ἐπισυναγωγῶν , ἡμέρας μὲν τῇ |
πάσχοντος διεκβάλλονται χεῖρες , διὰ δὲ τοῦ λοιποῦ τῆς καιρίας χαλάσματος ἀσφαλίζεται τὸ σῶμα . Ἕνεκα τῆς πλοκῆς τῶν ὤτων | ||
παρειμένη ἐᾶται . καὶ ἀπὸ μὲν τοῦ ἀντικειμένου τῆς καιρίας χαλάσματος μικρὸν πλέκεται ἀγκύλιον καὶ κατὰ τῆς ἀριστερᾶς τίθεται χειρός |
ἱμάτια αὐτοῦ καὶ ἀναιδῶς ἔδειξε τὴν αἰδῶ αὐτοῦ . τοῦ δακτύλου ] τῆς πόσθης . καὶ γεγηρακότος δηλονότι πάλιν ὁ | ||
αὐτοὶ τῷ μέτρῳ : καὶ τὸ ηʹ γὰρ κῶλον ἀντὶ δακτύλου καὶ ἀναπαίστου προκελευσματικὸν ἔχει καὶ ἀνάπαιστον . ἐπὶ τῷ |
τόπων ἔτι καὶ νῦν ὁρᾶσθαι γινόμενον , ἐπειδὰν τῆς χώρας κατεψυγμένης ἄφνω διάπυρος ὁ ἀὴρ γένηται μὴ λαβὼν τὴν μεταβολὴν | ||
ἑκατέρα ὑπό τε τῆς διακεκαυμένης καὶ τῆς ἑκατέρᾳ αὐτῶν παρακειμένης κατεψυγμένης . Πάλιν οὖν τούτων τῶν εὐκράτων ἑκατέραν εἰς δύο |
τὸ πρῶτον αʹ . ὁ δ ' ὑπ ' αὐτὸν ἑπτάγωνος ὁ ιηʹ ἐκ τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ ιεʹ | ||
τρίγωνον τὸν γʹ . ὁ δ ' ὑπ ' αὐτὸν ἑπτάγωνος ὁ λδʹ σύστημά ἐστι τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ |
καί εἰσιν ὅμοιαι ἀλλήλαις : ὅπερ ἔδει δεῖξαι . Κυλίνδρου δοθέντος εὑρεῖν κῶνον καὶ τεμεῖν ἀμφοτέρους ἑνὶ ἐπιπέδῳ ποιοῦντι διὰ | ||
τῶν ἀριθμῶν εἰσιν ὅμοια . . Ὁμοίως ἐπὶ τῆς προσθήκης δοθέντος μέρους τοῦ μεγίστου ᾧ ὑπερέχει ὁ μέσος τοῦ ἐλαχίστου |
πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ | ||
η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς |
κρείσσων ἐστὶ τῆς ἑτέρας . Ἀλλ ' ἐκ μὲν τῶν δεξιῶν κατ ' αὐτὸ τὸ στόμα τοῦ κόλπου παράκειται ταινία | ||
ἐς τὸν πλεύμονα , καὶ ἀφικνέονται ἡ μὲν ἀπὸ τῶν δεξιῶν ἐς τὰ ἀριστερὰ ὑπὸ τὸν μαζὸν καὶ ἐς τὸν |
ἔκστασιν ἐπὶ τὸν Ἀδὰμ καὶ ὕπνωσιν καὶ ἔλαβεν μίαν τῶν πλευρῶν αὐτοῦ καὶ ἀνεπλήρωσεν σάρκα ἀντ ' αὐτῆς . καὶ | ||
τοῦ ἀπὸ τῆς γδ . τὰ ἄρα ἀπὸ τῶν τριῶν πλευρῶν τετράγωνα τῆς τε αγ καὶ γδ καὶ δβ ἐλάττονά |
μέχρι τῆς περιφερείας οὖσα τοῦ ἐν τῇ ἑτέρᾳ ἐπιφανείᾳ τοῦ τυμπάνου περὶ τὸν κότραφον ὁμοίως γραφομένου τοῦ ΧΩ κύκλου , | ||
δέ πως ἢ λελοιφωμένος ἐκ τῶν ἐφ ' ἑκάτερα τοῦ τυμπάνου μερῶν ] . ἐὰν ἄρα τὰ ἐκ τοῦ βάρους |
τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
χειρὶ δ ' ἔνθες ὀξύην , λαιόν τ ' ἔπαιρε πῆχυν , εὐθύνων πόδα . ἦ παιδαγωγεῖν γὰρ τὸν ὁπλίτην | ||
παλαιστὴν αʹ , ὅ ἐστι πήχεως Ϛʹʹ . Ἐὰν δὲ πῆχυν ἐπὶ δάκτυλον , ποίει χυδαῖον δάκτυλον αʹ , ὅ |
μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β | ||
τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο |
] τὸ τοιοῦτον τραπέζιον προσηγόρευσαν ἀπὸ τῶν ἐπιπέδων τραπεζίων : τραπέζιον γὰρ λέγεται , ὅταν τριγώνου ἡ κορυφὴ ὑπὸ παραλλήλου | ||
τῆς ΔΕ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖΗ τραπέζιον . Καὶ ἐὰν ᾖ [ δὲ ] τρίγωνον τὸ |
: λοιπαὶ γʹ , ὥστε εἶναι τὸν Ἥλιον τῆς τοῦ βορρᾶ ἀναβάσεως ἐπὶ βαθμοῦ τοῦ ἀνέμου γʹ . τοῦτο μὲν | ||
πολλὴν χίονα , ἤτοι ὅτι τοῦ Καυκάσου καταπνεομένου ἐκ τοῦ βορρᾶ πήγνυται οὗτος ὁ ποταμός . Τὸν Καύκασον περὶ τὴν |
Ε σημεῖα . ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος , μείζων ἡ Ζ γωνία τῆς Θ γωνίας . | ||
ὁ αὐτὸς δὲ γίνεται καὶ τοῦ περὶ τὴν γῆν ὁμοίου τμήματος πρὸς τὸν ἐν αὐτῇ μέγιστον κύκλον . Οἱ μὲν |
τὸ Ε , ἀφ ' οὗ ἡ ἐπὶ τὸ κέντρον ἐπιζευγνυμένη πρὸς ὀρθὰς τῇ ΓΔ , πρὸς δὲ τὴν ΑΒ | ||
κύκλων , ἡ ἄρα ἀπὸ τοῦ αʹ ἐπὶ τὸ εʹ ἐπιζευγνυμένη εὐθεῖα διάμετρός ἐστι τῆς σφαίρας : ἀλλὰ καὶ ἡ |
πλευρὰς καὶ βραχίονος ἐπεγκύκλιοι πάλιν ἐπὶ μασχάλην ἀπαθῆ : ἀπὸ μασχάλης λοξαὶ ἐπὶ ἀκρώμιον πεπονθός : ἀπὸ ἀκρωμίου ὄρθιοι παρὰ | ||
: εἶτα λοξὴ κατὰ στέρνου ὑπὸ μασχάλην ἀπαθῆ , ἀπὸ μασχάλης λοξὴ κατὰ νώτου ἐπὶ κλεῖδα , ὡς μέρη τινὰ |
οἱ μακρότατοι αὐτῶν πηχέων δύο , οἱ δὲ πλεῖστοι ἑνὸς ἡμίσεως πήχεος . κόμην δὲ ἔχουσι μακροτάτην μέχρις ἐπὶ τὰ | ||
ἔχῃ : Χίῳ δ ' ἐγκεράσας τάδε μίγματα πικρὸν ἐχίδνης ἡμίσεως δραχμῆς ἰὸν ἀποσκεδάσεις : τῷ δὲ ποτῷ καὶ δεινὰ |
⊂ , πλάτος δὲ τρήματος α ⊂ πάχος δὲ ἡμίσους τρήματος καὶ ἔτι ὀγδόου : τοὺς δὲ μεσοστάτας μῆκος ἔχοντας | ||
τῷ μεταξὺ διαστήματι τῶν τροχῶν , κεχωρισμένων δὲ τοῦ μέσου τρήματος . οὗτοι οἱ κάλοι εἴρονται : εἶθ ' ὅταν |
παραλλάξεων , ὅταν μὲν τὸ κατὰ κορυφὴν σημεῖον ἐπὶ τοῦ μεσημβρινοῦ βορειότερον ᾖ τοῦ τότε μεσουρανοῦντος τοῦ διὰ μέσων τῶν | ||
εὐλογωτέρας τε καὶ ἐμφατικωτέρας παρειλήφαμεν τὰς ἀφοριζομένας ὑπό τε τοῦ μεσημβρινοῦ καὶ τῶν τοῦ διὰ μέσων ἀνατολῶν τε καὶ δύσεων |
ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
τμημάτων ὁ μηνίσκος . ἔσται οὖν ἐλάττων ὁ μηνίσκος τοῦ τριγώνου τοῖς ὑπὸ τοῦ ἑξαγώνου ἀφαιρουμένοις τμήμασιν . ὁ ἄρα | ||
καταγίνεται , ὡς γεωμετρία ἀποδεικνύουσα ἀεὶ τὰς τρεῖς γωνίας τοῦ τριγώνου δυσὶν ὀρθαῖς ἴσας εἶναι , ἢ ὡς ἐπὶ τὸ |
ἰνίου κλάσαντες τὴν ἀρχὴν ἄγομεν ἀντικειμένην τῇ πρώτῃ λοξὴν ἐπὶ κρόταφον ὑπὸ σφαίριον ῥινὸς καὶ ὑπὸ λοβὸν ὠτὸς ἀντικειμένου ἐπὶ | ||
στίγματα ἔχει δύο τε ἀπὸ τῶν ὀφρύων παρ ' ἑκάτερον κρόταφον ἀναφέρει πτερά . κατὰ δὲ Καλλίμαχον δύο γένη σκωπῶν |
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ | ||
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν |
συνεγγίζων τῷ Ε σημείῳ κατὰ τὸ πλάτος ἀπὸ τῆς ΕΖ διαστάσεως φαίνηται πρώτως , ὁ τούτου πλέον ἀφεστὼς ἀπ ' | ||
καὶ πρῶτον ἐπὶ τῆς ἐν ἀρχαῖς τοῦ Σκορπίου μεγίστης ἑσπερίας διαστάσεως . ἔστω γὰρ ἡ διὰ τοῦ Α ἀπογείου διάμετρος |
ἔχουσα ἢ ἐκ τῶν δεξιῶν : κἂν μὲν ἐκ τῶν εὐωνύμων μερῶν ἔχῃ τοὺς ἡγεμόνας , εὐώνυμος παραγωγὴ καλεῖται , | ||
. . τὸ ἑξῆς τοῦ λόγου οὕτως , δι ' εὐωνύμων τετυμμένοι ὁμοσπλάγχνων τε πλευρωμάτων . “ τετυμμένοι δῆθ ' |
κάθετον ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὸ τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου τρίγωνον . γραπτέον δὲ καὶ | ||
, ΥΦ εὐθείας διὰ ιηʹ τοῦ ιαʹ τελέως ἀποδεῖξαι τὸ πεντάγωνον ἐν ἑνὶ ὂν ἐπιπέδῳ ἢ διὰ αʹ τοῦ ιαʹ |
καὶ τρίτον γένος μελῳδίας ἐναρμόνιον , ἐπειδὰν ἀπὸ τοῦ βαρυτάτου φθόγγου κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον ἡ φωνὴ προελθοῦσα | ||
οἷον σφραγῖδα σφραγῖδι ἐπιβάλλων ἐναργῆ μᾶλλον καὶ εὔδηλον , οὐδενὸς φθόγγου ἀπεχόμενος , ἀλλὰ ἔμβραχυ ποταμῶν τε μιμούμενος φωνὰς καὶ |
τῶν τεσσάρων , ΔΥ τοσούτων ὅσων ἐστὶ δπλ . τοῦ ἐμβαδοῦ , τὸν μὲν αον ΔΥ ͵δνϚ , τὸν δὲ | ||
μεῖζον , τῶν δὲ μετ ' αὐτὴν ἡ περίμετρος τοῦ ἐμβαδοῦ ἐλάσσων . πρῶτος τετράγωνος καὶ ἐν ἀρτίοις πρώτη τετρακτύς |
ἐπιρρήματι , ἐκ στίχων κʹ τροχαϊκῶν τε - τραμέτρων καταληκτικῶν συγκείμενον , ὧν ὁ τελευταῖος ἤν τι καὶ πάσχητε , | ||
μὲν γὰρ πρώτην φυλάσσοι , ἕνα λίθον ἐτίθει πρὸς τὸν συγκείμενον τόπον , εἰ δὲ δευτέραν , δύο , εἰ |
ὑπὸ ΒΑΔ , ἡ δὲ ΓΔ τὸ ΔΒΑΓ τμῆμα ἔχον δοθεῖσαν γωνίαν τὴν ὑπὸ ΔΑΓ : δοθὲν ἄρα καὶ τὸ | ||
κερατοειδῆ γωνίαν τεμεῖν . τὸ δὲ νῦν πρόβλημά ἐστι τὴν δοθεῖσαν εὐθύγραμμον γωνίαν δίχα τεμεῖν . χρῆται γὰρ ἐν τούτῳ |
τὸ ἔγγιστα τοῦ ἀπείρου ὅτι εἵλκετο καὶ ἐπεραίνετο ὑπὸ τοῦ πέρατος . ἀλλ ' ἐπειδὴ κοσμοποιοῦσι καὶ φυσικῶς βούλονται λέγειν | ||
τε ἀπείρου καὶ τοῦ πέρατος , κρατούσης ἀεὶ τῆς τοῦ πέρατος ἰδέας τοῦ ἀπείρου καὶ περιοριζούσης αὐτὴν ἐν ἑαυτῇ : |
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
μεῖζον ἄρα τὸ ὑπὸ ΛΘ καὶ τῆς περιμέτρου τοῦ ΔΕΖ περιεχόμενον ὀρθογώνιον τοῦ ὑπὸ τῆς ΚΗ καὶ τῆς περιμέτρου τοῦ | ||
ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ |
καὶ ἐπὶ τὸ Γ καὶ τὸ Β , καὶ τὸ περιγραφὲν ὑπὸ τῆς ΑΒ σχῆμα κύκλος ἔσται , ὅς γε | ||
ἐν ἡμικυκλίῳ ἄρα ἐστίν , οὗ διάμετρος ἡ ΑΓ : περιγραφὲν ἄρα τὸ ἡμικύκλιον τεμεῖ τὴν ΑΔ . τεμνέτω δὴ |
ἦν ἡμῖν : οὔτε γὰρ ἱππικὸν οὔτε πελταστικὸν ἔτι ἐγὼ συνεστηκὸς κατέλαβον παρ ' ὑμῖν . εἰ οὖν ἐν τοιαύτῃ | ||
τοῖς Οὐιεντανοῖς τρόπον , ἡ νικῶσα ἦν γνώμη , στράτευμα συνεστηκὸς ἔχειν ἐπὶ τοῖς ὁρίοις , ὃ διὰ φυλακῆς ἕξει |
ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ | ||
, τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς |
ζῳδιακὸν τῶν μεγίστων εἶναι ἐν τῇ σφαίρᾳ κύκλων , καὶ διχοτομεῖσθαι τὴν σφαῖραν ὑφ ' ἑκατέρου αὐτῶν , καὶ τὸ | ||
ἀστὴρ ἐπέχει τοῦ Αἰγόκερω μοῖραν αʹ : οὐκ ἄρα δυνατὸν διχοτομεῖσθαι αὐτὸν ὑπὸ τοῦ προειρημένου κύκλου . ὁμοίως δὲ καὶ |
κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ | ||
͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ |
. Τὸ δέ γε τοιοῦτον ἐκ πολλῶν μερῶν ὂν οὐ συμφωνήσει τῷ [ ὅλῳ ] λόγῳ . Μανθάνω . Πότερον | ||
καὶ φανερὸν ὡς καθ ' ἑκατέραν τὴν ὑπόθεσιν τὰ αὐτὰ συμφωνήσει μέγιστα καὶ πάλιν ἐλάχιστα καὶ μέσα εἶναι ἀποστήματα . |
, ἐὰν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφῇ δωδεκάεδρόν τε καὶ εἰκοσάεδρον , λόγον ἕξει εὐθείας ἡσδηποτοῦν ἄκρον καὶ μέσον λόγον | ||
, ἐάν τις ἐρεῖ ἡμῖν : πόσας πλευρὰς ἔχει τὸ εἰκοσάεδρον ; φήσομεν οὕτως : φανερόν , ὅτι ὑπὸ εἴκοσι |
ὀργάνῳ : ἀπὸ γὰρ τῆς μεσότητος τὸ ξύλον ἐκ τῶν διαπηγμάτων ἀντιθέτοις ἕλιξι τέτμηται , ὥστε κατὰ ποιὰν τοῦ κοχλίου | ||
μεσότητος ἐπὶ τὰ διαπήγματα ὁρμᾶν τὰς χελώνας ἢ ἀπὸ τῶν διαπηγμάτων εἰς τὸν μέσον τόπον συντρέχειν . ἔστι δὲ καὶ |
, τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν | ||
τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν |
ἁρμόσῃ ἐφ ' ὧν καρπὸν ἐπιδῆσαι θέλομεν . καρπόδεσμος . Ἐπιδήσαντες τὸν ἀντικείμενον ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν λοξὴν κατὰ | ||
ἐφ ' ὧν τὸ γένειον ἐπιδῆσαι θέλομεν . γενειάς . Ἐπιδήσαντες τὴν ἡμίρομβον ἐπείλησιν , ὥστε τὸ χίεσμα κατὰ τοῦ |
ὑπὸ Δαιδάλου κατασκευασθεῖσι παρὰ τοῖς Ἕλλησι . τὸ δὲ κάλλιστον πρόπυλον ἐν Μέμφει τοῦ Ἡφαίστου Δαίδαλον ἀρχιτεκτονῆσαι , καὶ θαυμασθέντα | ||
καὶ ὀργυιαῖα κέρα βοὸς ἐκ βασιλῆος Ἀμφιτρυωνιάδᾳ κείμεθ ' ἀνὰ πρόπυλον τεσσαρακαιδεκάδωρα , τὸν αὐχήεντα Φιλίππῳ ἀντόμενον κατὰ γᾶς ἤλασε |
τοῦ κέντρου ἀναγραφῇ εἴδη παραλληλόγραμμα ἰσογώνια , ἔχῃ δὲ ἡ κατηγμένη πλευρὰ πρὸς τὴν λοιπὴν τοῦ εἴδους πλευρὰν τὸν συγκείμενον | ||
Ε παρὰ τὴν ΑΓ ἡ ΕΜ : τεταγμένως ἄρα ἔσται κατηγμένη ἐπὶ τὴν ΑΒ : καὶ ἔσται , ὡς ἡ |
ἐν τῷ ιγʹ βιβλίῳ τῶν στοιχείων ἤτοι τῆς συστάσεως τοῦ δωδεκαέδρου , ὅτι ἡ ἀπὸ τοῦ Κ κάθετος ἀγομένη ἐπὶ | ||
ποτε ζητοῦντες τὸ ὑπὸ Ἀπολλωνίου συγγραφὲν περὶ τῆς συγκρίσεως τοῦ δωδεκαέδρου καὶ τοῦ εἰκοσαέδρου τῶν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφομένων |
σφαίρας τοῦ ἀπὸ τῆς ΖΘ καθέτου ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου . τριπλάσιόν ἐστιν . μζʹ . Ἔστω τρίγωνον ἰσόπλευρον | ||
πέντε ἡ τοῦ εἰκοσαέδρου , ὑπὸ δὲ τεσσάρων ἡ τοῦ ὀκταέδρου , ὑπὸ δὲ τριῶν ἡ τῆς πυραμίδος . δῆλον |
Μεγαλοπολίτης τὴν εἴλην ἔταξεν ἐξ ἱππέων ξδ μήτε ζυγούντων μήτε στοιχούντων : καὶ διὰ τί τῶν ἱππέων ἡ μὲν ἐπὶ | ||
καὶ γενήσεται ἡ εἴλη ἐκ ζυγούντων μέν , οὐκέτι δὲ στοιχούντων . Τάσσονται δὲ αἱ εἶλαι , ὥσπερ τὰ ψιλά |
τετράκις δεκαέξ . Οἷον δύναμις ὁ δ τετράγωνος . . δυναμόκυβος . Οἷον δύναμις ὁ δ καὶ κύβος ὁ η | ||
αὐτῷ πλευρᾶς γεγονότος πολλαπλασιάσῃς , γενήσεται ὁ λβ ὅστις ἐστι δυναμόκυβος . . κυβοκύβων . Δυναμόκυβός ἐστιν ὁ λβ ἐπειδὴ |
ἀπὸ δὲ τοῦ κέντρου τῆς σφαίρας ἐπ ' αὐτὸν κάθετος ἀχθῇ καὶ ἐκβληθῇ ἐπ ' ἀμφότερα τὰ μέρη , ἐπὶ | ||
' αὐτῆς σημεῖον ληφθῇ ὡς τὸ Γ , κάθετος δὲ ἀχθῇ ἡ ΓΔ , ἴσον εἶναι τὸ ὑπὸ Ρ , |
ἀριθμοὶ πίστις : αὐτίκα ὁ ἀπὸ μονάδος ἐν διπλασίονι λόγῳ παραυξηθεὶς ἕβδομος , ὁ τέσσαρα καὶ ἑξήκοντα , τετράγωνος μέν | ||
ἐπὶ τέσσαρα τετράκις : καὶ πάλιν ὁ ἐν τριπλασίονι λόγῳ παραυξηθεὶς ἀπὸ μονάδος ἕβδομος , ὁ ἑπτακόσια εἰκοσιεννέα , τετράγωνος |