τῷ αὐτῷ ἴσα καὶ ἀλλήλοις ἴσα , καὶ ἐὰν ἴσοις ἴσα προστεθῇ , τὰ ὅλα ἐστὶν ἴσα . εἰ γάρ | ||
εἰσὶν αἱ ΛΚ , ΚΑ , ΑΕ εὐθεῖαι ἀλλήλαις , ἴσα ἐστὶ καὶ τὰ μὲν ΛΟ , ΚΦ , ΑΖ |
ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν | ||
συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων |
δὲ ἐπισημαντέον , ὅτι ἴσα μὲν λέγομεν καὶ τρίγωνα καὶ τετράγωνα καὶ ἐπὶ πάντων σχημάτων , ἐπιπέδων τε καὶ στερεῶν | ||
δυνάμει σύμμετροι ῥηταὶ μὲν διὰ τὸ τὰ ἀπ ' αὐτῶν τετράγωνα σύμμετρα εἶναι , οὐ μὴν καὶ μήκει σύμμετροι . |
τῆς σφαίρας διάμετρος τῆς τοῦ τροπικοῦ διαμέτρου : ἡ ἄρα διπλασία τῆς διαμέτρου τῆς σφαίρας ἐλάσσων ἐστὶν ἢ τετραπλασία τῆς | ||
τοῦ διπλασίου ; Δῆλον δή , ὦ Σώκρατες , ὅτι διπλασία . Ὁρᾷς , ὦ Μένων , ὡς ἐγὼ τοῦτον |
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
ὑποτοξεύουσι βέλεσιν , ἀλλὰ τὴν ἐλευθερίαν ἡμῶν οὐ βλάπτουσιν . ἶσον δ ' ἐστὶ τὸ ψεύδεσθαι καὶ τὸ τάχος πείθεσθαι | ||
οὖθαρ ἀρούρης γαμβρός κέν οἱ ἔοις : τίσει δέ σε ἶσον Ὀρέστῃ , ὅς οἱ τηλύγετος τρέφεται θαλίῃ ἔνι πολλῇ |
δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις | ||
ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα . |
ἴσα δέ ἐστι τὰ μὲν ἀπὸ ΚΛΖ εἴδη τοῖς ὑπὸ ΒΞΔ , ΒΛΔ , τὰ δὲ ἀπὸ ΝΗΖ τετράγωνα τοῖς | ||
ἐπεζεύχθω ἡ ΧΦ . καὶ ἐπεὶ ἐν ἴσοις ἡμικυκλίοις τοῖς ΒΞΔ , ΚΞΝ ἴσαι ἀπειλημμέναι εἰσὶν αἱ ΒΟ , ΚΣ |
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |
ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ | ||
μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου |
συναμφότερα δὲ φρονήσει , καὶ ἀσωτίαν φιλαργυρίᾳ ὧν κοινὸν ἀνελευθερία συναμφότερα δὲ ἐλευθεριότητι , καὶ κατάπληξιν ἀναισχυντίᾳ ὧν κοινὸν ἀναίδεια | ||
πρὸς ὃν λέγει . ἦθος δὲ ἢ πάθος ἢ καὶ συναμφότερα , ἐπειδὴ ἢ πρὸς τὰ καθόλου τις ἀποβλέπει ἢ |
πλευρὰ ἔσται μονάδων πέντε : τότε οὔτε τὰ τμήματα μήκει σύμμετρα ἔσται οὔτε ἡ κάθετος . εἰ δὲ ἡ ὑποτείνουσα | ||
εὐθεῖαι ἀσύμμετροι ὦσι , τὰ δὲ ἀπ ' αὐτῶν χωρία σύμμετρα ἀλλήλοις , ἑτέρας δὲ ὅταν καὶ [ τὰ ἀπ |
παίζομεν τὸ ἐν τῇ συνηθείᾳ λεγόμενον ζυγὰ ἢ ἄζυγα . ἄρτια τὰ ζυγά , περισσὰ τὰ μονά , οἷον ὁ | ||
ἡμίση καὶ ἔτι τῶν ὑπ ' ἐκεῖνα μέχρι μονάδος ἀεὶ ἄρτια ἔχων , ᾧ καὶ διὰ τοῦτο συμβέβηκε μόνῳ ὑπ |
ἐπεὶ ὡς εἴρηται εὑρεθήσεται τὸ αὐτό : τὰ γὰρ δύο ἡμίση ἓν ποιοῦσι καὶ τὰ δύο ἕκτα τρίτον , ὥστε | ||
τῆς ΗΚ καὶ τῆς περιμέτρου τοῦ ΑΒΓ . καὶ τὰ ἡμίση πολύγωνα ἄνισα , ὥστε μεῖζον τὸ ΔΕΖ τοῦ ΑΒΓ |
τὸ δὲ δὶς ὑπὸ τῶν ΑΗ , ΗΒ μέσον , ἀσύμμετρα ἄρα ἐστὶ τὰ ἀπὸ τῶν ΑΗ , ΗΒ τῷ | ||
λόγον οὐκ ἔχει , ὃν ἀριθμὸς πρὸς ἀριθμόν . Ἔστω ἀσύμμετρα μεγέθη τὰ Α , Β : λέγω , ὅτι |
πονηρὸς ἔδοξεν , ὥστε μηδ ' ἐκεῖ ⌈ ⌉ τῶν ἴσων ἀξιοῦσθαι τοῖς ἄλλοις , ἀλλὰ κλέπτην ὥς φασι ληφθέντα | ||
δυσὶ πλευραῖς ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ καὶ τὰς ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένας γωνίας ἴσας : καὶ τὴν βάσιν ἄρα |
ΒΕ . τὰ ἄρα ἀπὸ ΝΖΘ τετράγωνα μετὰ τῶν ἀπὸ ΚΖΜ εἰδῶν ὁμοίων τῷ πρὸς τῇ ΓΑ εἴδει διπλάσιά ἐστι | ||
τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα περιενεχθέντα εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο |
τοῦθ ' ἡμῶν βλάψει τὸν λόγον ; Ὅτι προσαγορεύεις αὐτὰ ἀνόμοια ὄντα ἑτέρῳ , φήσομεν , ὀνόματι : λέγεις γὰρ | ||
διαφορῆσαι . καὶ τοιαύτη μὲν ἡ τῶν ἀλειμμάτων χρεία . ἀνόμοια τούτοις κατὰ τὴν δύναμιν τὰ ἐντὸς προσάγεται , ὅπως |
τῶν ζῳδίων καὶ μοιρῶν ἰδιότητα , ἀλλὰ καὶ παρὰ τὰ μεγέθη τῶν γενέσεων . εἰ μὲν γὰρ ἀθεώρητον ὑπὸ Διὸς | ||
γραμμή , ἐπιφάνεια , στερεόν . Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ |
ἐνταῦθα εἰ καλλίων Φρύνης Σιμίχη ; πάντα γὰρ ἴσα καὶ ὁμόχροα καὶ οὐδὲν οὔτε καλὸν οὔτε κάλλιον , ἀλλ ' | ||
ἐρυθρῷ ἢ κυανῷ βάμματι πάντα τὰ δι ' αὐτῶν ὁρώμενα ὁμόχροα ἑαυτοῖς δείκνυσιν , οὕτω δὴ καὶ ὅταν φθάσῃ τῶν |
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
, Β οἱ ΓΔ , ΕΖ : λέγω , ὅτι ἰσάκις ὁ ΓΔ τὸν Α μετρεῖ καὶ ὁ ΕΖ τὸν | ||
ἔχον αὔξησιν τοιανδί , τουτέστιν ᾗ οὕτως ὑπερέχον , ἤγουν ἰσάκις : ποιότης γὰρ ὑπεροχῆς ἐστι τὸ ἰσάκις πολλαπλασιάζεσθαι . |
τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν | ||
ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν |
ἀπὸ τῶν αγ , γδ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , ἔτι δὲ διαιρεθῇ καὶ εἰς ἀνίσους ἀριθμούς | ||
γβ τετραγώνῳ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , διαιρεθῇ δὲ καὶ εἰς ἀνίσους ἀριθμούς , ὁ ἐκ τῶν |
ἰσάκις γείνεσθαι [ , ἀλλ ] ' ἢ πλείων ? ἐλαττονάκις [ ] ? ? ? ἢ ἐλάττων ? [ | ||
τρίς , τὰ τοιαῦτα στερεὰ σχήματα πλινθίδες λέγονται ἰσάκις ἶσοι ἐλαττονάκις : ἐὰν δὲ καὶ μείζονα τὰ ὕψη τῷ τετραγώνῳ |
διαπήγμασιν : τὰ δὲ διαπήγματα ταῦτα ἰσοπλατῆ μέν ἐστι καὶ ἰσοπαχῆ ταῖς πλευραῖς , τῷ δὲ μήκει παλαιστιαῖα . τοιγαροῦν | ||
τέσσαρσιν ἐφ ' ἑκάτερα παρίσταται ξύλα ἑκάστῳ δύο ἰσοπλατῆ καὶ ἰσοπαχῆ ὕψος ἔχοντα ποδῶν θ , τὸν ἀριθμὸν ὀκτὼ ἐφεστῶτα |
αἱ διατριβαί . νεπόδεσσιν : ἰχθύσιν . ὁμοῖαι : καὶ ἴσοι , ἀττικόν . Οἱ μὲν γάρ : χωρισμὸς τῶν | ||
ἴσοι οἱ κοινωνοὶ ἐν δημοκρατίᾳ , κατ ' ἀναλογίαν δὲ ἴσοι οἱ ἐν ταῖς ὀλιγαρχίαις καὶ οἱ ἐν ταῖς ἀριστοκρατικαῖς |
ἀφαιρουμένων ρκη ἑξηκοστοτετάρτων , ἤτοι μονάδων δύο , καταλειπόμενα Ϙζ ἑξηκοστοτέταρτα ἔσται ὁ προστιθέμενος . . Προστιθέμενα γὰρ τὰ Ϙζ | ||
ποιοῦσι ιε ὄγδοα . Ταῦτα ἐφ ' ἑαυτὰ ποιεῖ σκε ἑξηκοστοτέταρτα : ταῦτα ἴσα τῷ ἐλάττονι . Τῆς δὲ συνθέσεως |
⃞ον καὶ ἔστιν ΔΥ α # Μο ιβ ἴσ . ⃞ῳ καὶ ʂ Ϛ ∠ ʹ # Μο ιβ ἴσ | ||
α . πάλιν , ἐπεὶ θέλω τοὺς τρεῖς ἴσους εἶναι ⃞ῳ , εἰσὶ δὲ οἱ τρεῖς ʂ ιγ , ταῦτα |
χαίρουσαν . εἰ δὴ τοιαύτη τίς ἐστιν , ἐχέτω τὰ δεδομένα , καὶ τὴν παιδείαν καὶ τὸν εἱρμὸν λόγου πρὸς | ||
ῥητὸν αὐτὸ εἶναι ἀπεφήναντο , ὥσπερ δοκεῖ ὁ Πτολεμαῖος , δεδομένα ἐκεῖνα προσαγορεύων , ὧν τὸ μέτρον ἐστὶ γνώρι - |
ἐπὶ δὲ τοῦ ἑτερομήκους αἱ μὲν διάμετροι ἴσαι καὶ τὰ ἐμβαδά , αἱ δὲ γωνίαι οὐ τέμνονται εἰς ἴσα ὑπὸ | ||
' ἐστίν , ἀλλ ' ἔχει τῇ δυνάμει μείζονα τὰ ἐμβαδά , ἤπερ φαίνεται . τὸ μεῖζον δὲ πλείονος χρόνου |
νδ λ γενόμενα ποιεῖ # γ νδ λ . ταῦτα προστεθέντα τοῖς # ε μ λ γίνεται # θ λε | ||
ὅστις χρηστὸς ἦν ἡδύς τ ' ἀνήρ , τὰ σῦκα προστεθέντα δηλοῦν τὸν τρόπον : νυνὶ δὲ πρὸς μοχθηρὸν ἡδὺ |
ἔτη ἕως τοῦ ζητουμένου ἔτους , τουτέστιν ἔτη ͵αξη , παρακείμενα αὐτοῖς ἔν τε τῇ εἰκοσαπενταετηρίδι τῶν συνόδων καὶ τοῖς | ||
πυοποιήσεως , ἀτμῶν τινων δριμέων ἢ ποιότητος φερομένων ἐπὶ τὰ παρακείμενα μόρια , καὶ δάκνοντα καὶ ἀνιῶντα ταῦτα , γίνονται |
τουτέστιν ἀπὸ ὁμοίων ὅμοια . Καὶ λοιποὶ Ϟοὶ τρεῖς ἴσοι Ϟῷ ἑνὶ καὶ μονάσι μ . Εἶτα διὰ τὸ μὴ | ||
Τὰ δὲ ἐλάσσονα γίνεται Ϟ Ϛ ↑ μο σμ ἴσα Ϟῷ ἑνὶ μονάσιν π . Ἀπὸ ὁμοίων ὅμοια . Γίνονται |
γὰρ αὐτὸν καὶ β αὐτοῦ τέταρτα : λέγων γὰρ δύο τέταρτα ἥμισυ ποιεῖς καὶ οὐδὲν ἄλλο λέγεις ἢ ἡμιόλιον , | ||
, τέταρτα : ἐπὶ δὲ τρίτα , πέμπτα : καὶ τέταρτα ἐπὶ δεύτερα , ἕκτα καὶ ἑξῆς καὶ τὸ ἀνάπαλιν |
μὲν τρισὶ περιεχόμενα πλευραῖς τρίπλευρα καλεῖται , τὰ δὲ τέτταρσι τετράπλευρα , τὰ δὲ πλείοσι πολύγωνα . τῶν δὲ τετραπλεύρων | ||
οὔτε ἰσόπλευρόν ἐστιν οὔτε ὀρθογώνιον : τὰ δὲ παρὰ ταῦτα τετράπλευρα τραπέζια καλείσθω . Παράλληλοί εἰσιν εὐθεῖαι , αἵτινες ἐν |
τὰ χρή - ματα εὑρίσκεται : ὅταν δὲ πολλοί , πολλαπλασία ἡ ἀργυρῖτις ἀναφαίνεται . ὥστε ἐν μόνῳ τούτῳ ὧν | ||
ἑκάστης τῶν τοῦ ΑΒΓ ἢ πολλαπλασία ἢ καὶ μείζων ἢ πολλαπλασία κατὰ τοὺς δοθέντας ἀριθμούς . μʹ . Εἰς τὴν |
καὶ ἐπεὶ μείζων ἐστὶν ἢ ὁμοία ἡ ΑΔ περιφέρεια τῆς ΗΜΘ περιφερείας , ἡ δὲ ΗΜΘ τῆς ΚΖΛ καὶ ἔτι | ||
ΑΕΒ τῇ ὑπὸ ΑΖΒ ἐστιν ἴση , ἡ δὲ ὑπὸ ΗΜΘ τῇ ὑπὸ ΗΝΘ ἐστιν ἴση . ἔστι δὲ ὀρθὴ |
παρ ' Εὐκλείδῃ λέγεται στοιχεῖα , τὰ μὲν περὶ τὰ ἐπίπεδα , τὰ δὲ περὶ τὰ στερεὰ τὴν πραγματείαν ἔχοντα | ||
γὰρ ἔχει πλευράς , ηʹ δὲ γωνίας , Ϛʹ δὲ ἐπίπεδα : τούτων δ ' ἐφεξῆς τιθεμένων ιβʹ ηʹ Ϛʹ |
, καὶ τὰ κτήματα τοῦ ἀποθανόντος πάντα ἀποδόμενος ἀποδώσω τὰ ἡμίσεα τῷ ἀποκτείναντι , καὶ οὐκ ἀποστερήσω οὐδέν . Ἐὰν | ||
δὲ τῶν γεωργουμένων τροφῶν σφισιν ἀπέφερον ἐς Σπάρτην πάντων τὰ ἡμίσεα . προείρητο δὲ καὶ ἐπὶ τὰς ἐκφορὰς τῶν βασιλέων |
' ἐποίησε μυττωτόν πολύν . ἔνιοι δὲ πλακοῦντα διὰ λαχάνου συντεθέντα . οἱ δὲ τὸν λεγόμενον ζῦθον . ἡμεῖς μέντοι | ||
δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ τῆς ΑΒ τετράγωνον Μβ ͵θυιγ νθ |
καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ , | ||
τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β |
πρός τι ἐν τοῖς ἀντικειμένοις ὡς μαλακώτερα καὶ ὡς ἧττον μαχόμενα ἐν τοῖς ἀντικειμένοις , ὡς καὶ ἀμφιβάλλεσθαι εἴ εἰσιν | ||
χρόνῳ γίνεται . μήποτε δὲ πάμπολλά ἐστι καὶ τὰ τούτῳ μαχόμενα : αὔταρκες δὲ νῦν ἐκεῖνο λέγειν , ὅτι τὸ |
τό τε αγε καὶ τὸ εδβ ἴσα ὄντα ἐπὶ ἴσων βάσεων βεβήκασι καὶ ἐπ ' εὐθείας ἔχουσιν αὐτὰς καὶ ἐπὶ | ||
σχῆμα ὡς σώματος πυραμὶς φερώνυμος διὰ τοῦτο ὑπὸ τεσσάρων τε βάσεων καὶ ὑπὸ τεσσάρων γωνιῶν μόνη περικλειομένη ἐστί : κἀκεῖθεν |
σχηματιζέσθω ἡ γυνὴ ἐπὶ δίφρου ὑπτία πρὸς αὐγὴν λαμπρὰν , συνημμένα ἔχουσα τὰ σκέλη πρὸς ἐπιγάστριον , καὶ μηροὺς ἀπ | ||
καὶ χιτῶσι περιεχόμενα πλείοσι , τὰ δὲ καὶ ἀλλήλοις πως συνημμένα καὶ κοινὴν περιοχὴν ἔχοντα καθάπερ καὶ τὰ τῶν ἀπίων |
ἑκατέραν τῶν μεσουρανήσεων ἄνισος μὲν ἐπὶ τῆς ἐγκεκλιμένης σφαίρας , ἴσος δὲ ἐπὶ τῆς ὀρθῆς , τῷ τὰ ὑπὲρ γῆν | ||
δβ . λέγω , ὅτι ὁ ἀπὸ τοῦ γβ τετράγωνος ἴσος ἐστὶ τῷ ἐκ τῶν αδ , δβ ἐπιπέδῳ μετὰ |
ἀλλήλας τῶν ἐξ ἐκείνων εὐθυγράμμων . ὁμοίως καὶ τὰ μήκει τετραπλάσια δυνάμει ἑκκαιδεκαπλάσιά εἰσιν : ἔχουσι γὰρ τετράκις τὸν τετραπλάσιον | ||
τὸ ἀπὸ τῆς ΓΘ , τουτέστιν τὰ ἀπὸ τῶν ΓΕΘ τετραπλάσια τοῦ ἀπὸ ΘΚ , τὰ ἄρα ἀπὸ ΓΕ ΕΘ |
ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
τε γινόμενος καὶ πάλιν κύβος σῴζων ἀεὶ τὴν ἰδιότητα τοῦ τρία : οὕτω καὶ ἡ ψυχὴ ἀπὸ τοῦ ἑνιαίως ἑαυτῆς | ||
δὲ διαβὰς τὸν Τίγριν καὶ παραγενόμενος εἰς τὴν Σουσιανὴν εἰς τρία μέρη διεῖλε τὴν δύναμιν διὰ τὴν τοῦ σίτου σπάνιν |
λόγον , ἐνταῦθα δὲ ἀνάπαλιν : φησὶ γάρ : εἰσὶν ὁμόλογα τὰ Α , Β καὶ Γ , Δ , | ||
τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις , καὶ τὸ πολύγωνον πρὸς τὸ πολύγωνον |
ᾖ ὁποσαοῦν μεγέθη καὶ ἄλλα αὐτοῖς ἴσα τὸ πλῆθος , σύνδυο λαμβανόμενα καὶ ἐν τῷ αὐτῷ λόγῳ , καὶ δι | ||
εἰς τὸ ὦ . ὁ χορὸς δὲ γυναικῶν ἐκ τῶν σύνδυο πεποιημένος αὐτῷ ἐστιν ἔμμετρος ἅμα καὶ μεμελοπεποιημένος τόνδε τὸν |
τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ | ||
ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ |
καὶ ποιοῦσι τὸ πρόβλημα . λα . Εὑρεῖν δύο ἀριθμοὺς ἴσους τετραγώνῳ , ὅπως ὁ ὑπ ' αὐτῶν , ἐάν | ||
ιϚ # ʂ ιϚ . βούλομαι τοὺς δύο λοιπὸν συντεθέντας ἴσους εἶναι Μο ιϚ . ΔΥ ἄρα ε Μο ιϚ |
ὁ ΛΜΝ γνώμων καὶ ] τὰ ΓΚ , ΘΗ τετράγωνα τριπλάσιά ἐστι τοῦ ΘΗ τετραγώνου . καί ἐστιν ὁ [ | ||
ἡ ΝΟ : τὰ ἄρα ἀπὸ τῶν ΝΣ , ΣΟ τριπλάσιά ἐστι τοῦ ἀπὸ τῆς ΝΟ . ἴση δὲ ἡ |
χρονικαῖς γ κʹ . λέγω δὴ ὅτι τῶν ἐν τοῖς αβ βγ δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων [ ἀρχομένων | ||
γβ ἑαυτὸν πολλαπλασιάσας ποιείτω τὸν ζη . καὶ ἐπεὶ ὁ αβ τὸν γβ πολλαπλασιάσας ἐποίησε τὸν δ , ὁ ἄρα |
τῆς ἐν ἡμῖν σοφῆς δημιουργίας οὐδέτερον , τοῖς αἰσθητοῖς ἀεὶ ἀνάλογα προβαλλομένης τὰ αἰσθητήρια : τῷ μὲν γὰρ ῥᾳδίως αἰσθάνεσθαι | ||
' ὕπνον φαντάσματα τῶν ἐν ταῖς ἐγρηγόρσεσι παθῶν ἢ ἐνεργειῶν ἀνάλογα . δόξειε δ ' ἂν Ἀριστοτέλης τῇ φυτικῇ τὸν |
καὶ διελόντι . γέγονεν οὖν τέμνειν τὴν ΓΘΔ περιφέρειαν εἰς δοθέντα λόγον κατὰ τὸ Θ : τοῦτο δὲ προγέγραπται . | ||
ἐστιν ἀρχαῖον : ἀνακεῖσθαι δὲ ἐνταῦθα λέγουσιν ὅρμον Ἁρμονίᾳ μὲν δοθέντα ἐξ ἀρχῆς , καλούμενον δὲ Ἐριφύλης , ὅτι αὐτὴ |
, Αἰσχίνης : ἐνταῦθα ἡ μὲν τῶν ἐλέγχων ἀπαίτησις ἐπειδὴ ἰσάζει , ἐκλέλοιπεν : τοῖς δὲ λοιποῖς κεφαλαίοις ἐπ ' | ||
τὴν δὲ ὕστερον : ἔπειτα καὶ κατὰ ἄλλα ὁ νόμος ἰσάζει : εἰ γὰρ καὶ διάφοροι αἱ αἰτήσεις αὐτῶν , |
, καὶ τὸ γʹ ἡμιόλιον [ ] . τὸ δὲ ἐμοιράσαντο , τουτέστιν ὀξύθυμοι ὄντες ἐμοιράσαντο καὶ διενείμαντο τὰ κτήματα | ||
[ ] . τὸ δὲ ἐμοιράσαντο , τουτέστιν ὀξύθυμοι ὄντες ἐμοιράσαντο καὶ διενείμαντο τὰ κτήματα ὥστε ἴσα λαχεῖν . λέγει |
δὲ ἐπ ' ἐδάφους ἔρεισις τοῦ ποδὸς ἄνθρακος λίθου πάντοθεν παλαιστιαία , κρηπῖδος ἔχουσα τάξιν κατὰ τὴν πρόσοψιν , ὀκτὼ | ||
προτεθείσῃ ῥητῇ εὐθείᾳ , εἴτε πηχυαία ἐστὶν εἴτε ποδιαία εἴτε παλαιστιαία ἢ δακτυλιαία , ἄπειροι σύμμετροι μήκει καὶ ῥηταὶ καὶ |
τῷ ἀπὸ ΒΕ : ὥστε τὰ ὑπὸ ΒΞΔ καὶ ὑπὸ ΒΛΔ καὶ τὰ ἀπὸ ΞΕ , ΛΕ ἴσα ἐστὶ τῷ | ||
ὅμοιον τῷ πρὸς τῇ ΑΓ εἴδει ἴσον ἐστὶ τῷ ὑπὸ ΒΛΔ . καὶ ἐπεὶ εὐθεῖα ἡ ΝΘ τέτμηται εἰς μὲν |
, ἐπεὶ ὁ ἀπὸ ʂ β Μο α ⃞ος ἐστι ΔΥ δ ʂ δ Μο α , ἐὰν ὁμοίως ἀφέλω | ||
# ʂ β˙͵δφος : καὶ πάντων τὸ Δον . γίνεται ΔΥ α ΜΥ ρδ˙͵ηφος # ʂ ͵Ϛρμδ ἴσ . ⃞ῳ |
ΞΗΟ ὑπερέχει τῷ δὶς ὑπὸ ΝΞΛ : τὰ ἄρα ἀπὸ ΞΗΟ μετὰ τοῦ δὶς ἀπὸ ΑΕ ἴσα ἐστὶ τοῖς ἀπὸ | ||
ἀπὸ ΑΓ πρὸς τὸ ἀπὸ ΒΔ : καὶ τὰ ἀπὸ ΞΗΟ ἄρα μετὰ τοῦ δὶς ἀπὸ ΕΑ πρὸς τὰ ἀπὸ |
ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα | ||
ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν |
δεδομένων ἄνευ θέσεως . τὰ δὲ ἑξῆς τούτοις Ϛʹ ἐν παραλληλογράμμοις ἐστὶ καὶ παραβολαῖς εἴδει δεδομένων χωρίων . τῶν δὲ | ||
πρὸς ἑκάτερον τῶν παραλληλογράμμων . ἀσύμμετρον ἄρα τὸ τετράγωνον τοῖς παραλληλογράμμοις . ῥητὸν δὲ τὸ τετράγωνον : ἄλογα ἄρα τὰ |
ἐκεῖνος τὸν διπλάσιον αὑτοῦ μετρεῖ , ἐκεῖνος δὲ τὸν ἐκείνου διπλάσιον , ἐκεῖνός τε τὸν ἐκείνου διπλάσιον , καὶ ἀεὶ | ||
ἄρα ὑπὸ ΖΒΝ μετὰ τοῦ ὑπὸ ΒΖΝ μεῖζόν ἐστιν ἢ διπλάσιον τοῦ ὑπὸ ΒΖΝ . ἀλλὰ τὸ μὲν ὑπὸ ΖΒΝ |
τῶν δὲ κατασχεῖν σπευδόντων . ἡ δὲ νίκη ἀμφοτέρων οὐχ ὁμοία : τὸ μὲν γὰρ πρὸς τὸ ἀγαθὸν σπεύδει , | ||
παῖδας . ἔθος δέ ἐστιν αὐτῷ προλέγειν τὰ μέλλοντα . ὁμοία δὲ ἡ ἀμφιβολία παρ ' Ὁμήρῳ [ Σ ] |
βεβήκασι τῶν ΣΝ , ΟΔ , ἔστι δὲ καὶ ἡ ΟΒ τῇ ΣΚ ἴση , δύο δὴ τρίγωνά ἐστι τὰ | ||
πέντε συμφωνεῖν τὸν ΟΒ πρὸς τὸν ΞΒ : ὁ ἄρα ΟΒ ἔσται παρυπάτη μέσων . καὶ τῷ ΞΟ ἴσον ἔθηκα |
ἕκτον αὐτοῦ τῷ τρίτῳ , ἤτοι ιη ζʹ , καὶ μο ζʹ , ἤτοι μθ ζʹ , λαβὼν δὲ παρὰ | ||
. Κείμενον . Αὐτὸς ἄρα ὁ τετράγωνος ἔσται δυνάμεων τεσσάρων μο θ ↑ Ϟ ιβ . Ταῦτα ἴσα δυνάμεσι τρισὶν |
, ξυμμέτρως δὲ ἐκτετάσθω πρὸς τὰ ὕπερα , ὡς , ὀρθὰ ἑστεῶτα , τὸ μὲν παρὰ τὸν οὐδὸν ἐρείδηται , | ||
τοὺς πολεμίους περιθέοντας , ἀναπηδᾶν καὶ τὰ δόρατα ἐσπηδῶντας ἀνίσχειν ὀρθὰ ἐς τὰ πρόσωπα τῶν ἀνδρῶν : οὐ γὰρ οἴσειν |
τὸ ΖΗΛ τρίγωνον , οὕτως τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον . ἀλλὰ τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ | ||
. ἀλλὰ μὴν καὶ ὡς ἡ ΖΗΘ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν , οὕτως ἦν καὶ ἡ ΖΗΘΝ πυραμὶς πρὸς |
, βαδίζουσιν , ἐπακολουθοῦσιν , καλύπτουσιν . Νύ που : περισσά . πέτρην : φωλεάν . ἀμφίσκιον : ἔχουσαν , | ||
εἱλούμενα , ἢ δι ' αὐτῶν ῥεῖν τὰ τῆς τροφῆς περισσά . μετὰ δὲ ταῦτα ἐν ᾧ αἱ νόθοι πλευραὶ |
: πεντάκις γὰρ εʹ κεʹ , πεντάκις κεʹ ρκεʹ , ἑξάκις Ϛʹ λϚʹ , καὶ ἑξάκις λϚʹ σιϚʹ . τῶν | ||
τῆς ΕΖ τετράγωνον μονάδων οὔσης ἓξ γίνεται μονάδων λϚ : ἑξάκις γὰρ τὰ Ϛ λϚ . ἔστι δὲ καὶ τὸ |
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων ἡμίση ἐστὶ τὰ | ||
καί ἐστι τὰ ἀπ ' αὐτῶν ἀνιστάμενα στερεὰ παραλληλεπίπεδα πρίσματα ἰσοϋψῆ : τὰ δὲ ὑπὸ τὸ αὐτὸ ὕψος ὄντα στερεὰ |
ταῦτα ἴσα ΔΥ α Μο α . κοινὴ προσκείσθω ἡ λεῖψις , καὶ ἀφῃρήσθω ἀπὸ ὁμοίων ὅμοια : λοιποὶ ʂ | ||
ταῦτα ἴσα ʂ α Μο κ . κοινὴ προσκείσθω ἡ λεῖψις , καὶ ἀφῃρήσθω ἀπὸ ὁμοίων ὅμοια . λοιποὶ ʂ |
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
τὴν τούτων ἀποτροφήν . Τάσσεται δὲ ἐπὶ μάχην ἐν τρισὶν ἴσοις μέρεσι , τουτέστι ἐν μέσῳ , δεξιῷ , ἀριστερῷ | ||
τῶν ὁμογενῶν τάχα ἄν τις ἀπορήσειε τίποτ ' οὐκ ἐν ἴσοις χρόνοις ἅπαντα τελειοῦται ἀλλ ' οἱ μὲν τρίμηνοι τῶν |
τῇ ΖΗ : καὶ τῇ ΕΔ ἄρα παράλληλός ἐστιν ἡ ΝΚ , ἡ δὲ ΜΘ τῇ ΒΛ . ἐπεὶ οὖν | ||
ἐπὶ τῆς ἐλλείψεως σημεῖα ἐπιζευγνύουσαι παράλληλοι , καὶ ἐπιζευχθεῖσαι αἱ ΝΚ ΜΘ τεμνέτωσαν ἀλλήλας κατὰ τὸ Τ , καὶ διὰ |
διὰ τῶν ΕΘ , ΝΠ ἐπίπεδα κάθετοι καὶ συμβαλλέτωσαν τοῖς ἐπιπέδοις κατὰ τὰ Σ , Τ , Υ , Φ | ||
ὑπάρχειν ὥσπερ τοῖς ὑπὸ τὸ αὐτὸ γένος οἷον τοῖς τισὶν ἐπιπέδοις τὸ γενικὸν ἐπίπεδον . Περὶ τοῦ χρησίμου τῶν ἰδεῶν |
ἅμα τῷ κλύσματι τὰ ἐν τῇ γαστρὶ καὶ τοῖς ἐντέροις περιεχόμενα πάντα , ὥστε θαυμάσαι , εἴτε κόπρος εἴτε ὑγρὸν | ||
[ ἀπὸ ] τοῦ κέντρου [ καὶ τῆς ΑΒ ] περιεχόμενα . Μέση ἀνάλογον . , ] ὥστε τὸ ὑπὸ |
οὐχὶ δὲ καὶ ταῦτα μέν , οὐχὶ δὲ καὶ τὰ τέσσαρα καὶ οὕτω μέχρι τῶν δέκα : τὰ δὲ δύο | ||
τί ἐστι καὶ διὰ τί ἐστι . καὶ εἰκότως τὰ τέσσαρα ταῦτα ζητοῦμεν : τῶν γὰρ πραγμάτων τὰ μὲν ἀνύπαρκτά |
σύνθεσιν ἔχοντα τῷ εἶναι κύρια τοῖς εὐφωνοτάτοις καὶ φύσει μακροῖς ἐξισοῦται στοιχείοις : φεύγειν δὲ τῶν ῥημάτων τὰ προστακτικὰ καὶ | ||
ἕκαστον λείπεται τοῦ πήγνυσθαι τὸν ὀπόν , παντὶ δὲ ὁμοῦ ἐξισοῦται . Μέχρι μὲν οὖν τούτου τὴν ἀκολούθησιν παραδέδωκε τοῦ |
τὰς ἀντιλήψεις τῶν σωμάτων : τὰ μὲν γὰρ αὐτῶν εἶναι σκαληνά , τὰ δὲ ἀγκιστρώδη , τὰ δὲ κοῖλα , | ||
τοῦ δὲ ὀκταέδρου ἐξ ὀκτὼ ὁμοίως διαιρουμένου ἑκάστου εἰς ἓξ σκαληνά , τὰ δὲ εἰκοσαέδρου ἐξ εἴκοσι . Τὸ δὲ |
καὶ πολυτελεστάτης πορφύρας καὶ πόλου ἀστέρας ἔχοντος καὶ τὰ δώδεκα ζῴδια . μίτραν δὲ χρυσόπαστον καυσίας ἁλουργῆ οὖσαν ἔσφιγγε ἐπὶ | ||
ἡ Παρθένος γεώδης ὑπάρχουσα τοῖς Ἰχθύσι : καὶ τὰ λοιπὰ ζῴδια τὴν αὐτὴν δύναμιν ἐφέξει πρὸς τὰ διάμετρα . Οὕτως |
, ὅσα ἐνδέχεται ἐν αὐτῷ εἶναι , μέρη συναχθέντα καὶ συγκεφαλαιωθέντα ἐν συγκρίσει τῆ πρὸς ἑαυτὸν ἔχων μήτε ὑπερβάλλῃ τῷ | ||
, ἅπερ εἰσὶ γ , β , α , ἅπερ συγκεφαλαιωθέντα ὁμοῦ καὶ γενόμενα Ϛ ἶσα τῷ ἐξ ἀρχῆς ὑπάρχει |
. ἐς δὲ κίνδυνον βαθὺν ἱέμενοι : ἐς δὲ τὸν ὑψη - λότατον κίνδυνον προθυμίαν ἔχοντες καὶ σπουδὴν τὸν τῶν | ||
ἀναστρεφόμενος . ἢ οἱ περὶ τὰ αἰπά , ὅ ἐστιν ὑψη - λοῖς τόποις , περιπολοῦντες : χαίρουσι γὰρ τοῖς |
τοῦ φυτοῦ , ἔξωθέν τε τοῦ ϲώματοϲ ἐπιτιθέμενα καὶ εἴϲω λαμβανόμενα . Μῶλυ ἢ βήϲαϲα . Μῶλυ , ὅ τινεϲ | ||
ϲυνήθη τροφήν . τὰϲ μέντοι πρώταϲ ἡμέραϲ βραχύτερα ἔϲτω τὰ λαμβανόμενα καὶ ὑγρότερα καὶ μηδὲν γλίϲχρον ἔχοντα : ἔϲτω δὲ |
οὐ γὰρ τὰ μετροῦντα μόνα ποσά , ἀλλὰ καὶ τὰ μετρούμενα , ὡς ἂν εἴη καὶ ὁ χρόνος μέτρον κινήσεως | ||
σύμμετρα μεγέθη ἴσον ἐστὶ τῷ τὰ μεγέθη τὰ κοινῷ μέτρῳ μετρούμενα . τὰ ἔχοντα , φησί , κοινὸν μέτρον μεγέθη |
λϚ ρκ α θ με α ι α◄ Ὅρων δοθέντων ὁποσαοῦν εὑρεῖν δυαδικὰς συζυγίας . εὑρίσκομεν δὲ αὐτὰς οὕτως : | ||
εἰσὶν οἱ αὐτοί : ὅπερ ἔδει δεῖξαι . Ἐὰν ᾖ ὁποσαοῦν μεγέθη ἀνάλογον , ἔσται ὡς ἓν τῶν ἡγουμένων πρὸς |
δὲ ζητουμένων ὃν μὲν ΚΥ Κ ξγ , ὃν δὲ ΚΥ Κ ιε , ὃν δὲ ΚΥ Κ γ . | ||
τοὺς τρεῖς ἰσῶσαι ʂ α : γίνονται δὲ οἱ τρεῖς ΚΥ β δא : ταῦτα ἴσα ʂ α : ὅθεν |
ΒΑΔ κοινὴ τομὴ ἡ ΓΔ . καὶ ἐπεὶ δύο ἐπίπεδα παράλληλα τὰ ΕΘΖ , ΓΚΔ ὑπὸ ἐπιπέδου τινὸς τέμνεται τοῦ | ||
κακῶς ἡμᾶς ὑπογράφων τὰ μηδὲν ἐοικότα πρὸς μίμησιν βιαζόμενος καὶ παράλληλα κρίνων τὰ πλεῖστον διεστηκότα . εἰ γάρ με χρὴ |
ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ | ||
, τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς |
μείζονα λόγον ἔχει ἢ ὃν τὰ ιη πρὸς α , ἐλάσσονα δὲ ἢ ὃν τὰ κ πρὸς ἕν : ὥστε | ||
τὸ ηʹ , ἐπὶ δὲ τοῦ ζῳδιακοῦ τὸ εʹ , ἐλάσσονα χρόνον κρύψιν ἄγει τὸ ηʹ τοῦ εʹ : καὶ |
ὡς τὰ τούτου βραχύτερα τέτμηται καὶ καθόλου τὰ κομματικὰ καὶ ἀσύνδετα . [ , ] ἀλλὰ τὸ τοῦ Κεφάλου καλὸν | ||
, οὗ τὸ ἀκόλουθον ἦν οὐκ ἠμέλει . Καὶ τὰ ἀσύνδετα τοῦ ἀφελοῦς ἐστι : λύει γὰρ τὸν ῥυθμόν . |
τὴν γαστέρα λέγει . ἀρηρότα : συμπεπλεγμένα τὰ ὠὰ , ἡρμοσμένα τὰ ὠὰ , ὁμοῦ . Μόγις : μόλις : | ||
Τουτέστιν , ὅτι δι ' ὅλου οὐκ εἰσὶν τὰ ὀστᾶ ἡρμοσμένα ἀλλήλοις . κατὰ γὰρ τὸ μέσον ἐπικαμπῆ ὄντα οὐκ |
τῆϲ κόρηϲ διήκοντα καὶ διὰ τοῦτο παραποδίζοντα τὸ ὁρᾶν , ἀφαιρούμενα ἐλευθεροῖ μὲν τὸν ὀφθαλμὸν τῶν ῥευματιϲμῶν . ἡ δὲ | ||
τὰ γὰρ ἀπὸ τῶν εὐθειῶν ἐφ ' αἷς ΕΖ ΖΗ ἀφαιρούμενα ἐντὸς τοῦ μηνίσκου ἀπὸ τοῦ εὐθυγράμμου τμήματα ἴσα ἐστὶ |
καὶ ἐπεὶ δεῖ τὸν μέσον αὐτῶν τῷ ἴσῳ ὑπερέχειν καὶ ὑπερέχεσθαι , γίνεται ἡ Ζ εὐθεῖα μονάδων τριῶν [ μέσον | ||
, τὸ δὲ εὖ δρᾶν καὶ εὐεργετεῖν ὑπερέχειν ἐστίν , ὑπερέχεσθαι δὲ τὸ εὖ πάσχειν , φυσικῶς ἄρα φιλοῦμεν τὸ |
. Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ Πτολομαϊκὸς | ||
͵δρ : τοιούτου καὶ ἔστι τετράγωνος πλευρὰν ἔχων τὰ σι φοϚʹ . Προσλήψει δὲ τῶν τκδ φοϚʹ ἀναλυθέντων εἰς ὀκτωκαίδεκα |
τῶν ΑΔ , ΔΒ τῶν ἀπὸ τῶν ΑΓ , ΓΒ ὑπερέχει ῥητῷ τουτέστι τὴν ὑπεροχήν . Ἡ ΑΒ ٢ ٢٥ | ||
ὑπεροχὴ γινομένη : ὡσαύτως γὰρ ἡ τετρὰς τῆς τριάδος μονάδι ὑπερέχει , καὶ ὁ ε τοῦ δ , καὶ ἐφεξῆς |