δὲ τρία τῶν τεσσάρων πρῶτα . καὶ ἄλλως : πᾶν τετράγωνον εἰς δύο τρίγωνα ὀρθογώνια διαιρεῖται : ὥστε ἀναιρουμένου τοῦ
ʂ α . λοιπόν ἐστι καὶ τὸν ἀπὸ τοῦ ἐλάσσονος τετράγωνον τῆς ὑπεροχῆς αὐτῶν εἶναι Ϛπλ . : ΔΥ ἄρα
7470986 κυβον
τοῦ ἀπὸ τῆς ΑΜ κύβου πρὸς τὸν ἀπὸ τῆς ΜΗ κύβον . ἀλλ ' ὡς μὲν ἡ ΓΜ πρὸς ΜΗ
προσδήσαντες εἶτα μέντοι ἀπαλλάττονται , τοῦτο δήπου τὸ λεγόμενον ἀτεχνῶς κύβον ἀναρρίψαντες . οἱ δὲ τίγρεις ἐντυχόντες αὐταῖς , ἀθηρίᾳ
7230443 πλευρας
ἀπὸ τῆς διαμέτρου μονάδι ἔλαττον ἢ διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ μθʹ πρὸς κεʹ . πάλιν εἰ
, ἢ ἕως τῆς Τενέδου , ἔχων ἐκ τῆς ἑτέρας πλευρᾶς τὴν Ἴμβρον νῆσον ὑπὸ τῆς Θρᾴκης . Ὅπου στενὸς
7177346 ἰσοπλευρον
ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ
ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν ,
7125470 τετραγωνου
τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ
πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν
6920989 ἑτερομηκες
, φῶς ἀγαθόν , σκότος κακόν , τετράγωνον ἀγαθόν , ἑτερόμηκες ἐναντίον ὡς μὴ ἰσόπλευρον . δέκα οὖν ὑπετίθεντο ,
μὴ ταύτῃ μὲν κτλ . οὕτω γὰρ ἑτερόμηκες εἴη οἷον ἑτερόμηκες ἀναγραψώμεθα δὴ κτλ . τὸ ὅλον πόδες ιϚʹ τοῦδε
6916430 τριγωνον
τὸ χωρίον πρὸς τὸ τρίγωνον λόγον ἕξει δεδομένον . ἔστω τρίγωνον ὀξυγώνιον τὸ ΑΒΓ , ὀξεῖαν ἔχον γωνίαν δεδομένην τὴν
μαθημάτων : καὶ γὰρ ὁ γεωμέτρης διὰ τί μὲν τὸ τρίγωνον ἔχει τὰς τρεῖς γωνίας δυσὶν ὀρθαῖς ἴσας ζητεῖ ,
6848294 σκαληνον
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις
6717674 κυβος
στερεῶν σωμάτων λόγοι δῆλοι , ἐπεὶ καὶ ὁ τοῦ αʹ κύβος τοῦ αὐτοῦ ἐστιν αʹ , ὁ δ ' ἀπὸ
οἱ ἕνα διαλείποντες πάντες , ὁ δὲ τέταρτος ὁ Γ κύβος καὶ οἱ δύο διαλείποντες πάντες , ὁ δὲ ἕβδομος
6686362 τετραγωνικην
πρὸς ἀλλήλας καὶ τοῦ ὑπ ' αὐτῶν γινομένου χωρίου τὴν τετραγωνικὴν πλευρὰν ἐκβαλόντες ἔχομεν μέσην τὴν β λζ νε :
τριγωνικὴν γωνίαν ὁ Φιλόλαος τέτταρσιν ἀνῆκεν θεοῖς , τὴν δὲ τετραγωνικὴν τρισίν , ἐνδεικνύμενος αὐτῶν τὴν δι ' ἀλλήλων χώρησιν
6424774 εὐθυγραμμον
τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις
τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον
6402034 διαμετρον
ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ ,
κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης ,
6375223 πλευραν
τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον
ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου
6369675 ἑτερομηκη
τοίνυν αὕτη διαφορά , δευτέρα δὲ ἐκείνη . λαβὲ πρῶτον ἑτερομήκη καὶ δεύτερον τετράγωνον καὶ τρίτον τετράγωνον καὶ δεύτερον ἑτερομήκη
ἕτερον ἐπὶ δυοῖν λέγει : ὅθεν καὶ οἱ γεννῶντες τὸν ἑτερομήκη δύο τέ εἰσιν ἀριθμοὶ καὶ μονάδι ἀλλήλων διαφέροντες .
6358946 τετραγωνος
ἐν ἐπιφανεστάτῳ δὲ τῆς πόλεως τὸ Αἰάκειον καλούμενον , περίβολος τετράγωνος λευκοῦ λίθου . ἐπειργασμένοι δέ εἰσι κατὰ τὴν ἔσοδον
μήκει συμμέτρων εὐθειῶν τετράγωνα πρὸς ἄλληλα λόγον ἔχει , ὃν τετράγωνος ἀριθμὸς πρὸς τετρά - γωνον ἀριθμόν : καὶ τὰ
6344409 τραπεζιον
] τὸ τοιοῦτον τραπέζιον προσηγόρευσαν ἀπὸ τῶν ἐπιπέδων τραπεζίων : τραπέζιον γὰρ λέγεται , ὅταν τριγώνου ἡ κορυφὴ ὑπὸ παραλλήλου
τῆς ΔΕ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖΗ τραπέζιον . Καὶ ἐὰν ᾖ [ δὲ ] τρίγωνον τὸ
6305225 διπλασιονα
διπλάσιος , ὁ δὲ δεκαὲξ τοῦ δ τετραπλάσιος . Τὸ διπλασίονα λόγον ἔχει , ὡς πολλάκις πρόσθεν εἴρηται , ἴσον
δή , ὅτι ὁ Η κύκλος πρὸς τὸν Θ κύκλον διπλασίονα λόγον ἔχει ἤπερ ὁ ΑΗΓΔ κῶνος πρὸς τὸν ΒΘΕΖ
6305224 διαμετρου
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ
6304085 εὐθυγραμμων
τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν
κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν
6274266 περιεχομενον
μεῖζον ἄρα τὸ ὑπὸ ΛΘ καὶ τῆς περιμέτρου τοῦ ΔΕΖ περιεχόμενον ὀρθογώνιον τοῦ ὑπὸ τῆς ΚΗ καὶ τῆς περιμέτρου τοῦ
ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ
6270460 τριπλασιον
αη ηβ : καὶ ἐπεὶ τὸ γδ τοῦ εζ ἐστι τριπλάσιον , ἴσον δὲ τὸ αη τῷ γδ , καὶ
, πρῶτον διπλάσιον ἐν ἑνὶ στίχῳ , εἶτα ἐν δευτέρῳ τριπλάσιον , εἶτα τετραπλάσιον ἐν τρίτῳ καὶ μέχρι δεκαπλασίων ,
6268905 ὀκταεδρον
. Ἡ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ ὀκτάεδρον ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου κάθετος δυνάμει τρίτον μέρος
ἀριθμητικὴν συνεπιφέρεσθαι : ἅμα γὰρ ταύτῃ τρίγωνον ἢ τετράγωνον ἢ ὀκτάεδρον ἢ εἰκοσάεδρον ἢ διπλάσιον ἢ ὀκταπλάσιον ἢ ἡμιόλιον ἢ
6235979 πενταγωνον
κάθετον ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὸ τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου τρίγωνον . γραπτέον δὲ καὶ
, ΥΦ εὐθείας διὰ ιηʹ τοῦ ιαʹ τελέως ἀποδεῖξαι τὸ πεντάγωνον ἐν ἑνὶ ὂν ἐπιπέδῳ ἢ διὰ αʹ τοῦ ιαʹ
6229370 στερεον
ἐκείνη , τριὰς δὲ στερεοῦ σώματος , ὅτιπερ τριχῆ τὸ στερεὸν διαιρετόν . . § . : ἡ μὲν οὖν
τοῦ εἰκοσαέδρου , οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό
6209357 ⃞ον
Μο κα ἀφελεῖν Μο θ # ΔΥ α καὶ ποιεῖν ⃞ον . ἀλλ ' ἐὰν ἀπὸ Μο κα ἀφέλω Μο
Μο β , δεήσει καὶ ΔΥ λ ʂ ε εἶναι ⃞ον : οὐκ ἔστιν δέ . ἀπάγεται οὖν εἰς τὸ
6193877 ἑπταγωνου
πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ
η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς
6179350 ὀρθογωνιον
τρόπον γένοιτο ἂν τετραγωνισμός . ἀπεδίδου δὲ τοῦτο περὶ τρίγωνον ὀρθογώνιόν τε καὶ ἰσοσκελὲς ἡμικύκλιον περιγράψας καὶ περὶ τὴν βάσιν
θ : ὥστε τὸ δὶς ὑπὸ τῶν ΓΒ , ΒΔ ὀρθογώνιόν ἐστιν ρμ : πεντάκις γὰρ ιδ ο , καὶ
6126299 ῥομβοειδες
ἑτέρων ὄντα προπέπτωκεν εἰς τὸ Ἀτλαντικὸν πέλαγος , καὶ γίνεται ῥομβοειδὲς τὸ τῆς χώρας σχῆμα , τῶν μειζόνων πλευρῶν ἑκατέρου
ῥόμβος δὲ τὸ ἰσόπλευρον μέν , οὐκ ὀρθογώνιον δέ , ῥομβοειδὲς δὲ τὸ τὰς ἀπεναντίον πλευράς τε καὶ γωνίας ἴσας
6076512 ἰσοσκελες
, οἷον εἰ οὕτως ἔλεγεν ὁ στοιχειωτής : πᾶν τρίγωνον ἰσοσκελὲς ἴσας ἔχει τὰς πρὸς τῇ βάσει γωνίας . τούτων
. Καὶ μηδενὸς δὲ δεηθέντες καὶ ἡμεῖς ἄλλως συστήσομεν τρίγωνον ἰσοσκελὲς ὁμοίως μείζονα ἢ ἐλάττονα ἔχον τὴν βάσιν , εἰ
6066416 κυβου
τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου
ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠
6060281 βασεως
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν :
6047971 τριαδος
τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ
τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ
5984000 ὀρθογωνιου
. Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ
τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου
5981530 πλευρων
ἔκστασιν ἐπὶ τὸν Ἀδὰμ καὶ ὕπνωσιν καὶ ἔλαβεν μίαν τῶν πλευρῶν αὐτοῦ καὶ ἀνεπλήρωσεν σάρκα ἀντ ' αὐτῆς . καὶ
τοῦ ἀπὸ τῆς γδ . τὰ ἄρα ἀπὸ τῶν τριῶν πλευρῶν τετράγωνα τῆς τε αγ καὶ γδ καὶ δβ ἐλάττονά
5962199 ἀναλογον
τοῦ μεσημβρινοῦ δὲ καύματος ἀκμάζει τῇ ψυχρότητι : πάλιν δὲ ἀνάλογον ἀπολήγει πρὸς τὴν ἑσπέραν καὶ τῆς νυκτὸς ἐπιλαβούσης ἀναθερμαίνεται
αὐτὸν πρὸς αὐτήν . μαθηματικὰ δὲ εὗρεν τὴν μέσην καλουμένην ἀνάλογον , περὶ ἧς ἐν τῇ Ἀποδεικτικῇ λόγον ἐποιησάμεθα .
5947449 πολυγωνον
περιεχόντων τὴν πυραμίδα , ἧς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον , κορυφὴ δὲ τὸ Ν σημεῖον , ἓν τρίγωνον
[ . ] παρελάβομεν , διὰ τὸ ἴσον ὑποκεῖσθαι τὸ πολύγωνον τῶι κύκλωι ἐφαρμόζον αὐτῶι , ἐσόμεθα καὶ κύκλωι ἴσον
5938120 δεδομενον
ἐστίν . ἡ δὲ ἔκθεσις αὐτὸ καθ ' αὑτὸ τὸ δεδομένον ἀποδιαλαβοῦσα προευτρεπίζει τῇ ζητήσει . ὁ δὲ διορισμὸς χωρὶς
ὑπὸ τῆς πόλεως δημοσίᾳ κατεσκευασμένον , εἰ δὲ μή , δεδομένον κατασκευάσασθαι . πάλιν δ ' ὅταν ἐξετάσῃ Πυθιονίκης τῆς
5915478 ἡμιολιον
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον
5891186 τριγωνων
ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται ,
: ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ
5880789 διαγωνιου
τὴν μὲν τῶν χορδῶν κοινὴν ἀπόδεσιν , τὴν ἐκ τοῦ διαγωνίου πασσάλου , εἰς τὸν τοῦ ὀργάνου βατῆρα , ὃν
πρὸ ἐκείνου τετραγώνου τοῦ δʹ , παρὰ τὸν εʹ , διαγωνίου κειμένου αὐτῷ ἑνὸς τριγώνου . ὁ δ ' ὑπὸ
5870000 πλαγιον
: λευρὸν οἱ μὲν τὸ πλατύ : βέλτιον δὲ τὸ πλάγιον ἀκούειν , ἵνα νοήσωμεν οὐχὶ τὸ καθ ' ἑαυτὸ
ἐπὶ τῶν τιμωριῶν προσέταξεν ἐκδεῖραι ζῶντα καὶ τὸ μὲν σῶμα πλάγιον διὰ τριῶν σταυρῶν ἀναπῆξαι , τὸ δὲ δέρμα χωρὶς
5864858 περισσων
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν
5849025 μοναδι
οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον
πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος
5844759 Ϟων
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς
5831582 μοναδα
τῶν δέκα πληρώσει ἀριθμόν : ὥστε ὁ ἀριθμὸς κατὰ μὲν μονάδα ἐν τοῖς δέκα κατὰ δὲ δύναμιν ἐν τοῖς τέσσαρσι
εὑρίσκεται ἔχων ὁλοκλήρως τὰς δ μονάδας καὶ ἐπέκεινα τούτων μίαν μονάδα , ἥ ἐστιν τῶν δ δʹ , καὶ διὰ
5827287 γωνιαν
ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ
πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν
5817048 ἐπιτριτον
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ
5812439 τετραπλευρον
ΘΚ ἐστιν ἴση ] , ἰσόπλευρον ἄρα ἐστὶ τὸ ΖΗΘΚ τετράπλευρον . λέγω δή , ὅτι καὶ ὀρθογώνιον . ἐπεὶ
ἐστιν , ὡς μὲν τὸ ὑπὸ ΚΖΕ πρὸς τὸ ΖΞ τετράπλευρον , τὸ ἀπὸ ΑΓ πρὸς ΓΠΒ , διὰ δὲ
5796426 εἰκοσαεδρον
, ἐὰν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφῇ δωδεκάεδρόν τε καὶ εἰκοσάεδρον , λόγον ἕξει εὐθείας ἡσδηποτοῦν ἄκρον καὶ μέσον λόγον
, ἐάν τις ἐρεῖ ἡμῖν : πόσας πλευρὰς ἔχει τὸ εἰκοσάεδρον ; φήσομεν οὕτως : φανερόν , ὅτι ὑπὸ εἴκοσι
5790052 Ϟον
λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν . Ἅπαξ ἄρα τὰ ἐλάσσονα , ἤτοι τὸν π
κβ . Δεῖ τοίνυν τὸν ἀπὸ τῆς ὑπεροχῆς αὐτῶν τετράγωνον Ϟόν , ἤτοι καθ ' ὑπόθεσιν τὸν ιϚ , ἐλάττονα
5782859 παραλληλογραμμον
ΒΖ ] τῇ ΓΖ , καὶ τὸ [ ΔΕΒΖ ] παραλληλόγραμμον , καὶ ἡ διάμετρος ἴση [ τῷ ] διαστήματι
δέ : καὶ τοῦ ΓΚ ἄρα παραλληλογράμμου πρὸς τὸ ΛΖ παραλληλόγραμμον λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΑΒΓ τριγώνου
5777870 μοναδος
οὐ γεννᾶι οὔτε γεννᾶται ὑπ ' ἄλλου ἀριθμοῦ πλὴν ὑπὸ μονάδος : διὸ καὶ καλεῖται ὑπὸ τῶν Πυθαγορείων παρθένος ἀμήτωρ
ιη , καὶ α καὶ ιθ . ἐπὶ μέντοι τῆς μονάδος οὐκέτι τοῦτο , ἀλλὰ τοῦ μὲν μετ ' αὐτὴν
5750715 ἑξαγωνον
ἡ δὲ ΑΓ τὴν τρίγωνον , ἡ δὲ ΓΒ τὴν ἑξάγωνον . καὶ περιέξουσιν οἱ λόγοι τῶν ἀπὸ τοῦ αὐτοῦ
Σελήνης καλοσχηματίστου οὔσης πρὸς τοὺς ἀστέρας κατά τε τρίγωνον καὶ ἑξάγωνον , προσθετικῆς οὔσης τοῖς ἀριθμοῖς . Ἔαρ . Ἀπὸ
5744271 ἰσοπλευρα
τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν
ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν
5719630 τετραγωνων
τὸν κζ λόγον , ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμὸν τετραγώνων ἀμφοτέρων ὄντων καὶ τοῦ λϚ καὶ τοῦ κζ ;
τῆς ΑΓ ἔλαττόν ἐστι τῶν ἀπὸ τῶν ΓΒ , ΒΑ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΒ , ΒΔ περιεχομένῳ ὀρθογωνίῳ
5699209 τριπλασιαν
Λ διπλασίαν τῆς Δ οὖσαν ١٤ , τὴν δὲ Μ τριπλασίαν ٢١ , τὴν δὲ Ν ٢٨ καὶ τὴν Κ
οὖν γενομένης τῆς ναυμαχίας ὁ μὲν Δημήτριος ἄλλην μηχανὴν κατεσκεύασε τριπλασίαν τῷ ὕψει καὶ πλάτει τῆς πρότερον , προσάγοντος δ
5696431 ζυγειν
τι ὠνομάζετο , καὶ ἐκπερισπασμὸς ἄλλο , καὶ στοιχεῖν καὶ ζυγεῖν , καὶ ἐς ὀρθὸν ἀποδοῦναι καὶ ἐξελίσσειν καὶ διπλασιάζειν
τὰ ἓν παρ ' ἓν κείμενα . Ἐπεὶ δὲ συνέβη ζυγεῖν μέν , οὐ στοιχεῖν δέ , τοῦτο ἡμῶν φροντιζόντων
5695651 καταγγελλοντα
αὐτῶν οὕτως . ὁρίσαι γὰρ χρὴ τὸν μὲν τὸ πρᾶγμα καταγγέλλοντα Σελήνης ἀπόρροιαν εἶναι , τὸ δὲ πρᾶγμα αὐτὴν τὴν
εἶναι τελεσφόρον ὄντως τὸν ἕβδομον ἀριθμόν , ἀμφοτέρας τὰς ἰσότητας καταγγέλλοντα τήν τ ' ἐπίπεδον διὰ τετραγώνου κατὰ τὴν πρὸς
5685388 ἀρτιον
ἤπερ γὰρ ἄλλος καλοῖτο ὁ ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενος κατὰ ἄρτιον ὥσπερ τὸν κδ : ὑπὸ γὰρ ἀρτίου κατὰ ἄρτιον
, ἔχων ἄρρενα μὲν τὸν περιττόν , θῆλυν δὲ τὸν ἄρτιον , ἐξ ὧν εἰσιν αἱ γενέσεις κατὰ φύσεως θεσμοὺς
5682626 ἑξαγωνων
φέρεται . τῇ δὲ αὐτῇ θεωρίᾳ ὑπ ' ἀμφοτέρων τῶν ἑξαγώνων τοῦ Ἡλίου ἡ Σελήνη παρατυχοῦσα ὑπὸ σύνδεσμον φέρεται .
μὲν γὰρ πρῶτον ὀκτάεδρόν ἐστιν περιεχόμενον ὑπὸ τριγώνων δʹ καὶ ἑξαγώνων δʹ . τρία δὲ μετὰ τοῦτο τεσσαρεσκαιδεκάεδρα , ὧν
5679722 στοιχειν
ἓν κείμενα . Ἐπεὶ δὲ συνέβη ζυγεῖν μέν , οὐ στοιχεῖν δέ , τοῦτο ἡμῶν φροντιζόντων , στοιχεῖν λέγεται εἴ
αὐτὸς νόμους θέμενος , ὥστε φανερῶς συγγίνεσθαι αὐταῖς καὶ μιᾷ στοιχεῖν , καὶ σχεδὸν εὑρὼν τὰς δύο φύσεις , τοῦ
5661968 κωνον
μήτε καλαθοειδῶς τῆς σκιᾶς πίπτειν δυναμένης , ἀλλὰ τὸν λεγόμενον κῶνον ἀποτελούσης . Ὃ δὴ πρῶτος Ὅμηρος ἐκ μιᾶς λέξεως
ἂν ὑπεραίροι , οὔτε ἐλλείποι . ἐναρμόσει ἄρα εἰς τὸν κῶνον , καὶ περιληφθήσεται ὑπὸ τοῦ κώνου τοῦ περιλαμβάνοντος τὴν
5654609 ΔΕΖ
: ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ ,
, καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ
5616922 ἐκτεθεντων
καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς
τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α ,
5611747 δοθεντα
καὶ διελόντι . γέγονεν οὖν τέμνειν τὴν ΓΘΔ περιφέρειαν εἰς δοθέντα λόγον κατὰ τὸ Θ : τοῦτο δὲ προγέγραπται .
ἐστιν ἀρχαῖον : ἀνακεῖσθαι δὲ ἐνταῦθα λέγουσιν ὅρμον Ἁρμονίᾳ μὲν δοθέντα ἐξ ἀρχῆς , καλούμενον δὲ Ἐριφύλης , ὅτι αὐτὴ
5610990 τριγωνα
ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ
μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου
5610506 γωνιας
βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ
Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς
5610374 τετραγωνῳ
τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ
ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ
5602214 γωνιων
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ .
5601904 ΒΓ
Δ , Ε , ὥστε ἴσας εἶναι τὰς ΑΒ , ΒΓ , ΓΔ , ΔΕ , ΕΑ περιφερείας : καὶ
τῆς ΒΠ πολλῷ μείζους εἰσίν . ἀλλὰ ἡ ΒΠ τῆς ΒΓ μείζων : αἱ ἄρα ΒΞ , ΞΟ , ΟΠ
5599900 τετραδος
, ταύτην προτάττει , ἐπείπερ ἀπὸ μονάδος συντιθέντες μέχρι τῆς τετράδος πρώτως τὸν δέκα ἀριθμὸν ποιοῦμεν , οἷον ἓν δύο
ἄλλων θεῶν ἁψόμεθα συνουσιῶν ἐν τούτῳ δὴ τῷ μηνὶ τῆς τετράδος τὰ πρῶτα δεχομένης . Ἦλθον αὖθις ἡμῖν ἐπιστολαὶ παρ
5591944 ἐμβαδον
ἀναγεγράφθω κύκλος οὗ ἡ περίμετρος λγ : γίνεται αὐτοῦ τὸ ἐμβαδὸν πϚ ∠ ʹ ηʹ . καὶ ὁμοίως ἀφαιρῶ τὰ
το - μέως δοθέντος , ἀφέλωμεν τὸ τοῦ ΑΓΘ τριγώνου ἐμβαδὸν δοθέν , ἕξομεν λοιπὸν τὸ περιεχόμενον τμῆμα ὑπό τε
5579219 πλευρα
; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ
νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ
5572073 ἰσοπλευρου
: ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου ,
τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ
5571961 ἑξηκοντατεσσαρα
τὸν παραυξηθέντα κύβον τε καὶ τετράγωνον : ἀπὸ γοῦν τοῦ ἑξηκοντατέσσαρα ὁ συντεθεὶς ἐν διπλασίονι λόγῳ γεννήσει ἕβδομον τὸν τετρακισχίλια
ὁμοῦ καὶ κύβον , τετράγωνον μὲν αὐτὸν πλευρὰν ἔχοντα τὸν ἑξηκοντατέσσαρα , κύβον δὲ τὸν ἑκκαίδεκα . . . §
5569701 προσλαβοντα
τὸ ἐπίταγμα , ἔστω τὸν ὑπὸ αου καὶ βου , προσλαβόντα τὸν γον , ποιεῖν ⃞ον , καὶ λείψαντα τὸν
ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῆς γραμμῆς τετράγωνα προσλαβόντα τὰ ἀπὸ τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας τῆς
5565700 τμημα
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ
5550238 διειρειν
, ἤτοι γε ἀπὸ τῶν ἀριστερῶν μερῶν ἐπὶ τὰ δεξιὰ διείρειν τὴν βελόνην ἢ ἀνάπαλιν , ἑκατέρως δὲ πειρᾶσθαι τὴν
ὑπεροχή . βελόνην χρὴ λίνον διπλοῦν ἔχουϲαν πρὸϲ τῇ βάϲει διείρειν , εἶτα ἀποϲφίγγειν τὸ λίνον καὶ διαϲτήϲαντα βραχύ ,
5546673 πολυγωνων
γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν
τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον
5546186 ἐπιπεδων
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα
5543876 τετραγωνους
ὃς σύγκειται ἐκ δύο τετραγώνων , μεταδιελεῖν εἰς δύο ἑτέρους τετραγώνους . Ἔστω τὸν ιγ , συγκείμενον ἔκ τε τοῦ
τρεῖς ἀριθμοὺς ὅπως ὁ ὑπὸ δύο ὁποιωνοῦν ποιῇ τοὺς δοθέντας τετραγώνους ἀριθμούς . Ἐὰν γὰρ ὦσιν οἱ δοθέντες τετράγωνοι ,
5536889 γεγενησθω
ὅτι τὸ ΓΔ ἔν τινι ἀποστήματι γενόμενον οὐκέτι ὁραθήσεται . γεγενήσθω γὰρ τὸ ΓΔ ἐν τῷ μεταξὺ διαστήματι τῶν ὄψεων
ΥΑ : ἡ δὲ ΟΡ πρὸς μείζονα τῆς ΑΠ . γεγενήσθω δέ , καὶ ἔστωσαν αἱ ΓΕ , ΓΝ ,
5536395 πυραμιδος
οὕτως ἡ ΑΒΓΗ πυραμὶς ἤτοι πρὸς ἔλασσόν τι τῆς ΔΕΖΘ πυραμίδος στερεὸν ἢ πρὸς μεῖζον . ἔστω πρότερον πρὸς ἔλασσον
ἀπὸ δὲ τοῦ Θ ἐπὶ τὸ ΗΕΚΛ . Ἔστω βάσις πυραμίδος τρίγωνον τὸ ΑΒΓ , καὶ τετμήσθω ἡ μὲν ΑΒ
5532915 ΑΒΓΔ
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ
5525831 ιϚ
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς
5515114 τριγωνου
τμημάτων ὁ μηνίσκος . ἔσται οὖν ἐλάττων ὁ μηνίσκος τοῦ τριγώνου τοῖς ὑπὸ τοῦ ἑξαγώνου ἀφαιρουμένοις τμήμασιν . ὁ ἄρα
καταγίνεται , ὡς γεωμετρία ἀποδεικνύουσα ἀεὶ τὰς τρεῖς γωνίας τοῦ τριγώνου δυσὶν ὀρθαῖς ἴσας εἶναι , ἢ ὡς ἐπὶ τὸ
5499461 ἐπιταχθεντα
. Καὶ διὰ τοῦτο φανερὰ ἡ ἀπόδειξις . . Τὸν ἐπιταχθέντα ἀριθμὸν διελεῖν εἰς δύο ἀριθμοὺς ἀνίσους , καὶ πάλιν
ὁ ὑπὸ δύο ὁποιωνοῦν πρὸς τὸν τυχόντα λόγον ἔχῃ τὸν ἐπιταχθέντα . ἔστω ὁ τυχὼν Μο ε : καὶ ἐπεὶ
5496987 τετραγωνα
δὲ ἐπισημαντέον , ὅτι ἴσα μὲν λέγομεν καὶ τρίγωνα καὶ τετράγωνα καὶ ἐπὶ πάντων σχημάτων , ἐπιπέδων τε καὶ στερεῶν
δυνάμει σύμμετροι ῥηταὶ μὲν διὰ τὸ τὰ ἀπ ' αὐτῶν τετράγωνα σύμμετρα εἶναι , οὐ μὴν καὶ μήκει σύμμετροι .
5485278 ἀνισων
καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ ,
τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β
5483025 ὀκταεδρου
σφαίρας τοῦ ἀπὸ τῆς ΖΘ καθέτου ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου . τριπλάσιόν ἐστιν . μζʹ . Ἔστω τρίγωνον ἰσόπλευρον
πέντε ἡ τοῦ εἰκοσαέδρου , ὑπὸ δὲ τεσσάρων ἡ τοῦ ὀκταέδρου , ὑπὸ δὲ τριῶν ἡ τῆς πυραμίδος . δῆλον
5477587 συναμφοτερων
τὸ εὑρεῖν δύο ἀριθμοὺς ὅπως ὁ ὑπ ' αὐτῶν μετὰ συναμφοτέρων ποιῇ τετράγωνον , καὶ ἔτι οἱ μονάδι μείζονες αὐτῶν
ἐφ ' ἑκάτερα τῆς μέσης μεγίστας ἀποστάσεις μήτε ἐλάσσους εὑρίσκεσθαι συναμφοτέρων τῶν κατὰ τὸν Ταῦρον μήτε μείζους συναμφοτέρων τῶν κατὰ
5475358 ἐξελισσειν
καὶ οἱ κατὰ ζυγὰ γίγνονται , ἐάν τε κατὰ τάγματα ἐξελίσσειν τις βούληται , ὥς τι ὁποῖον δήποτ ' οὖν
, στοιχεῖν τε καὶ ζυγεῖν καὶ εἰς ὀρθὸν ἀποδοῦναι καὶ ἐξελίσσειν καὶ διπλασιάζειν : φασὶ δέ τι καὶ ἐπαγωγὴν καὶ
5473502 ἁρμονικην
δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη
δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ
5473357 βδ
τετράγωνος , τουτέστιν ὁ ε , ἴσος τοῖς ἀπὸ τῶν βδ , δγ τετραγώνοις μετὰ τοῦ δὶς ἐκ τῶν βδ
οὕτως ἔχει , καθὼς εἴρηται , φανερόν : ἡ γὰρ βδ ὑπερέχει τῆς γα τῇ γδ : ἡ δὲ γα
5472812 ἑτερομηκους
, ἀλλ ' ἰσοκρατῶς ἀμφότεροι πλευρικοί εἰσιν ἀριθμοὶ τοῦ Ϛʹ ἑτερομήκους ἐκ τοῦ δὶς τρία ἢ ἐκ τοῦ τρὶς βʹ
ἐπὶ τοῦ τετραγώνου καὶ τοῦ ῥόμβου , ἐπὶ δὲ τοῦ ἑτερομήκους καὶ τοῦ ῥομβοειδοῦς τὰ χωρία μόνον . καὶ ὅλως
5466605 ΑΒΓΔΕ
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον
5463874 γραμμων
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων
5461972 δωδεκαεδρον
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ
5461863 πλατος
. Τὸ μὲν ὕψος λαμβάνει πήχεις Ϙ , τὸ δὲ πλάτος πήχεις μη . Γίνεται δὲ τῷ σχήματι πυργοειδής :
. Ἀλλ ' ὁ λόγος νῦν οὐ περὶ τῆς κατὰ πλάτος ἐπινοουμένης ὑγείας διέξεισιν , ἀλλὰ τῆς οἷον ἀμέμπτου πάντῃ
5454745 πολλαπλασιασθεις
ἐπειδὴ τὸν μὲν κε ὁ ε ἐποίησεν ἐφ ' ἑαυτὸν πολλαπλασιασθείς , τὸν δὲ μθ ὁ ζ . οἱ δὲ
ὁ γ τὸν θ , οὔτε μετ ' ἄλλου τινὸς πολλαπλασιασθείς . Μέρη λέγω τοὺς ὑπολόγους , ὑποεπιτρίτους , ὑποεπιτετάρτους
5446656 ψκθ
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ #

Back