| καὶ διελόντι . γέγονεν οὖν τέμνειν τὴν ΓΘΔ περιφέρειαν εἰς δοθέντα λόγον κατὰ τὸ Θ : τοῦτο δὲ προγέγραπται . | ||
| ἐστιν ἀρχαῖον : ἀνακεῖσθαι δὲ ἐνταῦθα λέγουσιν ὅρμον Ἁρμονίᾳ μὲν δοθέντα ἐξ ἀρχῆς , καλούμενον δὲ Ἐριφύλης , ὅτι αὐτὴ |
| . Καὶ διὰ τοῦτο φανερὰ ἡ ἀπόδειξις . . Τὸν ἐπιταχθέντα ἀριθμὸν διελεῖν εἰς δύο ἀριθμοὺς ἀνίσους , καὶ πάλιν | ||
| ὁ ὑπὸ δύο ὁποιωνοῦν πρὸς τὸν τυχόντα λόγον ἔχῃ τὸν ἐπιταχθέντα . ἔστω ὁ τυχὼν Μο ε : καὶ ἐπεὶ |
| ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων ἡμίση ἐστὶ τὰ | ||
| καί ἐστι τὰ ἀπ ' αὐτῶν ἀνιστάμενα στερεὰ παραλληλεπίπεδα πρίσματα ἰσοϋψῆ : τὰ δὲ ὑπὸ τὸ αὐτὸ ὕψος ὄντα στερεὰ |
| χαίρουσαν . εἰ δὴ τοιαύτη τίς ἐστιν , ἐχέτω τὰ δεδομένα , καὶ τὴν παιδείαν καὶ τὸν εἱρμὸν λόγου πρὸς | ||
| ῥητὸν αὐτὸ εἶναι ἀπεφήναντο , ὥσπερ δοκεῖ ὁ Πτολεμαῖος , δεδομένα ἐκεῖνα προσαγορεύων , ὧν τὸ μέτρον ἐστὶ γνώρι - |
| τὸ ἐπίταγμα , ἔστω τὸν ὑπὸ αου καὶ βου , προσλαβόντα τὸν γον , ποιεῖν ⃞ον , καὶ λείψαντα τὸν | ||
| ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῆς γραμμῆς τετράγωνα προσλαβόντα τὰ ἀπὸ τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας τῆς |
| μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
| ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
| ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ | ||
| μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου |
| ἐπεὶ ὡς εἴρηται εὑρεθήσεται τὸ αὐτό : τὰ γὰρ δύο ἡμίση ἓν ποιοῦσι καὶ τὰ δύο ἕκτα τρίτον , ὥστε | ||
| τῆς ΗΚ καὶ τῆς περιμέτρου τοῦ ΑΒΓ . καὶ τὰ ἡμίση πολύγωνα ἄνισα , ὥστε μεῖζον τὸ ΔΕΖ τοῦ ΑΒΓ |
| ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
| εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |
| δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις | ||
| ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα . |
| , καὶ τὰ κτήματα τοῦ ἀποθανόντος πάντα ἀποδόμενος ἀποδώσω τὰ ἡμίσεα τῷ ἀποκτείναντι , καὶ οὐκ ἀποστερήσω οὐδέν . Ἐὰν | ||
| δὲ τῶν γεωργουμένων τροφῶν σφισιν ἀπέφερον ἐς Σπάρτην πάντων τὰ ἡμίσεα . προείρητο δὲ καὶ ἐπὶ τὰς ἐκφορὰς τῶν βασιλέων |
| δὲ τρία τῶν τεσσάρων πρῶτα . καὶ ἄλλως : πᾶν τετράγωνον εἰς δύο τρίγωνα ὀρθογώνια διαιρεῖται : ὥστε ἀναιρουμένου τοῦ | ||
| ʂ α . λοιπόν ἐστι καὶ τὸν ἀπὸ τοῦ ἐλάσσονος τετράγωνον τῆς ὑπεροχῆς αὐτῶν εἶναι Ϛπλ . : ΔΥ ἄρα |
| πρὸς ΑΗ : ὅμοια γὰρ τὰ ΒΗΚ , ΒΗΑ τρίγωνα ὀρθογώνια : καὶ τὸ ἄρα ΓΑΔ τρίγωνον πρὸς ΘΑΚ ἐστιν | ||
| τοῦ ῥόμβου , τοῦ ῥομβοειδοῦς , εἰ μὲν κατὰ τὰ ὀρθογώνια γίνεται ἡ διαίρεσις , ἐξ ἀνάγκης καὶ τὰ χωρία |
| τῆς σφαίρας διάμετρος τῆς τοῦ τροπικοῦ διαμέτρου : ἡ ἄρα διπλασία τῆς διαμέτρου τῆς σφαίρας ἐλάσσων ἐστὶν ἢ τετραπλασία τῆς | ||
| τοῦ διπλασίου ; Δῆλον δή , ὦ Σώκρατες , ὅτι διπλασία . Ὁρᾷς , ὦ Μένων , ὡς ἐγὼ τοῦτον |
| , καὶ ἔτι ὁ ὑπὸ γου καὶ αου , προσλαβὼν συναμφοτέρους , ʂ ε Μο δ ἴσος ⃞ῳ καὶ γίνεται | ||
| Καύκωνας Πυλίους ἀπὸ Κόδρου τοῦ Μελάνθου , οἱ δὲ καὶ συναμφοτέρους . Ἀλλὰ γὰρ περιέχονται τοῦ οὐνόματος μᾶλλόν τι τῶν |
| τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
| πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
| ἐστίν . ἡ δὲ ἔκθεσις αὐτὸ καθ ' αὑτὸ τὸ δεδομένον ἀποδιαλαβοῦσα προευτρεπίζει τῇ ζητήσει . ὁ δὲ διορισμὸς χωρὶς | ||
| ὑπὸ τῆς πόλεως δημοσίᾳ κατεσκευασμένον , εἰ δὲ μή , δεδομένον κατασκευάσασθαι . πάλιν δ ' ὅταν ἐξετάσῃ Πυθιονίκης τῆς |
| , καὶ τὸ ὂν σὺν τῷ ἑνί , καὶ ἢ ὁμοταγῆ , ἢ διεστήξεται ἀπ ' ἀλλήλων , καὶ ἔσονται | ||
| γὰρ ὡς ἐπὶ τῆς προκειμένης τὰ ΖΑΗ , ΘΑΚ τρίγωνα ὁμοταγῆ . λέγω , ὅτι ἴσα τε καὶ ὅμοιά ἐστιν |
| τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
| . ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
| ' εὐθέως ἐξ ἀρχῆς οὕτως σκευάζειν : τῷ ὀξυμέλιτι μιγνύσθω τετραπλάσιον ὕδατος καλλίστου , κἄπειτα ἑψείσθω μετρίως , ἕως ἂν | ||
| ΚΓ , διπλῆ ἄρα καὶ ἡ ΘΚ τῆς ΚΓ . τετραπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΘΚ τοῦ ἀπὸ τῆς |
| ΗΔ . καὶ εἰσὶν αἱ τρεῖς αἱ ΘΔ ΔΚ Λ δοθεῖσαι : ἀπῆκται ἄρα εἰς διωρισμένης αʹ : δεδομένων τριῶν | ||
| μάλιστα πρὸς τὴν χειρουργίαν εὔθετον . ” Ἔστωσαν γὰρ αἱ δοθεῖσαι εὐθεῖαι αἱ ΑΒ ΒΓ πρὸς ὀρθὰς ἀλλήλαις κείμεναι , |
| τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν | ||
| ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν |
| μὲν τρισὶ περιεχόμενα πλευραῖς τρίπλευρα καλεῖται , τὰ δὲ τέτταρσι τετράπλευρα , τὰ δὲ πλείοσι πολύγωνα . τῶν δὲ τετραπλεύρων | ||
| οὔτε ἰσόπλευρόν ἐστιν οὔτε ὀρθογώνιον : τὰ δὲ παρὰ ταῦτα τετράπλευρα τραπέζια καλείσθω . Παράλληλοί εἰσιν εὐθεῖαι , αἵτινες ἐν |
| λείψας αὐτὸν ποιεῖ ΚΥ κζ ʂ Ϛ # ΔΥ κζ ἴσ . ʂ Ϛ # ΔΥ α , καὶ γίνεται | ||
| ποιεῖν ἴσ . ⃞ῳ , καὶ ʂ β Μο α ἴσ . κύβῳ . καὶ γίνεται ζητεῖν τετράγωνον κύβου βπλ |
| . ιθʹ . Τούτου προδειχθέντος ἔστω σφαῖρα μετέωρος , καὶ προκείσθω τό τε σημεῖον εὑρεῖν , ἐφ ' ὃ πεσεῖται | ||
| , Η γεγράφθω μεγίστου κύκλου περιφέρεια ἡ ΖΗΘ , καὶ προκείσθω τὴν ΗΘ δηλονότι εὑρεῖν . προειλήφθω δὴ καὶ ἐνταῦθα |
| τὸ ΒΓ διὰ παντὸς φαίνεται τοῦ ὄμματος μεθισταμένου ἐπὶ τῆς ΒΓΔ περιφερείας . μγʹ . Ἔστι τις τόπος , οὗ | ||
| τῇ ὑπὸ ΒΓΖ . δύο δὴ τρίπλευρά ἐστιν τό τε ΒΓΔ καὶ τὸ ΒΓΖ τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς |
| πυξίνην κατηδέσθημεν ἂν καὶ κατεκόπημεν εὐθύς . ἐμφέρεσθε δὲ τὰ ῥάμματα . ὡς μέγα μέντοι πάνυ τὴν Αἴτνην ὄρος εἶναί | ||
| τῇ ἀρτηρίᾳ γενέσθαι , ψαλίσομέν τε πρὸς τῷ πυθμένι τὰ ῥάμματα , ὥστε δύο μὲν αὐτὰ γενέσθαι , τέσσαρας δ |
| μείζονα λόγον ἔχει ἢ ὃν τὰ ιη πρὸς α , ἐλάσσονα δὲ ἢ ὃν τὰ κ πρὸς ἕν : ὥστε | ||
| τὸ ηʹ , ἐπὶ δὲ τοῦ ζῳδιακοῦ τὸ εʹ , ἐλάσσονα χρόνον κρύψιν ἄγει τὸ ηʹ τοῦ εʹ : καὶ |
| ὁρίζοντές εἰσιν οἱ ΕΜΖ ΑΒΓ τούτῳ μόνον διαφέροντες τῷ τὸν ΑΒΓ πρὸς ἀνατολὰς μᾶλλον τετάχθαι ἤπερ τὸν ΕΜΖ , τὰ | ||
| : καὶ ἡ ἀπὸ τοῦ Η ἄρα κάθετος ἐπὶ τὸ ΑΒΓ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΟΜΝ ἐπιπέδου . διὰ |
| λοιπαὶ μείζους εἰσὶ πάντῃ μεταλαμβανόμεναι , τουτέστιν δυνατὸν ἐκ τῶν ἐπιζευγνυουσῶν τὰς γωνίας πολύπλευρον συστήσασθαι . ἔστωσαν αἱ δοθεῖσαι τέσσαρες | ||
| τῷ ἐπιπέδῳ συνεστάτω τὸ ΘΚΛ , ἐκ τριῶν δὲ τῶν ἐπιζευγνυουσῶν τὰ Δ Ε Ζ τὸ ΚΛΜ , ἐκ τριῶν |
| καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ τῆς κατηγμένης καὶ τῆς ἐφαπτομένης , ἕξει πρὸς αὐτὴν ἡ κατηγμένη | ||
| τῶν δύο εὐθειῶν , ὧν ἐστιν ἡ μὲν μεταξὺ τῆς κατηγμένης καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ |
| ὁ ΛΜΝ γνώμων καὶ ] τὰ ΓΚ , ΘΗ τετράγωνα τριπλάσιά ἐστι τοῦ ΘΗ τετραγώνου . καί ἐστιν ὁ [ | ||
| ἡ ΝΟ : τὰ ἄρα ἀπὸ τῶν ΝΣ , ΣΟ τριπλάσιά ἐστι τοῦ ἀπὸ τῆς ΝΟ . ἴση δὲ ἡ |
| ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων . | ||
| ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες , |
| ὁρίζοντι , ὅταν δὲ κατὰ τὸ Ο , δύνει τῷ ΔΒΓ ὁρίζοντι . Τὰ ἄρα ἀπλανῆ ἄστρα , ὅσα ἐστὶ | ||
| ΠΞ : μεσημβρινὸς γάρ ἐστιν ὁ ΔΑΠ ἐν ἑκατέρῳ τῶν ΔΒΓ ΑΒΓ ὁριζόντων : λοιπὴ ἄρα ἡ ΜΝ ἴση ἐστὶν |
| διπλάσιος , ὁ δὲ δεκαὲξ τοῦ δ τετραπλάσιος . Τὸ διπλασίονα λόγον ἔχει , ὡς πολλάκις πρόσθεν εἴρηται , ἴσον | ||
| δή , ὅτι ὁ Η κύκλος πρὸς τὸν Θ κύκλον διπλασίονα λόγον ἔχει ἤπερ ὁ ΑΗΓΔ κῶνος πρὸς τὸν ΒΘΕΖ |
| μὲν ἐπὶ τὰ ἔϲω τὸ ἄρθρον ἐξέπεϲεν , τοῦ μὲν ἱμάντοϲ τοῦ κατὰ τὸν περίνεον τὴν μεϲότητα δεῖ μεταξὺ τῆϲ | ||
| ὄπιϲθεν δὲ διὰ τοῦ νώτου , καὶ τὰϲ δύο τοῦ ἱμάντοϲ ἀρχὰϲ ὑπηρέτῃ δώϲομεν : κἄπειτα πάντεϲ ἕλκοντεϲ ὁμοῦ , |
| οἵων ἐστὶν ἡ μία ὀρθὴ Ϙ . διὰ δὲ τὰ προδεδειγμένα πάλιν καὶ ἡ ὑπὸ τοῦ ἐαρινοῦ ἰσημερινοῦ σημείου γινομένη | ||
| γίνεται τὸ ΕΖΗ τρίπλευρον τῷ ΕΚΛ , ἐπεὶ διὰ τὰ προδεδειγμένα καὶ τὰς τρεῖς πλευρὰς ταῖς τρισὶ πλευραῖς ἴσας ἔχει |
| ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
| πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
| ΩΒ τῇ ΒΨ . καί ἐστι μέγιστος τῶν παραλλήλων ὁ ΒΗΔ , καὶ παράλληλοι κύκλοι οἱ ΩΚ , ΨΛ : | ||
| ΓΔ . ὁμοίως δὴ τοῖς πρὸ τούτου ὅτι ἡ ὑπὸ ΒΗΔ γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς τῆς |
| τὸ ΖΗΛ τρίγωνον , οὕτως τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον . ἀλλὰ τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ | ||
| . ἀλλὰ μὴν καὶ ὡς ἡ ΖΗΘ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν , οὕτως ἦν καὶ ἡ ΖΗΘΝ πυραμὶς πρὸς |
| γον , ποιεῖ ⃞ον : ὥστε καὶ ἑκάτερον τόν τε αον καὶ τὸν βον λείψας ὁ ἐκ τῶν τριῶν στερεὸς | ||
| ἐκ τῶν τριῶν συγκείμενον τετράγωνον ΔΥ α , τὸν δὲ αον ΔΥ א ρνγ , ἐπεὶ δεῖ τρίγωνον γενέσθαι , |
| δὲ ἐπισημαντέον , ὅτι ἴσα μὲν λέγομεν καὶ τρίγωνα καὶ τετράγωνα καὶ ἐπὶ πάντων σχημάτων , ἐπιπέδων τε καὶ στερεῶν | ||
| δυνάμει σύμμετροι ῥηταὶ μὲν διὰ τὸ τὰ ἀπ ' αὐτῶν τετράγωνα σύμμετρα εἶναι , οὐ μὴν καὶ μήκει σύμμετροι . |
| Μο κα ἀφελεῖν Μο θ # ΔΥ α καὶ ποιεῖν ⃞ον . ἀλλ ' ἐὰν ἀπὸ Μο κα ἀφέλω Μο | ||
| Μο β , δεήσει καὶ ΔΥ λ ʂ ε εἶναι ⃞ον : οὐκ ἔστιν δέ . ἀπάγεται οὖν εἰς τὸ |
| πατέρων εἰς αὐτοὺς μιμεῖσθαι . σοφὸν δέ σου τὸ μὴ ἐγγράψαι τῇ ἐπιστολῇ τὰ χρήματα : εὖ γὰρ ᾔδεις ὅτι | ||
| ὄντων εἰς τὸν μείζονα κύκλον πολύγωνον ἰσόπλευρόν τε καὶ ἀρτιόπλευρον ἐγγράψαι μὴ ψαῦον τοῦ ἐλάσσονος κύκλου . Ἔστωσαν οἱ δοθέντες |
| τοῦ ἀπὸ τῆς ΑΜ κύβου πρὸς τὸν ἀπὸ τῆς ΜΗ κύβον . ἀλλ ' ὡς μὲν ἡ ΓΜ πρὸς ΜΗ | ||
| προσδήσαντες εἶτα μέντοι ἀπαλλάττονται , τοῦτο δήπου τὸ λεγόμενον ἀτεχνῶς κύβον ἀναρρίψαντες . οἱ δὲ τίγρεις ἐντυχόντες αὐταῖς , ἀθηρίᾳ |
| ἐκ τῶν ΑΓ Ε Ζ τρίγωνον συστήσασθαι . συνεστάτω τὸ ΑΓΔ * * * [ καὶ φανερὸν ὅτι εἰ μὲν | ||
| τομεὺς τοῦ ΑΓΕ τομέως : μείζονα ἄρα λόγον ἔχει ὁ ΑΓΔ τομεὺς πρὸς τὸ ΑΒΓ τρίγωνον ἤπερ ὁ ΑΓΕ τομεὺς |
| ἀλλήλας τῶν ἐξ ἐκείνων εὐθυγράμμων . ὁμοίως καὶ τὰ μήκει τετραπλάσια δυνάμει ἑκκαιδεκαπλάσιά εἰσιν : ἔχουσι γὰρ τετράκις τὸν τετραπλάσιον | ||
| τὸ ἀπὸ τῆς ΓΘ , τουτέστιν τὰ ἀπὸ τῶν ΓΕΘ τετραπλάσια τοῦ ἀπὸ ΘΚ , τὰ ἄρα ἀπὸ ΓΕ ΕΘ |
| καί εἰσιν ὅμοιαι ἀλλήλαις : ὅπερ ἔδει δεῖξαι . Κυλίνδρου δοθέντος εὑρεῖν κῶνον καὶ τεμεῖν ἀμφοτέρους ἑνὶ ἐπιπέδῳ ποιοῦντι διὰ | ||
| τῶν ἀριθμῶν εἰσιν ὅμοια . . Ὁμοίως ἐπὶ τῆς προσθήκης δοθέντος μέρους τοῦ μεγίστου ᾧ ὑπερέχει ὁ μέσος τοῦ ἐλαχίστου |
| μήτε καλαθοειδῶς τῆς σκιᾶς πίπτειν δυναμένης , ἀλλὰ τὸν λεγόμενον κῶνον ἀποτελούσης . Ὃ δὴ πρῶτος Ὅμηρος ἐκ μιᾶς λέξεως | ||
| ἂν ὑπεραίροι , οὔτε ἐλλείποι . ἐναρμόσει ἄρα εἰς τὸν κῶνον , καὶ περιληφθήσεται ὑπὸ τοῦ κώνου τοῦ περιλαμβάνοντος τὴν |
| βοῶν περιαρόσει : χωρὶς δὲ τῶν δημοσίᾳ δοθέντων κατὰ κεφαλὴν ἕκα - στος ἀνδρῶν τε καὶ γυναικῶν , ὅτε μάλιστα | ||
| [ ἂν . εἴ τινα . ν γὰρ τὸ . ἕκα ] - στος . ηγεῖται ʃ ἀπὸ κοινοῦ τὸ |
| γραφεισῶν περιφερειῶν αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι περιέξουσι τὴν λείπουσαν ὁμοίως εἰς τὰς δύο ὀρθὰς τῆς | ||
| καὶ ἡ ὑπὸ ΓΗΔ ὀρθή . Τῶν αὐτῶν ὄντων αἱ ἐπιζευγνύμεναι ἴσας ποιοῦσι γωνίας πρὸς ταῖς ἐφαπτομέναις . τῶν γὰρ |
| β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
| β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
| ὡς τὰ τούτου βραχύτερα τέτμηται καὶ καθόλου τὰ κομματικὰ καὶ ἀσύνδετα . [ , ] ἀλλὰ τὸ τοῦ Κεφάλου καλὸν | ||
| , οὗ τὸ ἀκόλουθον ἦν οὐκ ἠμέλει . Καὶ τὰ ἀσύνδετα τοῦ ἀφελοῦς ἐστι : λύει γὰρ τὸν ῥυθμόν . |
| τὸν ἐλάσσονα λόγον ἔχῃ δεδομένον . Ἐπιτετάχθω δὴ τὸν μὲν μείζονα τοῦ ἐλάσσονος εἶναι γπλ . , τὸν δὲ ἀπὸ | ||
| α Μο ξ μερίζοντα παρὰ ʂ β τὴν παραβολὴν ποιεῖν μείζονα μὲν Μο ια , ἐλάσσονα δὲ Μο ιβ ] |
| εἴτε προσκατηγοροῖτο τὸ ἔστιν εἴτε καὶ μή , καὶ εἴτε προσκέοιτο τρόπος τις εἴτε μή , καὶ ἁπλῶς εἰπεῖν κατάφασιν | ||
| καὶ χρυσίδες δὲ φιάλαι , καὶ χρυσοῦς τὸ νόμισμα . προσκέοιτο δ ' ἂν ὁ στατήρ : εἰ δὲ καὶ |
| , ὧν διάμετρος ἡ ΑΒ , καὶ τετμήσθω δίχα ἡ ΑΒ κατὰ τὸ Γ , καὶ διὰ τοῦ Γ ἤχθω | ||
| ὁ κύκλος οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ ὑπὸ ΑΒ ΚΛ , διὰ τὸ ἴσην εἶναι πάλιν τὴν ΔΟ |
| . ] Ἀποστασίου : δίκη τίς ἐστι κατὰ τῶν ἀπελευθερωθέντων δεδομένη τοῖς ἀπελευθερώσασιν , ἐὰν ἀφιστῶνταί τε ἀπ ' αὐτῶν | ||
| ἡ ὑπὸ ΕΒΞ δοθεῖσα , λοιπὴ ἄρα ἡ ὑπὸ ΒΝΕ δεδομένη ἔσται . καὶ τὸ ΕΝΞ τρίγωνον τῷ εἴδει . |
| ἁρμόϲαντεϲ ἐπὶ τὸν ὦμον ἀναγάγωμεν , ἔμπροϲθεν μὲν διὰ τοῦ βουβῶνοϲ καὶ τῆϲ κλειδόϲ , ὄπιϲθεν δὲ διὰ τοῦ νώτου | ||
| ὅϲον δακτύλων τὸ μῆκοϲ τριῶν ἐγκαρϲίαν κατὰ τὸ ἐξογκούμενον τοῦ βουβῶνοϲ τοὺϲ ὑμέναϲ τε καὶ τὴν πιμελὴν ἐκλαβεῖν κατὰ τὸ |
| τῶν μορίων ὀπίσω φέρεται , τῷ δὲ θατέρῳ πρὸς τὰ πλάγια . μόνους δ ' εἰς τοὺς περὶ τὴν διάρθρωσιν | ||
| , τὸ ἔγγιον ἔγγιον , τὸ ἀπώτερον ἀπώτερον . Τὰ πλάγια μήκη ἀπὸ τῶν κυρτῶν ἐνόπτρων , καθάπερ ἐστὶν ἀληθῶς |
| διαιρετέον . Ὀρθῶς . Οἶσθ ' οὖν ὅτι χαλεπὸν αὐτὰς τεμεῖν δίχα ; τὸ δ ' αἴτιον , ὡς οἶμαι | ||
| ὠκεανῷ . Γαλῇ χιτώνιον : ἐπὶ τῶν ἀχρήστων . Γαλλιστὶ τεμεῖν : ἐπὶ τῶν ἀφροντίστως ἀπαλλαγὴν πραγμάτων ποιήσασθαι βουλομένων . |
| σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ | ||
| ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς |
| : ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ , | ||
| , καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ |
| τῷ αὐτῷ ἴσα καὶ ἀλλήλοις ἴσα , καὶ ἐὰν ἴσοις ἴσα προστεθῇ , τὰ ὅλα ἐστὶν ἴσα . εἰ γάρ | ||
| εἰσὶν αἱ ΛΚ , ΚΑ , ΑΕ εὐθεῖαι ἀλλήλαις , ἴσα ἐστὶ καὶ τὰ μὲν ΛΟ , ΚΦ , ΑΖ |
| ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ | ||
| ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ |
| δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν ἔδει λείπουσαν , ἐκεῖνον μετὰ φωτὸς ὁρῶσαν . Αὐτῇ μὲν οὖν | ||
| Ἐπεὶ οὖν τὴν τάξιν ἐγνώκαμεν , φέρε καὶ ἐπὶ τὴν λείπουσαν διδασκαλίαν χωρήσωμεν : δεῖ γὰρ πρῶτον Ἀριστοτελικῷ νόμῳ κεχρημένους |
| τῷ γὰρ μὴ πάσας ἐξηγήσασθαι | , ἔτι καὶ τὰ συντάγματα , ἐν οἷς αὐτῶν ἑκάστη κατεγέγραπτο , σιωπῆς ἱκανῆς | ||
| ταῖς τόλμαις καὶ ταῖς ἐμπειρίαις ἀποβαίνουσιν . ἔστι δὲ ἕτερα συντάγματα τῆς πολιτείας τρία , τό τε τῶν νομέων καὶ |
| τοῦ ὑπὸ τῶν ΒΑΓ πρὸς τὸ ὑπὸ τῶν ΒΔ , ΑΓ λόγος ἐστὶ δοθείς . τοῦ δὲ ὑπὸ τῶν ΑΓ | ||
| δευτέρα ἐστὶν ἡ ΑΒ διῃρημένη κατὰ τὸ Γ , αἱ ΑΓ , ΓΒ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι μέσον |
| ' ἐποίησε μυττωτόν πολύν . ἔνιοι δὲ πλακοῦντα διὰ λαχάνου συντεθέντα . οἱ δὲ τὸν λεγόμενον ζῦθον . ἡμεῖς μέντοι | ||
| δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ τῆς ΑΒ τετράγωνον Μβ ͵θυιγ νθ |
| μὲν ὑπὸ ΕΛΗ τῇ ὑπὸ ΛΗΒ , ἡ δὲ ὑπὸ ΗΒΕ τῇ ὑπὸ ΒΕΛ . καὶ εἰσὶν ἐναλλάξ : παράλληλος | ||
| ὑπὸ ΗΒΕ γωνία τῇ ὑπὸ ΑΒΜ , ἀλλὰ ἡ ὑπὸ ΗΒΕ τῇ Δ ἐστιν ἴση , καὶ ἡ ὑπὸ ΑΒΜ |
| : τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ : | ||
| κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου |
| ΘΚΛ , τριῶν δὲ παραλληλογράμμων τῶν ΚΖΓΛ , ΛΓΗΘ , ΘΚΖΗ . καὶ φανερόν , ὅτι ἑκάτερον τῶν πρισμάτων , | ||
| δειχθήσεται . ὅτι μὲν οὖν ἰσόπλευρόν τε καὶ παραλληλόγραμμον τὸ ΘΚΖΗ τετράπλευρον , δῆλον : ὅτι δὲ καὶ ἰσογώνιον , |
| ἔχων τὴν ἀρχὴν , οὐκ ἀδικίας . εἰ δὲ δεῖ διελόντα εἰπεῖν , μόνη πόλεων τῶν μὲν βαρβάρων ἀκόντων , | ||
| οἷον ὑδρεντεροκήλη , σαρκοεπιπλοκήλη . ἐπὶ μὲν οὖν τῶν ὑδροκηλικῶν διελόντα δεῖ τὸ ὄσχεον καὶ κατὰ τὸ φλεβωδέστατον ἐντυχόντα τῷ |
| ἐπὶ τέλει δὲ πρὸς συνοχὴν ὅλης τῆς ἐπιδέσεως τελαμωνιδίου ὡς διδακτυλιαίου καὶ ποσὸν στενοτέρου ἡ μεσότης τῇ ῥινὶ προστίθεται , | ||
| ὑπὸ τὸν ἀνθερεῶνα ἁμματίζομεν , ἔπειτα μεσότητα στενοῦ ταινιδίου ὡς διδακτυλιαίου προστίθεμεν τῷ ἰνίῳ , τούτου δὲ τὰ χαλάσματα ὑπεράνω |
| νότια : καὶ τὰ μὲν ἀφανῆ , τὰ δ ' ἀειφανῆ γένοιτ ' ἂν αὐτῷ τῶν περὶ τοὺς πόλους ἄστρων | ||
| λόγον καὶ ἕτερα μέρη πρὸς τῶι Καρκίνωι γίνοιτ ' ἂν ἀειφανῆ τοῦ ζωιδιακοῦ . καὶ οὕτως , ἐφ ' ὅσον |
| . ὁμοίως ἐστὶ καὶ ἐπὶ τοῦ ποδός : ἔχει πέντε ὀστάρια τὸ πεδίον καὶ τέσσαρα τὸ ταρσὸν καὶ δεκατέσσαρα οἱ | ||
| εὐδοκίμησαν . λαβὼν ἀφόδευμα λύκου , εἰ δυνατὸν , ἔχον ὀστάρια κατάκλεισον εἰς σωληνάριον καὶ δὸς φορεῖν περὶ τὸν δεξιὸν |
| . τάσσω τὸν μὲν αον ʂא ιε , τὸν δὲ βον ʂא κ : καὶ συναμφότερος ὁ βος καὶ ὁ | ||
| ὁ Μοι ἐλάσσων τοῦ βου . ἐὰν οὖν τάξω τὸν βον ὁσουδήποτε καὶ προσθῶμεν αὐτὸν τῷ δοθέντι , καὶ τὰ |
| Δ , Ε , ὥστε ἴσας εἶναι τὰς ΑΒ , ΒΓ , ΓΔ , ΔΕ , ΕΑ περιφερείας : καὶ | ||
| τῆς ΒΠ πολλῷ μείζους εἰσίν . ἀλλὰ ἡ ΒΠ τῆς ΒΓ μείζων : αἱ ἄρα ΒΞ , ΞΟ , ΟΠ |
| ; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ | ||
| νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ |
| ἓν τῶν ἐπιταγμάτων . Καὶ ἐπεὶ ὁ μὲν αος ἐστι ηιγ / , ὁ δὲ βος Μο γ ∠ ʹ | ||
| τουτέστιν ηκδ / : ἔχομεν δὲ καὶ τὸν μὲν αον ηιγ / , τὸν δὲ βον Μο γ ∠ ʹ |
| ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος | ||
| μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν |
| κλίματος ἀπὸ Κριοῦ ἕως τῆς τοῦ ὡροσκόπου μοίρας ἀριθμήσας , διέκβαλλε τὸν συναχθέντα ἀριθμὸν ἀπὸ τοῦ Αἰγοκέρωτος διδοὺς ἑκάστῳ ζῳδίῳ | ||
| ζῳδίῳ μίαν ψῆφον διδοὺς ἀπὸ τοῦ κεκληρωμένου ζῳδίου τὸν μῆνα διέκβαλλε . καὶ ὅπου δἂν καταντήσῃ ὁ ἀριθμός , ἐκείνου |
| δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
| διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
| τοῦ κέντρου ἀναγραφῇ εἴδη παραλληλόγραμμα ἰσογώνια , ἔχῃ δὲ ἡ κατηγμένη πλευρὰ πρὸς τὴν λοιπὴν τοῦ εἴδους πλευρὰν τὸν συγκείμενον | ||
| Ε παρὰ τὴν ΑΓ ἡ ΕΜ : τεταγμένως ἄρα ἔσται κατηγμένη ἐπὶ τὴν ΑΒ : καὶ ἔσται , ὡς ἡ |
| ΑΒ πρὸς τὴν ΒΓ , οὕτως ἡ ΔΕ πρὸς τὴν ΕΖ , ὡς δὲ ἡ ΑΒ πρὸς τὴν ΒΗ , | ||
| , ἡ ΕΖ τῇ ΓΔ οὐ συμπεσεῖται . ἡ ἄρα ΕΖ οὐδετέρᾳ τῶν ΑΒ , ΓΔ τομῶν συμπεσεῖται : κατὰ |
| τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ | ||
| ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ |
| τῆς Β ζ μϚ λϚ ιε οὐδέν . ἀσύμμετρος τῇ ΓΔ μήκει . . , ] δυνάμει δὲ δηλονότι σύμμετρος | ||
| ἐστι . καὶ πάντα ἑξάκις . τὸ ἄρα τριακοντάκις ὑπὸ ΓΔ , ΖΗ ἴσον ἐστὶ τῇ τοῦ δωδεκαέδρου ἐπιφανείᾳ . |
| εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ | ||
| ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ |
| πολιτείας μισθόν , ἔτι δὲ προσυπομιμνήσκειν καὶ τὰ ἐγγράφως δοθέντα μανδάτα διὰ τῶν ἀρχόντων τῶν ἰδικῶν ἑκάστῳ τάγματι . Χρή | ||
| κόπους ἀνωφελεῖς παρεχούσας . Μέλλοντος δὲ καθίστασθαι τοῦ φοσσάτου καὶ μανδάτα δίδοσθαι ἀφ ' ἑσπέραν , καὶ εἰς τὸ αὖγος |
| εἶναι , τοὺς ὀφείλοντας μετὰ τῶν ἀντικεσσόρων προλαμβάνειν καὶ τὰ ἄπληκτα μετρεῖν . Πρὸς τούτοις δεῖ ἀφορίζειν καὶ ἀντικέσσορας ἤτοι | ||
| καβαλλάριοι , ἐγγιζόντων αὐτῶν τῷ στρατῷ μὴ ἐπιτηδεύειν συνεχῶς τὰ ἄπληκτα ἀλλάσσειν ἢ τὰς ὁδοιπορίας ποιεῖσθαι πρὸ τῆς τοῦ πολέμου |
| τιθεὶς ] ποιῶν . . διοσδότων ] τῶν ἐκ Διὸς δοθέντων . . ὑπὸ δὲ σώματι γᾶς πλοῦτος ἄβυσσος ἔσται | ||
| τῶν κακῶν , ὁ μὴ χρώμενος ταύτῃ τῇ δυνάμει τῶν δοθέντων ἐκ φύσεως αὐτῷ πλεονεκτημάτων ἐστὶν ἀνάξιος . οὐδὲν οὖν |
| κατ ' ἰνίον ἐναλλαγεῖσαι ὑπεράνω ὤτων φέρονται καὶ κατὰ τὰ ἀπολήγοντα τοῦ βρέγματος πρὸς ἀλλήλας ἁμματίζονται . τούτῳ δὲ μάλιστα | ||
| τῇ ὑπερκειμένῃ φλιᾷ , καὶ τότε τῷ μηρῷ κατὰ τὰ ἀπολήγοντα μέρη τὰ πρὸς τῷ γόνατι καρχή - σιος βρόχος |
| , ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει | ||
| τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ |
| καὶ γοητεύουσαν ταῖς ἡδυπαθείαις . . ΕΝ ΔΕ ΘΕΜΕΝ ΚΥΝΕΟΝ ΤΕ ΝΟΟΝ . Ἐπένευσεν ἡ Εἱμαρμένη καὶ τὸν προφορικὸν λόγον | ||
| δ ' ἀμφοτέρων ἐπίσης ἀπέχει ἡ σωφροσύνη . . ἙΝΔΕΚΑΤΗ ΤΕ ΔΥΩΔΕΚΑΤΗ Τ ' . Ἡ ἑνδεκὰς ἐτιμᾶτο μὲν καὶ |
| ἀπὸ δύσεως ἐπὶ τοὺς οἰκείους ὡριαίους χρόνους : τὸν γὰρ συναχθέντα ἀριθμὸν διεκβαλοῦμεν ἡμέρας μὲν ἀπὸ τῆς ἡλιακῆς μοίρας , | ||
| καὶ πρὸς ἑαυτὸ διαφέρον καὶ διαιρετόν , ἰδίᾳ μὲν τὰ συναχθέντα συνῆκται , οὐδεμία δὲ ἀνάγκη ἀπὸ τοῦ λόγου καὶ |
| τὸ διάφραγμα ῥάψομεν . κατὰ δὲ τὸ πτερύγιον εἰ γένοιτο κολόβωμα , παρὰ τὴν ῥῖνα αὐτὴν δώσομεν διαίρεσιν , ἐπεκτείνοντες | ||
| εἶναι τύχῃ , ὥστε ἐν τῇ τετραγώνῳ ἐκκοπῇ περιειλῆφθαι τὸ κολόβωμα , ἔπειτα τὴν ἄνω πλευρὰν τοῦ τετραγωνίσματος , λέγω |
| τουτέστιν ἀπὸ ὁμοίων ὅμοια . Καὶ λοιποὶ Ϟοὶ τρεῖς ἴσοι Ϟῷ ἑνὶ καὶ μονάσι μ . Εἶτα διὰ τὸ μὴ | ||
| Τὰ δὲ ἐλάσσονα γίνεται Ϟ Ϛ ↑ μο σμ ἴσα Ϟῷ ἑνὶ μονάσιν π . Ἀπὸ ὁμοίων ὅμοια . Γίνονται |
| χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα | ||
| ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ |
| καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς τὸ ποιήσασθαί τινα κἂν μερικὴν | ||
| τῇ ὑπὸ ΗΖΑ γωνίᾳ : ὅλη ἄρα ἡ ὑπὸ τῶν ΕΖΓ ὅλῃ τῇ ὑπὸ τῶν ΓΖΗ γωνίᾳ ἴση ἐστίν : |
| ἡ ΛΜ μείζων ἐστίν : πολλῷ ἄρα ἡ ΜΛ τῆς ΝΟ μείζων ἐστίν . ἀλλὰ καὶ ἴση : ὅπερ ἐστὶν | ||
| ἐστὶν ὡς ἡ ΒΚ πρὸς ΝΞ , ἡ ΚΜ πρὸς ΝΟ . καὶ τὰ τετράγωνα . καὶ ὡς ἓν πρὸς |
| ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν | ||
| συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων |
| βον μετὰ τοῦ γου ποιεῖν Μο λ , τὸν δὲ γον μετὰ τοῦ αου ποιεῖν Μο μ . Τετάχθωσαν οἱ | ||
| βου τουτέστιν εἰς ʂ β Μο δ , ἕξω τὸν γον : ἀλλ ' ἔστιν ὁ μερισμὸς ʂ ∠ ʹ |