| ἐπιρρήματι , ἐκ στίχων κʹ τροχαϊκῶν τε - τραμέτρων καταληκτικῶν συγκείμενον , ὧν ὁ τελευταῖος ἤν τι καὶ πάσχητε , | ||
| μὲν γὰρ πρώτην φυλάσσοι , ἕνα λίθον ἐτίθει πρὸς τὸν συγκείμενον τόπον , εἰ δὲ δευτέραν , δύο , εἰ |
| : οὔτω γὰρ σαφὴς ἔσται ὁ ἀριθμὸς ὁ ἐξ αὐτῶν συγκείμενος τῶν ἀντιθέσεων . τὸ τοίνυν ὑποκείμενον ἢ καθ ' | ||
| τῷ στομάχῳ γειτνιῶν , ὥσπερ δ ' ἐκ κύκλων πολλῶν συγκείμενος χιτῶνας καὶ οὗτος ἔχει τέτταρας , συμπεπλεγμένος ἐκ νεύρων |
| Ἅ - πας δὲ ὅρος ἐκ γένους διαφόρου καὶ ἰδιότητος σύγκειται : τὸ γεγονὸς μέν ἐστιν , ἀφ ' οὗ | ||
| πέρας ἔχει τὴν ἀποδεικτικήν , ἡ ἀποδεικτικὴ δὲ ἐκ συλλογισμῶν σύγκειται , οἱ συλλογισμοὶ δὲ ἐκ προτάσεων , αἱ προτάσεις |
| τὸν κζ λόγον , ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμὸν τετραγώνων ἀμφοτέρων ὄντων καὶ τοῦ λϚ καὶ τοῦ κζ ; | ||
| τῆς ΑΓ ἔλαττόν ἐστι τῶν ἀπὸ τῶν ΓΒ , ΒΑ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΒ , ΒΔ περιεχομένῳ ὀρθογωνίῳ |
| δὲ κατὰ τὴν ὕλην : τῶν γὰρ γινομένων ἐκ δυεῖν ἀνομοίων τοὐλάχιστον γεννωμένων τὸν μὲν ῥυθμὸν ἐν ἄρσει καὶ θέσει | ||
| βίος συντέτακται , οὐ μόνον ἀπῳδὰ φθεγγομένων , ἀλλὰ καὶ ἀνομοίων τὰ σχήματα καὶ τἀναντία κινουμένων καὶ ταὐτὸν οὐδὲν ἐπινοούντων |
| δι ' αὐτοῦ σκευαζόμενον τροχίσκον καὶ τὸν ἐπὶ ταῖς λυχνίαις συνιστάμενον ἐκ τῶν λύχνων ῥύπον λαμβάνειν : ἀνίεται δὲ καὶ | ||
| ἀρθρῖτις δὲ ταὐτὸν πάθος τοῖς προειρημένοις περὶ πάντα τὰ ἄρθρα συνιστάμενον . φαρμάκων δὲ δεῖται θεραπευτικῶν τῶν ἀλεαινόντων κηρωμάτων καὶ |
| . οὐδεμία δὲ τούτων οὔτε συναμφότερος μέση , ἡ δὲ συγκειμένη ἐξ αὐτῶν ἐκ δύο ὀνομάτων καλεῖται . ἀμφοτέρων τοίνυν | ||
| καὶ ταῦτα σύμμετρα ἀλλήλοις . ἐπεὶ γοῦν ἡ ΒΓ ὅλη συγκειμένη ὡς ἐκ δύο οἷον τῆς ΖΔ καὶ τῆς ΒΖ |
| ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος | ||
| ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς |
| : ἔπειτα τῷ ἡμίσει πλείους εἰσὶν αἱ μακραὶ συλλαβαὶ τῶν βραχειῶν ἐν ἑκατέρῳ τῶν στίχων : ἔπειτα πᾶσαι διαβεβήκασιν αἱ | ||
| τοῦ γὰρ ἰωνικοῦ ἀπὸ μείζονος ἐκ μακρῶν δύο καὶ δύο βραχειῶν ὄντος , ἔξεστι μεταθεῖναι καὶ ποιῆσαι διτρόχαιον ἐκ μακρᾶς |
| καταληκτικόν : τὸ Ϙʹ δίμετρον ἐξ ἀμφιμάκρου , βακχείου , ἰάμβου καὶ ἀμφιμάκρου : τὸ ζʹ ἀναπαιστικὸν δίμετρον ἀκατάληκτον : | ||
| , τῶν ἑξῆς χοριάμβου γινομένων . διὰ τοῦτο καὶ ἀπὸ ἰάμβου ἄρχονται ἐν τῷ ἀναπαιστικῷ , ὥσπερ Ἀρχίλοχος ἐν τῷ |
| συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΕ , ΕΒ τετραγώνων τῷ συγκειμένῳ ἐκ τῶν ἀπὸ τῶν ΓΖ , ΖΔ , τὸ | ||
| ἀπὸ τῶν ΑΒ , ΒΓ καὶ σύμμετρον τῷ ἐξ αὐτῶν συγκειμένῳ , ἀνάγκη καὶ τὸ ἐκ τῶν ἀπ ' αὐτῶν |
| γὰρ αἱ μακραὶ συλλαβαί , ὥσπερ ἐπὶ τῶν ἰάμβων καὶ τροχαίων , ὡς εἴρηται , εἰς δύο βραχείας , οὕτω | ||
| ἐπιωνικὸν τρίμετρον ἀκατάληκτον . τὸ δʹ περίοδος ἐξ ἰάμβων καὶ τροχαίων . τὸ εʹ τὸ αὐτό . τὸ Ϛʹ ἰαμβικὸν |
| ἄνευ γνώμης γεγονέναι . ἀλλ ' ἑνὸς τοῦ μεταξὺ κώλου συγκειμένου λεκτικῶς τοῦ ἥκειν Ἀριστοκράτους κατηγορήσοντα τουτουί τὸ συμπλεκόμενον τούτῳ | ||
| α , ποιῶν ⃞ον . καὶ ἐπεὶ ὁ ἀπὸ τοῦ συγκειμένου ἐκ τῶν τριῶν πλευρὰν δηλονότι ἔχει τὸν συγκείμενον ἐκ |
| μὲν δύο τροχαϊκὰ δίμετρα ἀκατάληκτα . τὸ τρίτον ἰαμβικὸν ἐκ τριβράχεων . τὸ δ ' παιωνικὸν ἐκ κρητικῶν διρρύθμων . | ||
| παιωνικὸν ἐκ κρητικῶν διρρύθμων . τὸ πέμπτον ἰαμβικὸν ἑφθημιμερὲς ἐκ τριβράχεων . ἐφ ' ἑκάστης στροφῆς παράγραφος . ἐπὶ δὲ |
| . τὸ δʹ ὅμοιον τρίμετρον βραχυκατάληκτον ἐξ ἐπιτρίτου πρώτου , χοριάμβου καὶ ἰάμβου : τὸ μέντοι κῶλον τῆς ἀντιστροφῆς ἀντὶ | ||
| βʹ καὶ Κρητικοῦ . Τὸ γʹ χοριαμβικὸν δίμετρον ἀκατάληκτον ἐκ χοριάμβου καὶ ἀντισπάστου . Τὸ δʹ πολυσχημάτιστον τρίμετρον ἀκατάληκτον ἐκ |
| τριχῶς διελεῖν τὸν αὐτὸν Ϟ . . Δεῖ ἄρα τὸν συντιθέμενον μετὰ τοῦ αὐτοῦ μείζονος ἀριθμοῦ τοῦ μο τ λεῖψις | ||
| βαρυτάτων ἐπὶ τὸ ὀξὺ κατατομὴ ποιήσει τὸ διὰ πασῶν , συντιθέμενον ἔκ τε τῆς παρὰ τὸ μῆκος ἐπὶ τὸ διὰ |
| εἶναι φαίη τις ἂν καὶ καλήν , εἰ μὴ τῷ συγκεῖσθαι διὰ τῶν καλλίστων τε καὶ ἀξιολογωτάτων ῥυθμῶν ; ἔστι | ||
| καὶ ἡ ῥητορικὴ σύστημα μέν ἐστι διὰ τὸ ἐκ πολλῶν συγκεῖσθαι κανόνων τε καὶ μεθόδων . ἐκ καταλήψεων δὲ διὰ |
| λόγον , ἡμιόλιον τυχὸν ἢ ἐπίτριτον ἢ ἄλλον τινὰ τῶν ἐπιμορίων ἢ τῶν ἐπιμερῶν , τὰ μὲν ἀπ ' αὐτῶν | ||
| . ἐκ τούτων πάλιν κατὰ ἀναστροφὴν γίνονται τὰ εἴδη τῶν ἐπιμορίων : οἷόν ἐστι πρῶτον εἶδος τῶν πολλαπλασίων τὸ διπλάσιον |
| ἐξ ἀμφοῖν γινομένην πολλάκις ἡδονήν , τοτὲ μὲν ἐκ τῶν ὁμοιογενῶν , τοτὲ δὲ ἐκ τῶν ἀνομοιογενῶν : ἀλλ ' | ||
| σκυλεύειν ἐχθροὺς ἐν καιρῷ μάχης . ΙϚʹ . Περὶ τῶν ὁμοιογενῶν τοῖς ἐναντίοις . αʹ . Περὶ τῶν ἐν τῇ |
| ἕξ : κρητικός , ὃς συνέστηκεν ἐκ τροχαίου θέσεως καὶ τροχαίου ἄρσεως : δάκτυλος κατ ' ἴαμβον , ὃς σύγκειται | ||
| προσοδιακὸν τρίμετρον ἀκατάληκτον : ἡ αʹ συζυγία τροχαϊκὴ τοῦ αʹ τροχαίου διαλελυμένου εἰς τρίβραχυν , εἶτα Ἰωνικὸς ἀπὸ μείζονος , |
| δίμετρον ἀκατάληκτον . δέκατον μὲν ἔτος ] ὁ παρὼν χορὸς συνέστηκεν ἐκ κώλων σλβʹ , ὧν τὰ μὲν ξθʹ ἀναπαιστικὰ | ||
| θʹ ἐπιτρίτου , καὶ τὰ κδʹ πρὸς ιβʹ διὰ πασῶν συνέστηκεν ἐκ τοῦ κδʹ πρὸς ιηʹ ἐπιτρίτου καὶ τοῦ ιηʹ |
| τὸ μὲν ἐκ θέσιν ἐχόντων πρὸς ἄλλαλα τῶν ἑαυτοῖς μορίων συνέστακεν , οἷον ἁ γραμμά , ἁ ἐπιφάνεια , τὸ | ||
| Ἀχιλλέα , περὶ μέντοι τῆς παρ ' αὐτῷ τροφῆς οὐδὲν συνέστακεν , ἀλλὰ καὶ τοὐναντίον διὰ τῶν πραγμάτων ἐπιμαρτυρεῖ , |
| , καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν , | ||
| ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ |
| τῶν αὐτῶν ἐπιπέδων τοῦ τείχους καὶ τοῦ πύργου εἰς ἄλληλα συγκειμένων [ τοῦ ] κατὰ τὸν αὐτὸν λόγον , δεῖ | ||
| : συνθήκας τε γράψαντες ἐν στήλαις καὶ περὶ φυλακῆς τῶν συγκειμένων ὅρκια τεμόντες διέλυσαν τὸν σύλλογον . Τυχὼν δὲ τῆς |
| ἔχουσα ἢ ἐκ τῶν δεξιῶν : κἂν μὲν ἐκ τῶν εὐωνύμων μερῶν ἔχῃ τοὺς ἡγεμόνας , εὐώνυμος παραγωγὴ καλεῖται , | ||
| . . τὸ ἑξῆς τοῦ λόγου οὕτως , δι ' εὐωνύμων τετυμμένοι ὁμοσπλάγχνων τε πλευρωμάτων . “ τετυμμένοι δῆθ ' |
| ἦν ἡμῖν : οὔτε γὰρ ἱππικὸν οὔτε πελταστικὸν ἔτι ἐγὼ συνεστηκὸς κατέλαβον παρ ' ὑμῖν . εἰ οὖν ἐν τοιαύτῃ | ||
| τοῖς Οὐιεντανοῖς τρόπον , ἡ νικῶσα ἦν γνώμη , στράτευμα συνεστηκὸς ἔχειν ἐπὶ τοῖς ὁρίοις , ὃ διὰ φυλακῆς ἕξει |
| ἀφαίρεσιν ὑπολείπηταί τι : τούτῳ γὰρ διαφέρειν δοκεῖ τῆς παντελοῦς ἄρσεως ἡ ἀφαίρεσις : οὔτε τὸ μεῖζον ἐν τῷ μικροτέρῳ | ||
| σύστημά τι συγκείμενον ἐκ τῶν ποδικῶν χρόνων ὧν ὁ μὲν ἄρσεως , ὁ δὲ βάσεως , ὁ δὲ ὅλου ποδός |
| , τριχῶς δὲ τὸ ἄλογον : τὸ γὰρ ὑπὸ δύο ῥητῶν εὐθειῶν μήκει συμμέτρων περιεχόμενον ῥητόν ἐστι , καὶ τὸ | ||
| ῥητὸν ἄρα ἐστὶ καὶ τὸ ΑΓ . Τὸ ἄρα ὑπὸ ῥητῶν μήκει συμμέτρων , καὶ τὰ ἑξῆς . Ἐὰν ῥητὸν |
| γίνεται μονάδων ιβ καὶ λεπτῶν μδ καὶ δευτέρων με καὶ τρίτων νδ καὶ τετάρτων ιϚ , συντιθέμενα δὲ ὁμοῦ γίνεται | ||
| ὅλη γῆ , σφαιροειδὴς λογιζομένη , στερεῶν σταδίων ἔχει μυριάδας τρίτων μὲν ἀριθμῶν σξθʹ , δευτέρων δὲ ͵θυιʹ , πρώτων |
| διτροχαίου καὶ κρητικοῦ . τὸ μεʹ παιωνικὸν τρίμετρον καταληκτικὸν ἐκ παιώνων τετάρτων δύο καὶ μολοττοῦ . τὸ μϚʹ ὅμοιον τῷ | ||
| κώλων ιηʹ . τὸ αʹ παιωνικὸν τρίμετρον ἀκατάληκτον , ἐκ παιώνων τετάρτων : κατὰ μονοπεδίαν γὰρ μετρεῖται τὰ τοιαῦτα μέτρα |
| τρίτον τοῦ πρώτου ποδὸς πεντασυλλάβου καταληκτικόν . τὸ τέταρτον ἐκ διτροχαίου καὶ ἐπιτρίτου τρίτου ἀκατάληκτον . τὸ εʹ ὅμοιον τῷ | ||
| Τὸ αʹ προσοδιακὸν τρίμετρον ἀκατάληκτον ἐξ Ἰωνικοῦ καὶ χοριάμβου καὶ διτροχαίου ἢ ἐπιτρίτου . Τὸ βʹ δακτυλικὸν τρίμετρον ἀκατάληκτον . |
| μεῖζον ἄρα τὸ ὑπὸ ΛΘ καὶ τῆς περιμέτρου τοῦ ΔΕΖ περιεχόμενον ὀρθογώνιον τοῦ ὑπὸ τῆς ΚΗ καὶ τῆς περιμέτρου τοῦ | ||
| ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ |
| φημι συντίθεσθαι τὸν δεκάσημον . πάλιν ποιῶ τὸν αὐτὸν ἐκ τετρασήμου καὶ ἑξασήμου : συνέστη λόγος ῥυθμικὸς ἡμιόλιος . πάλιν | ||
| ἄρσεως , σπονδεῖος μείζων , ὁ καὶ διπλοῦς , ἐκ τετρασήμου θέσεως καὶ τετρασήμου ἄρσεως : κατὰ δὲ συζυγίαν γίνονται |
| πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος | ||
| . Καὶ μὴν εἰς δύο διαιρουμένων ἴσα , τοῦ μὲν περισσοῦ μονὰς ἐν μέσῳ περίεστι , τοῦ δὲ ἀρτίου κενὴ |
| τε διμέτρου ἀκαταλήκτου καὶ τοῦ ἐξ ἰαμβικῆς βάσεως καὶ τροχαϊκοῦ πενθημιμεροῦς . καὶ ἐν ἐκθέσει τὸ σύνηθες διστίχιον . φροντίζειν | ||
| τῷ γʹ τῆς ἐπῳδοῦ . τὸ ηʹ μικτὸν ἐκ τροχαίου πενθημιμεροῦς καὶ δακτυλικοῦ πενθημιμεροῦς . τὸ θʹ ἰαμβέλεγος , ὑπερτιθεμένου |
| κρείσσων ἐστὶ τῆς ἑτέρας . Ἀλλ ' ἐκ μὲν τῶν δεξιῶν κατ ' αὐτὸ τὸ στόμα τοῦ κόλπου παράκειται ταινία | ||
| ἐς τὸν πλεύμονα , καὶ ἀφικνέονται ἡ μὲν ἀπὸ τῶν δεξιῶν ἐς τὰ ἀριστερὰ ὑπὸ τὸν μαζὸν καὶ ἐς τὸν |
| δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον | ||
| , ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ |
| τίθενται τρίτην ἀρχὴν τὴν ἡνωμένην τριάδα . Πᾶν δὲ ἡνωμένον μικτόν , εἴπερ ἔμφασιν ἔχει καὶ ἑνὸς καὶ πλήθους τὸ | ||
| μερῶν , οὐδὲ ὅλον , οὐδὲ σύνθετον , οὐδὲ ἄρα μικτόν ; Ὅμοιον γὰρ συντιθέναι τι ἐξ αἰτίου καὶ αἰτιατοῦ |
| ἔστιν ἀριθμός , τῶν ἀριθμῶν πεφυκότων πολλαπλασιαζομένων πλέον συνάγειν ἢ συντιθεμένων : τρὶς μὲν γὰρ τρεῖς θ , τρεῖς δὲ | ||
| τίνα ὀνόματα φύσει καλά [ παραδείγματος ἕνεκα ] , ὧν συντιθεμένων καλὴν οἴεται καὶ μεγαλοπρεπῆ γενήσεσθαι τὴν φράσιν , καὶ |
| ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται , | ||
| : ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ |
| , διότι μὴ πεφυκὸς ἡνώθη . τὸ δὲ ἐν κώλοις ἀσυνάρτητον τοῦτο ἀντιπαθές , ἐναντίοις ποσὶν ἡνωμένον . Τὸ βʹ | ||
| καὶ εʹ ὅμοια τῷ αʹ καὶ βʹ : τὸ Ϛʹ ἀσυνάρτητον ἐκ δύο τροχαικῶν πενθημιμερῶν συγκείμενον . ἐπὶ τῷ τέλει |
| μείζονες ἡγεμονίαι πρὸς αὑτάς . Νῦν δὲ καὶ περὶ τῶν διαστημάτων , ὧν ἀπ ' ἀλλήλων ἀφεστᾶσιν οἱ ὁπλῖται κατά | ||
| ' ἀμφοτέρας τὰς διαιρέσεις φαίνεται , τὰ δὲ μεγέθη τῶν διαστημάτων δῆλον ὅτι οὐ ταὐτὰ ἐν ἑκατέρᾳ τῶν διαιρέσεων . |
| δ τῆς δυάδος διπλάσιος : μεῖζον δὲ τὸ τριπλάσιον τοῦ διπλασίου . ὡσαύτως καὶ ἐπὶ πλειόνων , οἷον ἀπὸ β | ||
| ἀδιαιρέτου γοῦν τῆς μονάδος ὑποκειμένης . ἐπὶ μὲν γὰρ τοῦ διπλασίου λόγου τῆς ΑΒ πρὸς τὴν Γ [ ἐν διπλασίῳ |
| μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
| ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
| ἁπλῆ τίς ἐστι κατηγορία , ἡ δὲ τῶν πρός τι σύνθετος , ῥᾷον δὲ τὰ ἁπλᾶ μανθάνομεν τῶν πολυσχεδῶν ; | ||
| καὶ ὁ τῇδε ἵππος ἐκ τῶν τῇδε φύσεων ἀνομοίων οὐσῶν σύνθετος ᾖ . πάντα γὰρ ταῦτα κωμῳδοῦντός ἐστι μᾶλλον ἢ |
| Α . Ε καὶ τοῦ ΖΗ : ὥστε καὶ τοῦ συγκει - μένου ἐκ τῶν Α , Β , Γ | ||
| ἴση κείσθω ἡ ΔΕ : ὅτι ἡ ΑΕ ἐστὶν ἡ συγκει - μένη ἔκ τε συναμφοτέρου τῆς ΑΒΓ καὶ τῆς |
| ὄργανα ἀνομοιομερῆ . τί ἐστιν ὑγεῖα ; ἡ εὐκρασία τῶν ὁμοιομερῶν καὶ ἡ συμμετρία τῶν ὀργάνων : σύνθεσις καὶ διάπλασις | ||
| οὖς ἢ ἡ ῥίς . ἀλλά φαμεν ὡς ἐπὶ τῶν ὁμοιομερῶν οὐδὲν κωλύει τῷ τοῦ ὅλου ὀνόματι καὶ τὰ μέρη |
| θ μο , μο θ ↑ δυ μιᾶς , ἤτοι φξ ξδʹ καταλειφθήσονται , ἀπὸ δὲ τῶν κα μο , | ||
| δὲ τῶν κα μο , ἤτοι ͵ατμδ ξδʹ , τῶν φξ ξδʹ . καταλειφθήσονται ψπδ ξδʹ , ὅλος τετράγωνος . |
| τοῦ αʹ ἰάμβου λελυμένου . ἔστι γὰρ ἐξ ἰαμβικοῦ καὶ δακτυλικοῦ πενθημιμερῶν . Τὸ ιαʹ Ἰωνικὸν δίμετρον καταληκτικὸν ἀπὸ ἐλάσσονος | ||
| δὲ καὶ συλλαβὴν μίαν πλείονα . εἴρηται δὲ πλὴν τοῦ δακτυλικοῦ , ὅτι τοῦτο μόνον κατὰ μονοποδίαν μετρεῖται διὰ τὸ |
| περὶ τὰ ἀναγκαῖα . ὀρθογωνίου μὲν γὰρ τριγώνου ἢ διέσεως ἡμιτονίου οὐδεμίαν φύσει ἔννοιαν ἥκομεν ἔχοντες , ἀλλ ' ἔκ | ||
| ἀλλήλων τετάρτους τὸν διὰ τεσσάρων ἀλλήλοις διόλου συμφωνεῖν , τοῦ ἡμιτονίου κατὰ μετάβασιν τήν τε πρώτην καὶ τὴν μέσην καὶ |
| ὄντος , καὶ τὸ ὅπερ ὂν ἐξ ἀχωρίστων μὲν καὶ ἀδιαιρέτων ὑπάρξει , ἐξ ὅπερ δὲ ὄντων . ὅμως τούτῳ | ||
| δύναμιν τῶν δημιουργικῶν ἀνυμνοῦσι μονάδων : ὅταν δὲ μέγεθος ἐξ ἀδιαιρέτων ὑφίστασθαι , οὐχ ὅτι συνελθόντα τὰ ἄτομα καὶ οἱονεὶ |
| τρίτου καὶ σπονδείου . τὸ μβʹ ὅμοιον δίμετρον ὑπερκατάληκτον ἐξ ἐπιτρίτου πρώτου , διιάμβου καὶ συλλαβῆς . τὸ μγʹ ὅμοιον | ||
| : τὸ Ϙʹ δίμετρον [ καταληκτικὸν ] ἤτοι ἑφθημιμερὲς ἐξ ἐπιτρίτου γʹ ἢ δισπονδείου καὶ βακχείου . προυσχόμην ] περιεποιούμην |
| τὸν ζῳδιακὸν ἀπλανῶν τὸν τοῦ ἐπὶ τῆς καρδίας τοῦ Λέοντος συναγόμενον ἀριθμὸν καὶ τὸν παρακείμενον πάντοτε κατὰ μῆκος τῷ ἐπιζητουμένῳ | ||
| στοχαζόμενοι , τό τε πεπερασμένον ἀεὶ καὶ τὸ ἐν βραχυτάτοις συναγόμενον πρεσβεύειν οἰόμενοι δεῖν καὶ τιμᾶν , εἴ τι δὲ |
| τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
| πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
| τέσσαρας τρόπους γίνεσθαι . πολλαχῶς οὖν λέγεται καὶ αὐτῶν τῶν ὁμοειδῶν , προτέρως καὶ ὑστέρως , τουτέστι προσεχὲς καὶ πόρρω | ||
| ἐκ τοῦ πρὸς τῇ πρώτῃ λοφίᾳ ἔχειν κέντρον , τῶν ὁμοειδῶν οὐκ ἐχόντων : οὔτε δὲ στέαρ οὔτε πιμελὴν ἔχειν |
| ΞΠ τῇ ΑΒ ἴση ἡ ΧΞ , καὶ ἐπεζεύχθω ἡ ΧΚ καὶ ἡ ΧΦ , καὶ ἀπὸ τοῦ Σ τῇ | ||
| τὸ ἀπὸ ΚΕ τὸν συγκείμενον ἔχει λόγον ἐκ τοῦ τῆς ΧΚ πρὸς ΚΕ καὶ τοῦ τῆς ΖΚ πρὸς ΚΕ , |
| αἰσθητηρίοις τὸ ἁπτικόν , ὡς τούτῳ τὸ αἰσθητικὸν ἅπαν σῶμα συνέστηκε . καὶ τὸ μὲν πρῶτον τῶν ἠπορημένων οὕτως εὐθύνθη | ||
| μὲν ἀληθεύουσι , ψευδομένοις δὲ θάνατον . Χρή , ἐὰν συνέστηκε στρατὸς ἐχθρῶν καὶ ἔξωθεν ὀχυρωμάτων διάγῃ , μηδαμῶς ἐπὶ |
| αὐτοῦ τὴν ἐπιστροφήν . περισπασμὸς δέ ἐστιν ἡ ἐκ δυεῖν ἐπιστροφῶν τοῦ τάγματος κίνησις , ὥστε μεταλαμβάνειν τὸν ὀπίσω τόπον | ||
| τὸν ὀπίσω τόπον . ἐκπερισπασμὸς δέ ἐστιν ἡ ἐκ τριῶν ἐπιστροφῶν συνεχῶν τοῦ τάγματος κίνησις , ὥστε μεταλαμβάνειν , ἐὰν |
| ὅσα πρὸς τῷ τελείῳ προσέλαβε μέρος ποδός , οἷον ἐπὶ ἰαμβικοῦ εἶμ ' ὧτε πυσσάκω λυθεῖσα : τοῦτο μὲν οὖν | ||
| μιᾶς λειπούσης συλλαβῆς . τὸ γὰρ ἐγκωμιολογικὸν ἐκ δακτυλικοῦ καὶ ἰαμβικοῦ πενθημιμερῶν σύγκειται . Τὸ εʹ ὅμοιον τῷ βʹ , |
| ἑνὸς σημείου μετ ' ὀλίγων καβαλλαρίων , τοὺς δὲ ἐκ πλαγίων ἑκατέρωθεν αὐτῆς περιπατεῖν , ἵνα μὲν καὶ σκουλκεύουσιν καὶ | ||
| . Εἰ δὲ καὶ βαρυθῶσιν ὑπὸ τῶν ἐχθρῶν διὰ τῶν πλαγίων καὶ τοῦ νώτου τῆς παρατάξεως προστρέχειν , καὶ μὴ |
| χωρίζεται ταῦτα ; ὥστ ' εἴπερ ἀδύνατον ἐξ ἁφῶν ἢ στιγμῶν εἶναι τὰ μεγέθη , ἀνάγκη εἶναι σώματα ἀδιαίρετα καὶ | ||
| καὶ ἐξ ὧν τὸ σῶμα μονάδες τῶν ψυχικῶν μονάδων καὶ στιγμῶν , ἑνοῦται δὲ ψυχὴ σώματι , ἀνάγκη καὶ ταύτας |
| ὑπαγορεύει . ἐπεὶ δὲ τῶν σωμάτων τὰ μέν ἐστιν ἐκ συναπτομένων ὡς πλοῖα καὶ ἁλύσεις καὶ πυργίσκοι , τὰ δὲ | ||
| τῶν ὀνομάτων καὶ τῶν προσηγοριῶν καὶ τῶν μετοχῶν καὶ τῶν συναπτομένων τούτοις ἄρθρων ἐξαλλάττει τοῦ συνήθους , οὕτως σχηματίζει [ |
| β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
| β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
| λοιπαὶ μείζους εἰσὶ πάντῃ μεταλαμβανόμεναι , τουτέστιν δυνατὸν ἐκ τῶν ἐπιζευγνυουσῶν τὰς γωνίας πολύπλευρον συστήσασθαι . ἔστωσαν αἱ δοθεῖσαι τέσσαρες | ||
| τῷ ἐπιπέδῳ συνεστάτω τὸ ΘΚΛ , ἐκ τριῶν δὲ τῶν ἐπιζευγνυουσῶν τὰ Δ Ε Ζ τὸ ΚΛΜ , ἐκ τριῶν |
| σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ | ||
| καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος |
| καὶ ποιήϲαϲ μαλακὴν κατάπλαϲϲε , καὶ τοῦτο καὶ ἐπὶ παντὸϲ οἰδήματοϲ χρηϲιμώτατον . ἢ αἰγὸϲ ϲπυράθουϲ χλωροὺϲ προηψημένουϲ μετ ' | ||
| διαλαβόντεϲ αὖθιϲ περὶ τῶν ἐναντίων διαληψόμεθα τὴν ἀρχὴν ἀπὸ τοῦ οἰδήματοϲ ποιούμενοι . ὥϲπερ γὰρ ἐπὶ χολώδει ῥεύματι τὸ ἐρυϲίπελαϲ |
| δγ . καὶ ἐπεὶ ὁ δὶς ἐκ τῶν αδ , δβ μετὰ τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν αδ , | ||
| δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , αἱ ἄρα ὑπὸ δαε , δβε ὀρθαί εἰσιν |
| ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
| ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
| τῶν τεσσάρων , ΔΥ τοσούτων ὅσων ἐστὶ δπλ . τοῦ ἐμβαδοῦ , τὸν μὲν αον ΔΥ ͵δνϚ , τὸν δὲ | ||
| μεῖζον , τῶν δὲ μετ ' αὐτὴν ἡ περίμετρος τοῦ ἐμβαδοῦ ἐλάσσων . πρῶτος τετράγωνος καὶ ἐν ἀρτίοις πρώτη τετρακτύς |
| τὸ ” ἡμέρα ἐστίν . “ Ἀρνητικὸν δέ ἐστι τὸ συνεστὸς ἐξ ἀρνητικοῦ μορίου καὶ κατηγορήματος , οἷον ” οὐδεὶς | ||
| οἷον ” οὐδεὶς περιπατεῖ “ : στερητικὸν δέ ἐστι τὸ συνεστὸς ἐκ στερητικοῦ μορίου καὶ ἀξιώματος κατὰ δύναμιν , οἷον |
| . τὸ γʹ ἰωνικὸν ἀπὸ μείζονος τρίμετρον καταληκτικόν , ἐξ ἰωνικῶν δύο καὶ δακτύλου . τὸ δʹ ὅμοιον ἀπ ' | ||
| αʹ ἰωνικὸν ἀπ ' ἐλάττονος τρίμετρον ἀκατάληκτον καθαρόν , ἐξ ἰωνικῶν τριῶν : τὸ βʹ καὶ τρίτον ὅμοια ἰωνικὰ δίμετρα |
| τυχόντες , ἀλλ ' οἱ ἐπιδιμερεῖς , ἐκ δὲ τῶν ἐπιτρίτων οἱ ἐπιτριμερεῖς , ἐκ δὲ τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς | ||
| ἐξ ἀμφιμάκρου καὶ δισπονδείου : τὸ ζʹ δίμετρον ἐκ βʹ ἐπιτρίτων δευτέρων : τὸ ηʹ δίμετρον ἐξ ἀμφιμάκρου , παλιμβακχείου |
| ὅρων ἕκαστος ἴδιον ἔχει τὸ αἴτιον , ἐπὶ δὲ τῶν τόνων ἕπονταί πως τῷ πρώτῳ τῶν ὅρων οἱ λοιποὶ δύο | ||
| ἀμεταβόλῳ συστήματι ἕξ : ἐλάχιστον μὲν τὸ διὰ τεσσάρων , τόνων δύο ἡμίσεος , οἷόν ἐστι τὸ ἀπὸ ὑπάτης ὑπάτων |
| ΘΑ : ὁ ἄρα τοῦ ἀπὸ ΓΗ πρὸς τὸ ὑπὸ ΔΗΑ λόγος σύγκειται ἐκ τοῦ τῆς ΑΔ πρὸς ΔΝ καὶ | ||
| . ἔχει δὲ καὶ τὸ ἀπὸ ΖΗ πρὸς τὸ ὑπὸ ΔΗΑ τὸν συγκείμενον λόγον ἐκ τοῦ ὃν ἔχει ἡ ΖΗ |
| ὀφθαλμοὺϲ καὶ γάλα χλιαρὸν ἐγχυματίζονταϲ , ἀπεχομένουϲ δὲ παντὸϲ κολλυρίου προϲαγωγῆϲ . τροφὰϲ δὲ διδόναι πολυτρόφουϲ καὶ εὐχυμοτάταϲ καὶ οἶνον | ||
| κοιλίαν ἐγχυματίζειν τῷ Νείλου διαρρόδῳ ὑδαρεϲτέρῳ μεταξὺ τῆϲ τοῦ κολλυρίου προϲαγωγῆϲ καὶ ἐγχυματίζονταϲ γάλακτι . κατὰ βραχὺ δέ , διαβαινουϲῶν |
| εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
| λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
| “ σὺ δ ' ἀνδρὸς ἐκπεπληγμένου ” δίμετρον ἀκατάληκτον ἐκ διιάμβων δύο : τὸ Ϙʹ “ καὶ φανερῶς ἐπηρμένου ” | ||
| βʹ καὶ μιᾶς συλλαβῆς : τὸ δʹ τετράμετρον ἐκ δύο διιάμβων , χοριάμβου , καὶ πάλιν διιάμβου : τὸ εʹ |
| χρονικαῖς γ κʹ . λέγω δὴ ὅτι τῶν ἐν τοῖς αβ βγ δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων [ ἀρχομένων | ||
| γβ ἑαυτὸν πολλαπλασιάσας ποιείτω τὸν ζη . καὶ ἐπεὶ ὁ αβ τὸν γβ πολλαπλασιάσας ἐποίησε τὸν δ , ὁ ἄρα |
| ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
| καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
| καὶ ἐὰν μὲν ὁ λόγος ᾖ ἴσος πρὸς ἴσον , παραβολῆς , ἐὰν δὲ ἐλάσσων πρὸς μείζονα , ἐλλείψεως , | ||
| ΓΔ τῇ ΔΕ . δεῖξαι , ὅτι τὸ Δ ἅπτεται παραβολῆς . ἤχθω κάθετος ἡ ΓΖ : θέσει ἄρα ἐστί |
| τὴν βάσιν : οἷον εἰ ἐκκειμένου μὲν ἑνὸς δακτύλου , διμέτρου δὲ ἀναπαιστικοῦ κατὰ μέσον πέσοι σπονδεῖος , ἄδηλον πότερα | ||
| δέ ἐστι παρὰ Ἀρχιλόχῳ ἀσυνάρτητον ἐκ δακτυλικοῦ πενθημιμεροῦς καὶ ἰαμβικοῦ διμέτρου ἀκαταλήκτου ἀλλά μ ' ὁ λυσιμελής , ὠταῖρε , |
| ποιουμένους τῆς ἀπάτης τὴν ἐπιχείρησιν ἀλλ ' οὐ τῶν πολὺ διεστώτων : κατηγοροῦντες μὲν γὰρ ἐπὶ τὰς παρακειμένας κακίας ἄγουσιν | ||
| τῶν στοιχείων τὸ οἰκεῖον εἶδος . . Γ . ἐκ διεστώτων δὲ καὶ κινουμένων οὐκ εὔλογον ποιεῖν τὴν γένεσιν . |
| ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ | ||
| , τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς |
| σανη [ × – ˘˘ – × – – ] αδ ' ἐσβολ ? ? [ × × – ˘˘ | ||
| τῷ ηλ τεταρτημορίῳ ἀναφέρεται , τὸ δὲ λα τεταρτημόριον τῷ αδ τεταρτημορίῳ ἀναφέρεται : ἴσον γὰρ ἀπέχει τοῦ ἰσημερινοῦ . |
| διαπληκτιζόμενοι , συντόμως τὸν βίον κατέστρεφον . . ΑΛΓΕ ' ΕΧΟΝΤΕΣ . Ἤγουν λύπας , διὰ τὰς ἑαυτῶν ἀφροσύνας . | ||
| σπέρματα . Ἐκ δὲ τοῦ εἰπεῖν , ΟΛΥΜΠΙΑ ΔΩΜΑΤ ' ΕΧΟΝΤΕΣ , δείκνυσιν , ὅτι περὶ τῶν ψυχικῶν δυνάμεων λέγει |
| δ ' ἡ Θρᾴκη σύμπασα ἐκ δυεῖν καὶ εἴκοσιν ἐθνῶν συνεστῶσα : δύναται δὲ στέλλειν καίπερ οὖσα περισσῶς ἐκπεπονημένη μυρίους | ||
| συναλείφουσα τὰ δύο συλλαβή , ἐξ ἀφώνου τε καὶ δυεῖν συνεστῶσα φωνηέντων : εἰ γοῦν τις αὐτῆς ἀφέλοι τὸ τ |
| βʹ τροχαϊκὸν τρίμετρον καταληκτικὸν Ἀρχιλόχειον . τὸ γʹ Πινδαρικὸν ἐκ Σαπφικοῦ . τὸ δʹ πενθημιμερὲς δακτυλικόν . τὸ εʹ τροχαϊκὸν | ||
| τάληκτον ἐξ Ἰωνικοῦ καὶ χοριάμβου . Τὸ ζʹ Πινδαρικὸν ἐκ Σαπφικοῦ ἑνδεκασύλλαβον , ἤτοι τρίμετρον καταληκτικόν . σύγκειται δὲ ἐκ |
| ἐλάττονος δίμετρον ἀκατάληκτον ἐκ παίωνος τετάρτου ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ | ||
| καὶ πάλιν χοριάμβου : τὸ εʹ δίμετρον ἐκ χοριάμβου καὶ διιάμβου : τὸ Ϙʹ δίμετρον ἐκ χοριάμβου καὶ βακχείου : |
| ἑαυτὸν πολλαπλασιάσας ποιῇ τινα , ὁ γεγονὼς ἐκ τοῦ ἑαυτοῦ πολλαπλασιασμοῦ τετράγωνός ἐστιν , εἰ δὲ τοῦτο , ὁ δὲ | ||
| λόγον ἔχῃ δεδομένον . Ἐπιτετάχθω δὴ πρότερον τὸν ἐκ τοῦ πολλαπλασιασμοῦ τοῦ συναμφοτέρου εἶναι Ϛπλ . . Τετάχθωσαν οἱ ζητούμενοι |
| τεσσάρων , δι ' ὀξειᾶν δὲ τὴν διὰ πέντε , σύστημα δὲ ἀμφοτέρων συλλαβᾶς τε καὶ δι ' ὀξειᾶν ἡ | ||
| πασῶν , ἀλλὰ πρὸς τὴν διεζευγμένην . τό τε πᾶν σύστημα οὔτε κατὰ διάτονον γένος ἁρμόζεται : οὔτε γὰρ τριημιτονιαῖον |
| βον μετὰ τοῦ γου ποιεῖν Μο λ , τὸν δὲ γον μετὰ τοῦ αου ποιεῖν Μο μ . Τετάχθωσαν οἱ | ||
| βου τουτέστιν εἰς ʂ β Μο δ , ἕξω τὸν γον : ἀλλ ' ἔστιν ὁ μερισμὸς ʂ ∠ ʹ |
| χρὴ ζητεῖν πῶς ἂν ἐφαρμόσειε τοῦτο ἢ ταῖς ἐκ τρίτου προσκατηγορουμένου καταφάσεσιν ἢ ταῖς μετὰ τρόπου . ἀλλὰ πῶς ἑξῆς | ||
| τμήματος αἱ γενόμεναι ἐκ τοῦ ὑποκειμένου καὶ κατηγορουμένου καὶ τρίτου προσκατηγορουμένου ρμδ . ταύτας οὖν τὰς τοῦ β καὶ γ |
| διασαφηθείη , λέγοιτ ' ἂν ἱκανῶς . τῶν γὰρ ὑποκειμένων ὑλῶν ταῖς μεθόδοις καὶ ταῖς ἐπιστήμαις αἱ μὲν δέχονται τὸ | ||
| ὡς τὸ δίκαιον τοῦ Σωκράτους : τριῶν οὖν τούτων οὐσῶν ὑλῶν δῆλον ὅτι αἱ ιβ ἀντιθέσεις αἱ προειρημέναι τριχῇ διαλαμβανόμεναι |
| δὲ θήλεα ὑγρότερα , καὶ ἀπὸ νοτίων ὡς ἐπιτοπολὺ πνευμάτων συνεστηκότα , ὥσπερ τὸ ἀνάπαλιν ἐπὶ τῶν ἀῤῥένων : ἐκ | ||
| εἰς αὔξησιν προτρέψαι καὶ ἀνδρωδέστερον ἀποφῆναι : κατὰ δὲ ψυχὴν συνεστηκότα τε λογισμὸν διαλύει καὶ ὀργῆς ἀκράτου ἐπανίησιν . διὸ |
| ' εὐθέως ἐξ ἀρχῆς οὕτως σκευάζειν : τῷ ὀξυμέλιτι μιγνύσθω τετραπλάσιον ὕδατος καλλίστου , κἄπειτα ἑψείσθω μετρίως , ἕως ἂν | ||
| ΚΓ , διπλῆ ἄρα καὶ ἡ ΘΚ τῆς ΚΓ . τετραπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΘΚ τοῦ ἀπὸ τῆς |
| πρὸς ΓΔ , οὕτως τὸ ΒΕΖ τρίγωνον πρὸς τὸ ΚΓΔ ἰσοϋψὲς τρίγωνον , τὸ ἄρα ΑΓΔ τρίγωνον πρὸς τὸ ΒΕΖ | ||
| τὸ ΑΒΓΔ , καὶ ἀνεστάτω ἀπὸ τοῦ ΑΒΓΔ τετραγώνου πρίσμα ἰσοϋψὲς τῷ κυλίνδρῳ . τὸ ἄρα ἀνεσταμένον πρίσμα μεῖζόν ἐστιν |
| τὰ αὐτά . ὁμοίως δὴ δείξομεν ὅτι ἐστὶν ὡς ὁ ΛΘΕ τομεὺς πρὸς τὸν ΔΘΕ , οὕτως ὁ ΔΘΕ τομεὺς | ||
| ΛΘΕ , πρὸς τὴν ὑπὸ ΔΘΕ , τουτέστιν ἤπερ ὁ ΛΘΕ τομεὺς πρὸς τὸν ΔΘΕ , ὡς δὲ ὁ ΛΘΕ |
| ٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη ٢ ٢١ ٥٥ ٤١ | ||
| μονάδων τʹ καὶ τοῦ Β μονάδων γʹ καὶ τοῦ Γ μονάδων δʹ καὶ τοῦ Δ μονάδων εʹ : ὁ μὲν |
| καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ , | ||
| τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β |
| ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ | ||
| ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ |
| λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν . Ἅπαξ ἄρα τὰ ἐλάσσονα , ἤτοι τὸν π | ||
| κβ . Δεῖ τοίνυν τὸν ἀπὸ τῆς ὑπεροχῆς αὐτῶν τετράγωνον Ϟόν , ἤτοι καθ ' ὑπόθεσιν τὸν ιϚ , ἐλάττονα |