, ὅσα ἐνδέχεται ἐν αὐτῷ εἶναι , μέρη συναχθέντα καὶ συγκεφαλαιωθέντα ἐν συγκρίσει τῆ πρὸς ἑαυτὸν ἔχων μήτε ὑπερβάλλῃ τῷ | ||
, ἅπερ εἰσὶ γ , β , α , ἅπερ συγκεφαλαιωθέντα ὁμοῦ καὶ γενόμενα Ϛ ἶσα τῷ ἐξ ἀρχῆς ὑπάρχει |
αὐτὸ μέρος τοῦ τῶν γωνιῶν κανόνος ἐπισκεψόμεθα τὰς παρακειμένας τῷ ἀριθμῷ τῶν ὡρῶν μοίρας , ἐὰν μὲν πρὸ τοῦ μεσημβρινοῦ | ||
διαφέρον : τὸ οὖν γένος κατηγορεῖται κατὰ πολλῶν διαφερόντων τῷ ἀριθμῷ καὶ τῷ εἴδει . ἐδείχθη οὖν ὅτι μόνον τὸ |
, ἐλάσσους τῶν ιδ μη . πρὸς ἃς τὰ β ἑξηκοστὰ διάφορα δέδεικται , τοῦ ἡλίου μὴ μένοντος ἀκινήτου ἐν | ||
κατὰ τὸ αὐτὸ μέγιστον ἀπόστημα τῆς σελήνης ὑποτείνει μιᾶς μοίρας ἑξηκοστὰ μ καὶ # . ἡ γὰρ ΔΗ περιφέρεια τῆς |
σιϚʹ σμγʹ , κείσθω καὶ ὁ τοῦ ρϞβʹ ἐπίτριτος ὁ σνϚʹ , ἔσται τοῦτο τὸ ἐπίτριτον συμπεπληρωμένον ὑπὸ δύο τόνων | ||
ἅμα καὶ κύβος : εἶτα ρκηʹ : μεθ ' ὃν σνϚʹ , ὅς ἐστι τετράγωνος : καὶ μέχρις ἀπείρου ὁ |
: πεντάκις γὰρ εʹ κεʹ , πεντάκις κεʹ ρκεʹ , ἑξάκις Ϛʹ λϚʹ , καὶ ἑξάκις λϚʹ σιϚʹ . τῶν | ||
τῆς ΕΖ τετράγωνον μονάδων οὔσης ἓξ γίνεται μονάδων λϚ : ἑξάκις γὰρ τὰ Ϛ λϚ . ἔστι δὲ καὶ τὸ |
οὐδετέρῳ δὲ ὅ τε ἐπόγδοος καὶ ὁ τῶν σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ | ||
ὅμοιον τὸν ἐν τῷ διατονικῷ τὸν τῶν σνϚʹ πρὸς τὰ σμγʹ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους |
, καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ ὁ ὑποτριπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημιόλιος καὶ ὁ ὑπεπίτριτος | ||
κ τὸ τρίτον αὐτῆς : ἀπὸ γὰρ τοῦ τρία ὁ ὑποτριπλάσιος παρωνόμασται . καὶ ποιῶ τὰ λ ἐπὶ τὰ κ |
ὑπεπίτριτος , τοῦ δὲ δώδεκα ὑποδιπλάσιος , μείζων δὲ ὁ ὑπεπίτριτος λόγος τοῦ ἡμίσεως . τὸ ΑΒ ἄρα πρὸς τὸ | ||
Τ τὰ η : ὅ τε γὰρ ιη τοῦ κδ ὑπεπίτριτος καὶ ὁ Ϛ τοῦ η . Τὸ τοιοῦτον πολύγωνον |
ὑπερορώντων . Ἐλέφαντα ἐκ μυίας ποιεῖν : ἐπὶ τῶν τὰ ἐλάχιστα ἐπαιρόντων τῷ λόγῳ καὶ μεγαλοποιούντων . Λουκιανὸς Μυίας ἐγκωμίῳ | ||
ἐν μεθόδῳ μάλιστα , τῆς δὲ ἄλλης ἥκιστα ἢ ὡς ἐλάχιστα , κάλλους δὲ τοῦ κομμωτικοῦ πλεονάζοντος μὲν ὁμοίως τοῖς |
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
εʹ τοῦ πλάτους ἐφ ' ἑαυτὰ γίνονται κεʹ : ὁμοῦ ρξθʹ : ὧν πλευρὰ τετράγωνος γίνεται ιγʹ : τοσούτων ἔσται | ||
: ὁμοῦ σνϚ . Καὶ αὖθις ἐννεακαιδεκάκις ιθ , τξα ρξθʹ , καὶ τρὶς ιγ , λθ : ὁμοῦ υ |
τοῦθ ' ἡμῶν βλάψει τὸν λόγον ; Ὅτι προσαγορεύεις αὐτὰ ἀνόμοια ὄντα ἑτέρῳ , φήσομεν , ὀνόματι : λέγεις γὰρ | ||
διαφορῆσαι . καὶ τοιαύτη μὲν ἡ τῶν ἀλειμμάτων χρεία . ἀνόμοια τούτοις κατὰ τὴν δύναμιν τὰ ἐντὸς προσάγεται , ὅπως |
ἐν δὲ τῇ ἐλλείψει τὰ παρὰ τὴν αὐτὴν παρακείμενα καὶ ἐλλείποντα τῷ αὐτῷ εἴδει , καὶ διότι πάντα , ὅσα | ||
τὴν ἔλλειψιν τὸν δειλόν , ὑπερβάλλοντα μὲν τῷ φοβεῖσθαι , ἐλλείποντα δὲ τῷ θαρρεῖν . καίτοι εἰ καὶ ἴσως δυνατὸν |
. Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ Πτολομαϊκὸς | ||
͵δρ : τοιούτου καὶ ἔστι τετράγωνος πλευρὰν ἔχων τὰ σι φοϚʹ . Προσλήψει δὲ τῶν τκδ φοϚʹ ἀναλυθέντων εἰς ὀκτωκαίδεκα |
ἅμα τῷ κλύσματι τὰ ἐν τῇ γαστρὶ καὶ τοῖς ἐντέροις περιεχόμενα πάντα , ὥστε θαυμάσαι , εἴτε κόπρος εἴτε ὑγρὸν | ||
[ ἀπὸ ] τοῦ κέντρου [ καὶ τῆς ΑΒ ] περιεχόμενα . Μέση ἀνάλογον . , ] ὥστε τὸ ὑπὸ |
, ὅτι ἀπὸ τοῦ ἐγκεφάλου φέρονται δύο νεῦρα τὰ ὀπτικὰ προσαγορευόμενα : διαφέρει δὲ ταῦτα τῶν ἄλλων νεύρων , ὅτι | ||
πόσον τῆς ὁδοῦ διήνυσαν καὶ τί λείπεται , τὰ νῦν προσαγορευόμενα μίλια πρὸς Ῥωμαίων , τότε σημεῖα καλούμενα , οἱ |
, ὡς ὁ ρκεʹ ἀπὸ πλευρᾶς πεντάδος ὢν καὶ ὁ σιϚʹ ἀπὸ πλευρᾶς ἑξάδος . κἂν ἐπὶ πλέον δὲ αὐξάνωνται | ||
καὶ Ἱππόβοτος καὶ Νεάνθης οἱ τὰ κατὰ τὸν ἄνδρα ἀναγράψαντες σιϚʹ ἔτεσι τὰς μετεμψυχώσεις τὰς αὐτῷ συμβεβηκυίας ἔφασαν γεγονέναι . |
δὲ οβʹ γίνεται σιϚʹ , τὰ δὲ ξδʹ τρὶς γίνεται ρϞβʹ . τούτων ἐπίτριτα τὰ σνϚʹ , ἅτινα πρὸς σμγʹ | ||
τοῖς ποδαγρικοῖς : λιθαργύρου ⋖ ϞϚʹ , ἐλαίου παλαιοῦ ⋖ ρϞβʹ , οἴνου παλαιοῦ καὶ κιρροῦ διαυγοῦς καὶ ἠρέμα γλυκέος |
. Συντεθέντων γὰρ σὺν δύο καὶ ὑπὸ τοῦ λοιποῦ τρὶς πολλαπλασιασθέντων , ἀποτελεσθήσονται ρπ ζʹ , ρν ζʹ , ρκ | ||
τοῦ τε τρίτου ὄντος τελείου καὶ τοῦ τετάρτου ὄντος γονίμου πολλαπλασιασθέντων καὶ συγκερασθέντων ἀποκυίσκεται . Τῶν οὖν ἐν τοῖς δώδεκα |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
καὶ ἀμφοτέρων διαφέρει : τῷ μὲν γὰρ ἀρτιά - κις ἀρτίῳ κοινωνεῖ , καθὸ καὶ οὗτος πλείους διαιρέσεις ἐπιδέχεται , | ||
: τοῦτον γὰρ κωλύειν τὴν εἰς ἴσα διαίρεσιν προστιθέμενον τῷ ἀρτίῳ . φέρουσι δὲ καὶ ἄλλο σημεῖον τοῦ πέρατος μὲν |
ἰσάκις γείνεσθαι [ , ἀλλ ] ' ἢ πλείων ? ἐλαττονάκις [ ] ? ? ? ἢ ἐλάττων ? [ | ||
τρίς , τὰ τοιαῦτα στερεὰ σχήματα πλινθίδες λέγονται ἰσάκις ἶσοι ἐλαττονάκις : ἐὰν δὲ καὶ μείζονα τὰ ὕψη τῷ τετραγώνῳ |
ἔϲτι δὲ ὁ κύαθοϲ κοτύληϲ τὸ Ϛʹʹ . Ἡ κοτύλη μέτρῳ μὲν ἔχει κυάθουϲ Ϛʹ , ϲταθμῷ δὲ ⋖ ξʹ | ||
ἄγει σταθμῷ # β . ὅτι δὲ τὸ ὀξύβαφον ἐν μέτρῳ κατὰ σταθμὸν ἔχει γρα . ιβ , ὅ ἐστι |
ἴσον καὶ μεμετρημένον ὀργυιᾷ . * περιβάλλεται : εἰκάζεται , μετρεῖται ἔχει εἰκάζεται * ὅσσον : πλάτος αἰγανέη δὲ τὸ | ||
ἀπὸ τῆς πυγμῆς : ἐπεὶ μὴ ὥσπερ ὁ πῆχυς προτεταμένους μετρεῖται δακτύλους , οὕτω καὶ ὁ πυγὼν , ἀλλὰ συνεστρωμμένη |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
χρωμάτων ἁπλᾶ καὶ διὰ τί τὰ μὲν σύνθετα τὰ δὲ ἀσύνθετα : πλείστη γὰρ ἀπορία περὶ τῶν ἀρχῶν . ἀλλὰ | ||
εἴπομεν . Τῶν γὰρ εἰς ηξ ὀνομάτων τὰ μὲν ἁπλᾶ ἀσύνθετα διὰ τοῦ Κ κλίνονται μύρμηκος , νάρθηκος , σκώληκος |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
ὁ τῶν ηʹ τῷ αὐτῷ μέρει τῶν ἄκρων ὑπερέχων καὶ ὑπερεχόμενος , τουτέστι τῷ τῶν ἄκρων τρίτῳ : ιβʹ ηʹ | ||
τῶν ἄκρων τοῦ μὲν ὑπερέχων , ὑφ ' οὗ δὲ ὑπερεχόμενος : τοῦ μὲν γὰρ ἑνὸς τὰ βʹ διπλάσια , |
πλευρὰ ἔσται μονάδων πέντε : τότε οὔτε τὰ τμήματα μήκει σύμμετρα ἔσται οὔτε ἡ κάθετος . εἰ δὲ ἡ ὑποτείνουσα | ||
εὐθεῖαι ἀσύμμετροι ὦσι , τὰ δὲ ἀπ ' αὐτῶν χωρία σύμμετρα ἀλλήλοις , ἑτέρας δὲ ὅταν καὶ [ τὰ ἀπ |
στίχῳ : τὸ δ ' αὐτὸ διάστημα ἐν τῷ κάτω στίχῳ εἰς ιεʹ ὥρας τοῦ τελείου ὅρου : ἔστι δὲ | ||
στίχου μονάδος ὑπερέχει δυάδι : καὶ ἔστιν ἐν τῷ δευτέρῳ στίχῳ μεταξὺ τῶν γ καὶ τῆς μονάδος ὁ β . |
μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ ι ρ καὶ τετράκι ι μ , δεκάκι | ||
ἀποβολὴ τοῦ ς ἐγένετο , ὡς ἐν τῷ πολλάκι καὶ δεκάκι , καὶ τὸ χωρίς ἀποβάλλον τὸ ς ἐγίνετο χῶρι |
ταῦτα δίς , γίνονται μετὰ κύκλων πηʹ : οὗτος ὁ ὡροσκοπικὸς γνώμων . Οἷον ἔστω Ἥλιος Αἰγόκερω μοίρᾳ ιθʹ : | ||
ἐν Σκορπίῳ εὗρον περὶ μοίρας κβʹ : οὗτος ἔσται ἡλιακὸς ὡροσκοπικὸς γνώμων . εἰσελθὼν καὶ κατὰ τὰς λʹ τῆς Σελήνης |
ἀποχῆς ἀριθμὸν εἰσενεγκόντες εἰς τὰ αὐτὰ σελίδια , ὅσα ἂν παρακέηται αὐτῷ ἑξηκοστὰ ἐν τῷ ἕκτῳ σελιδίῳ , τὰ τοσαῦτα | ||
μοιρῶν , εἰσενεγκόντες εἰς τοὺς αὐτοὺς ἀριθμούς , ὅσα ἐὰν παρακέηται καὶ τούτῳ ἑξηκοστὰ ἐν τῷ εʹ σελιδίῳ , τὰ |
κατὰ τὴν μονάδα ἔμπαλιν τὰ ρκηʹ . ἐὰν δὲ ἐν περισσοῖς ὅροις ἡ ἔκθεσις γένηται , οἷον ἐν ἑπτά , | ||
γὰρ βʹ βʹ : διὸ καὶ περισσοειδὴς εἴρηται ταὐτὸ τοῖς περισσοῖς πεπονθυῖα . πρὸς ἀλλήλους δὲ λέγονται πρῶτοι ἀριθμοὶ καὶ |
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ | ||
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ |
σχηματιζέσθω ἡ γυνὴ ἐπὶ δίφρου ὑπτία πρὸς αὐγὴν λαμπρὰν , συνημμένα ἔχουσα τὰ σκέλη πρὸς ἐπιγάστριον , καὶ μηροὺς ἀπ | ||
καὶ χιτῶσι περιεχόμενα πλείοσι , τὰ δὲ καὶ ἀλλήλοις πως συνημμένα καὶ κοινὴν περιοχὴν ἔχοντα καθάπερ καὶ τὰ τῶν ἀπίων |
κινήσεως τάξις τε καὶ ἀλόγων συμμετρία ἥ τε ἐν ἀριθμοῖς συμφώνοις ἢ συμφωνίαν περιέχουσιν εὐμετρία ἀπὸ τῆς κατ ' οὐσίαν | ||
συγκε - χυμένη μὲν ἐγέννησεν ἁρμονίαν , λόγοις δὲ τοῖς συμφώνοις τεταγμένη ῥυθμόν . ἀλλ ' ἐπεὶ παθῶν ψυχικῶν ἡ |
' ἑκάστῳ τῶν ῥυθμίζεσθαι δυναμένων . . . Τῶν δὲ ῥυθμιζομένων ἕκαστον οὔτε κινεῖται συνεχῶς οὔτε ἠρεμεῖ , ἀλλ ' | ||
καὶ σχῆμα ἐκλήθη : ὅ τε ῥυθμὸς ὡσαύτως οὐδενὶ τῶν ῥυθμιζομένων ἐστὶ τὸ αὐτό , ἀλλὰ τῶν διατιθέντων πως τὸ |
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
ὁ γ συνεχὴς προσσωρευθεὶς καὶ ἐξαπλωθείς γε εἰς μονάδα καὶ συντεθεὶς τὸν Ϛ ἀποδίδωσι δεύτερον ἐνεργείᾳ τρίγωνον καὶ προσέτι σχηματογραφεῖ | ||
δ ὁ ἀπὸ τοῦ αβ τετράγωνος , ὁ δὲ εη συντεθεὶς ἐκ δύο ἐπιπέδων ἀριθμῶν τῶν ἐκ τῶν αβ βγ |
ἑαυτῆς πολλαπλασιαζομένης , οἷον ὁ θ : ἓν γάρ ἐστιν ἑτερώνυμον : τρὶς γὰρ γ θ : ὁ γ οὖν | ||
ἀριθμόν , ἐξ ὧν προαπεδείχθη , πρῶτον καὶ ἀσύνθετον : ἑτερώνυμον γὰρ μόριον οὐκ ἔχει , ἀλλὰ μόνον τὸ ἑαυτῷ |
τοῖς τῶν ἄλλων συναναμίξῃ , τὰ μὲν τοῦ ἀετοῦ μένει ὁλόκληρα καὶ ἀνεπιβούλευτα , τὰ δὲ ἕτερα κατασήπεται , τὴν | ||
φίλους εὖ ποιοῦντα καὶ ὅσαι ὧραι , τοὺς δὲ ἐχθροὺς ὁλόκληρα γένη καὶ ἔθνη μετασκευάσαντα εἰς εὔνοιαν ἐκ δυσμενείας . |
οὐχὶ δὲ καὶ ταῦτα μέν , οὐχὶ δὲ καὶ τὰ τέσσαρα καὶ οὕτω μέχρι τῶν δέκα : τὰ δὲ δύο | ||
τί ἐστι καὶ διὰ τί ἐστι . καὶ εἰκότως τὰ τέσσαρα ταῦτα ζητοῦμεν : τῶν γὰρ πραγμάτων τὰ μὲν ἀνύπαρκτά |
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . . | ||
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . . |
ὢν τοῦ Σκορπίου μοίρας κ νη : τοῦτο γὰρ ἡμῖν προαπεδείχθη διὰ τῶν περὶ τὰς μεγίστας ἀποστάσεις ἐφωδευμένων : φανερόν | ||
ἐστι , καὶ εὑρίσκω τὸν γ ἀριθμόν , ἐξ ὧν προαπεδείχθη , πρῶτον καὶ ἀσύνθετον : ἑτερώνυμον γὰρ μόριον οὐκ |
' ἐποίησε μυττωτόν πολύν . ἔνιοι δὲ πλακοῦντα διὰ λαχάνου συντεθέντα . οἱ δὲ τὸν λεγόμενον ζῦθον . ἡμεῖς μέντοι | ||
δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ τῆς ΑΒ τετράγωνον Μβ ͵θυιγ νθ |
, ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ | ||
- ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν |
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
οὕτως : τὰ ιβʹ τοῦ μήκους ἐφ ' ἑαυτὰ γίνονται ρμδʹ : καὶ τὰ εʹ τοῦ πλάτους ἐφ ' ἑαυτὰ | ||
διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ σπθʹ πρὸς ρμδʹ . καὶ δὴ ὁμοίως κατὰ τὸν αὐτὸν λόγον τῆς |
οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
, ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
σημείῳ τοῦ κέντρου τῆς σελήνης ὄντος ὑπόκειται τὸ ἥμισυ καὶ ιβʹ ἐκλείπουσα ἡ σελήνη τῆς ἰδίας διαμέτρου , δῆλον ὅτι | ||
κατὰ τὰ αὐτὰ τριχῶς : τά τε τοῦ ὅλου κύκλου ιβʹ πρὸς τὰ θʹ τῆς ΑΒΔ περιφερείας , καὶ τὰ |
τε γινόμενος καὶ πάλιν κύβος σῴζων ἀεὶ τὴν ἰδιότητα τοῦ τρία : οὕτω καὶ ἡ ψυχὴ ἀπὸ τοῦ ἑνιαίως ἑαυτῆς | ||
δὲ διαβὰς τὸν Τίγριν καὶ παραγενόμενος εἰς τὴν Σουσιανὴν εἰς τρία μέρη διεῖλε τὴν δύναμιν διὰ τὴν τοῦ σίτου σπάνιν |
, καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
ξδʹ , ὅς ἐστι τετράγωνος ἅμα καὶ κύβος : εἶτα ρκηʹ : μεθ ' ὃν σνϚʹ , ὅς ἐστι τετράγωνος | ||
τῶν σνηʹ λόγῳ πρὸς τὰ σνϚʹ , ὅς ἐστιν ἐπὶ ρκηʹ . Τὴν δὲ βραχεῖαν οὕτω παραλλαγὴν δυνατὸν εἶναι κρῖναι |
ἀφειστήκει ὁ ἀστὴρ εἰς τὰ ἑπόμενα τοῦ ἡλίου , μοιρῶν ιη β . διὰ δὲ τοῦ τῆς ἀνωμαλίας κανόνος , | ||
οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων ἐδείχθη ιη λη , οἵων δ ' αἱ β ὀρθαὶ τξ |
δ ὀρθαὶ τξ , τοιούτων α να , ἃ καὶ παραθήσομεν ἐν τῷ γʹ σελιδίῳ τοῦ τοῦ Διὸς κανονίου κατὰ | ||
παραφέρων ἀγαθῶν ἁμάξας ὅτι δέ σοι παρὰ τοῦτο κάνδαυλόν τινα παραθήσομεν . κάνδαυλον ; οὐκ ἐδήδοκα οὐδ ' ἀκήκο ' |
θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα | ||
ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ |
λόγον εἶναί φησιν : αὕτη δὲ ἐν Συρακούσαις κρήνη , ὑποτέτακται δὲ ἡ Καμάρινα ταῖς Συρακούσαις . Ἔχει δὲ ἡ | ||
ἐστιν : ἐκθοῦ σύστημα μονάδων ἢ ἄρτιον ἢ περιττὸν ὡς ὑποτέτακται : α , β , δ , η , |
τῶν ἀδιαιρέτων στερεῶν ἕκαστον , ὁ δὲ ὡρισμένοις , ἐπεὶ ἀδιαίρετά γε ἀμφότεροι λέγουσι καὶ ὡρισμένα σχήμασιν . ἐκ δὴ | ||
, ὅσα καὶ κατὰ τὰς ὑποθέσεις καὶ κατὰ τὰ συμπεράσματα ἀδιαίρετά ἐστιν ἓν ἔχοντα τὸ δεδομένον καὶ τὸ ζητούμενον , |
. Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου | ||
Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ |
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη | ||
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ . |
ἀποδείκνυσι λόγον . ἐπεὶ οὖν κατὰ Πυθαγόραν τὸν Σάμιον ἡ τριὰς εἰς γάμον συνελθοῦσα τῇ τετράδι ἀπεγέννησε τὴν ἑβδομάδα καὶ | ||
τῷ τέλει τῆς στροφῆς καὶ ἀντιστροφῆς παράγραφος . ἔστι δὲ τριὰς ἐπῳδική . ἥκω σεβίζων ] αἱ ἑξῆς αὗται συστημάτων |
δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
καὶ πολυτελεστάτης πορφύρας καὶ πόλου ἀστέρας ἔχοντος καὶ τὰ δώδεκα ζῴδια . μίτραν δὲ χρυσόπαστον καυσίας ἁλουργῆ οὖσαν ἔσφιγγε ἐπὶ | ||
ἡ Παρθένος γεώδης ὑπάρχουσα τοῖς Ἰχθύσι : καὶ τὰ λοιπὰ ζῴδια τὴν αὐτὴν δύναμιν ἐφέξει πρὸς τὰ διάμετρα . Οὕτως |
τοῦ φυτοῦ , ἔξωθέν τε τοῦ ϲώματοϲ ἐπιτιθέμενα καὶ εἴϲω λαμβανόμενα . Μῶλυ ἢ βήϲαϲα . Μῶλυ , ὅ τινεϲ | ||
ϲυνήθη τροφήν . τὰϲ μέντοι πρώταϲ ἡμέραϲ βραχύτερα ἔϲτω τὰ λαμβανόμενα καὶ ὑγρότερα καὶ μηδὲν γλίϲχρον ἔχοντα : ἔϲτω δὲ |
τὰ δὲ παʹ τρὶς σμγʹ : ηʹ θʹ ξδʹ οβʹ παʹ ρϞβʹ σιϚʹ σμγʹ : εἶτα προστίθεμεν τοῖς σμγʹ ἀπὸ | ||
θʹ , κατὰ δὲ ἐμβαδομετρίαν ὡς ὁ κεʹ πρὸς τὸν παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν |
ἔτη ἕως τοῦ ζητουμένου ἔτους , τουτέστιν ἔτη ͵αξη , παρακείμενα αὐτοῖς ἔν τε τῇ εἰκοσαπενταετηρίδι τῶν συνόδων καὶ τοῖς | ||
πυοποιήσεως , ἀτμῶν τινων δριμέων ἢ ποιότητος φερομένων ἐπὶ τὰ παρακείμενα μόρια , καὶ δάκνοντα καὶ ἀνιῶντα ταῦτα , γίνονται |
τὰ πέρατα ἐπέχει μοίρας ιδʹ γοʹʹ μβʹ ∠ ʹʹ καὶ ιϚʹ μγʹ καὶ ἡ Ἰδουβέδα , ἧς τὰ πέρατα ἐπέχει | ||
χώρᾳ τὸν σπονδεῖον ἀλλ ' ἐν τῇ βʹ . Τὸ ιϚʹ ἐπιωνικὸν καθαρὸν δίμετρον ἀκατάληκτον , καθαρὰν ἰαμβικὴν ἔχον τὴν |
λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
ἀριθμῶν τῷ τε τῶν ξη δεκάτων καὶ τῷ τῶν ρλβ δεκάτων προστιθέμενος ὁ τετράγωνος , ἤτοι τὰ μθ ρα , | ||
βου . Πῶς ἑκατέρῳ τῶν ἀριθμῶν τῷ τε τῶν ξη δεκάτων καὶ τῷ τῶν ρλβ δεκάτων προστιθέμενος ὁ τετράγωνος , |
ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
ἀγανακτοῦντος , ἐπειδήπερ ὁ φίλος ἔλεγεν , ὡς οὐ ποιοῖ σύμφωνα τοῖς λόγοις οὐδ ' ἄξια τῆς ἀπαθείας , εἰπεῖν | ||
φύσιν . τὰ μὲν γὰρ αὐτῶν φωνάεντα προσαγορεύουσι τὰ δὲ σύμφωνα , καὶ φωνάεντα μὲν ἑπτά , α ε η |
ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε | ||
δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ |
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
τὸ δὲ δὶς ὑπὸ τῶν ΑΗ , ΗΒ μέσον , ἀσύμμετρα ἄρα ἐστὶ τὰ ἀπὸ τῶν ΑΗ , ΗΒ τῷ | ||
λόγον οὐκ ἔχει , ὃν ἀριθμὸς πρὸς ἀριθμόν . Ἔστω ἀσύμμετρα μεγέθη τὰ Α , Β : λέγω , ὅτι |
ἀναλογεῖ τῇ ἐπιστήμῃ , ἡ δὲ τῇ πίστει καὶ τῇ παρωνύμῳ δόξῃ . ἀβουλήτως οὖν οἱ ῥήτορες καὶ οἱ τύραννοι | ||
τὴν γένεσιν αὐτὸς ἔσχε : διόπερ συμβαίνει αὐτῷ πρὸς τῷ παρωνύμῳ μέρει ἔτι καὶ ἑτερώνυμον ἢ ἑτερώνυμα κεκτῆσθαι , τὸ |
νδ λ γενόμενα ποιεῖ # γ νδ λ . ταῦτα προστεθέντα τοῖς # ε μ λ γίνεται # θ λε | ||
ὅστις χρηστὸς ἦν ἡδύς τ ' ἀνήρ , τὰ σῦκα προστεθέντα δηλοῦν τὸν τρόπον : νυνὶ δὲ πρὸς μοχθηρὸν ἡδὺ |
, καὶ τὰ κτήματα τοῦ ἀποθανόντος πάντα ἀποδόμενος ἀποδώσω τὰ ἡμίσεα τῷ ἀποκτείναντι , καὶ οὐκ ἀποστερήσω οὐδέν . Ἐὰν | ||
δὲ τῶν γεωργουμένων τροφῶν σφισιν ἀπέφερον ἐς Σπάρτην πάντων τὰ ἡμίσεα . προείρητο δὲ καὶ ἐπὶ τὰς ἐκφορὰς τῶν βασιλέων |
ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . . | ||
λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ |
λέγῃ ἡ ἡδονὴ σπουδαία ἐστιν , εἰ μὲν πρὸς τὴν γεωμετρικὴν ἡδονὴν ἀποβλέψας φησίν , οὐ τὸ προκείμενον συνάγεται : | ||
. διὰ τοῦτο τὸν Βρύσωνος τετραγωνισμὸν οὐκ ἄν τις εἴποι γεωμετρικὴν ἀπόδειξιν : χρῆται γὰρ ἀξιώματι ἀληθεῖ μὲν κοινῷ δέ |
τοῦ Ταύρου ιζʹ κζʹ . ταῦτα ἐπὶ τὸν ιβʹ γίγνεται σιʹ ἔγγιστα : τούτων τὸ Ϛʹ λαμβάνω , γίνεται λεʹ | ||
δὲ Ὀνόβα Αἰστουρίας ἐπὶ τὰς τοῦ Ἄνα ποταμοῦ ἐκβολὰς στάδιοι σιʹ , στάδια ρνʹ . Ἀπὸ δὲ τῶν ἐκβολῶν τοῦ |
αἰτήματα αἰτήσασα καὶ συγχωρηθῆναι αὐτῇ ἀξιώσασα οὐδὲ συστῆναι δυνάμενασημεῖά τινα ἀμερῆ καὶ γραμμὰς ἀπλατεῖς καὶ τὰ τοιαῦτα , ἐπὶ σαθροῖς | ||
στοιχεῖα : ἀεὶ γὰρ ἀπὸ ψεύδους ἀρχόμενον τοῦ οὐκ ἔστιν ἀμερῆ τῶν ὄντων στοιχεῖα εἰς ἀληθὲς καταλήξει κατ ' αὐτὸν |
πρῶτος μὲν ἀστὴρ τῆς Λύρας ὁ ἡγούμενος τῶν ἐν τῷ ζυγώματι , ἔσχατος δὲ τοῦ Ὄρνιθος ὁ ἐν τῇ οὐρᾷ | ||
πρῶτος μὲν τῆς τε Λύρας ὁ ἡγούμενος τῶν ἐν τῷ ζυγώματι , καὶ τοῦ Τοξότου ὁ ἑπόμενος τῶν ἐν τῷ |
τῶν ΑΔ , ΔΒ τῶν ἀπὸ τῶν ΑΓ , ΓΒ ὑπερέχει ῥητῷ τουτέστι τὴν ὑπεροχήν . Ἡ ΑΒ ٢ ٢٥ | ||
ὑπεροχὴ γινομένη : ὡσαύτως γὰρ ἡ τετρὰς τῆς τριάδος μονάδι ὑπερέχει , καὶ ὁ ε τοῦ δ , καὶ ἐφεξῆς |
νόμος θεῖος ὤν , καθ ' ὃν τὰ προσήκοντα καὶ ἐπιβάλλοντα ἑκάστοις ἀπενεμήθη . ταύτης τῆς πόλεως καὶ πολιτείας ἔδει | ||
οὖν πρώτη τῆς πραγματείας βίβλος , Κάσσιε Μάξιμε , τὸν ἐπιβάλλοντα λόγον ἀποχρώντως καὶ ὡς μήτε ἐνδεῖν τι τῶν ἀναγκαίων |
ΒΓ τοῦ ΔΖ ἡμιόλιος , ὁ δὲ ΔΖ τοῦ Θ ἐπίτριτος : φημὶ τὸν ΒΓ τοῦ Θ διπλάσιον εἶναι . | ||
τὸ τρίτον αὐτοῦ , ἤγουν τὸ Γ . Ὁ Η ἐπίτριτος τοῦ Ϛʹ . Περιέχει γὰρ ὅλον τὸν Ϛʹ , |
, κἂν μὲν ἐντὸς τῶν Ϙ μοιρῶν ὦσιν , αὐτὰς ἀπογραψόμεθα , ἐὰν δ ' ὑπὲρ τὰς Ϙ , τὰς | ||
τε τοῖς τῶν παρόδων σελιδίοις καὶ ἐν τοῖς τῶν δακτύλων ἀπογραψόμεθα χωρὶς ἕκαστα : ἔπειτα καὶ τὸν τῆς ἀνωμαλίας ἀριθμὸν |
καὶ κορύζας καὶ βράγχους ὀνίνησιν ἔμμηνά τε προτρέπει πινόμενος καὶ προστιθέμενος . Σῦκα ξηρὰ θερμαίνει μετρίως , ἔχει δέ τι | ||
ʂ ηιε / . ἐπὶ τὰς ὑποστάσεις . ἔσται ὁ προστιθέμενος ξδϘζ / . ιβ . Ἀπὸ δύο δοθέντων ἀριθμῶν |
τεταγμέναις ἡμέραις εἰς πολλὰ διαιρούμενον κυβοειδῆ σχήματα , βοτρυηδὸν ἀλλήλοις προσκείμενα . ἄριστον δ ' αὐτοῦ ἡγητέον τὸ κυάνεον καὶ | ||
καὶ βραχιόνων ἁπαλαῖς ταῖς χερσὶ ψηλαφήσαντας τὰ μέρη καὶ τὰ προσκείμενα τῶν συγκριμάτων ἀφελόντας , θέρους μὲν τοῖς περιβολαίοις σκέπειν |
, τοῦ δὲ Δ ἐπόγδοος ὁ Ε , τοῦ Ε ἐπόγδοος ὁ Ζ , τοῦ Ζ ἐπόγδοος ὁ Η : | ||
δυνατοῦ δεῖξαι τὸ προκείμενον , ὅς ἐστι μονάδων ͵αφλϚʹ , ἐπόγδοος μὲν αὐτοῦ γίνεται ὁ τῶν ͵αψκηʹ , τούτου δὲ |
δον μέρος τοῦ ἀποκαταστατικοῦ χρόνου ἀποτελέσει τινὰ ἀριθμόν , ὃς προστεθεὶς μὲν τῇ μέσῃ κινήσει ποιήσει τινὰ ἀριθμὸν μείζονα μὲν | ||
δὲ περιάμματι αὐτῷ αἱ γυναῖκες χρῶνται : δοκεῖ δὲ δένδρεσι προστεθεὶς καρποφορίας ἐμποιεῖν . Λίθος σάπφειρος μετὰ γάλακτος ποθεὶς λεῖος |
, τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ | ||
δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ |
δόξῃς τοῦτο γίνεσθαι πάντοθεν ἐν τῷ κόσμῳ , ἀλλὰ πρὸς ἰδιώματα κλιμάτων οἰκουμένης . τὰ γὰρ ἄνωθεν ζῴδια ἔχουσιν ἐξουσίας | ||
τοῦ τε ἰσημερινοῦ καὶ τοῦ λοξοῦ κύκλου καὶ περὶ τὰ ἰδιώματα καὶ τὰ μεγέθη τῶν γινομένων γωνιῶν ὑπὸ τῶν κυριωτέρων |
ὀψοποιοὺς ἀνέπειθον ἐμβαλεῖν δηλητήρια φάρμακα . οὐ ῥᾳδίως δὲ αὐτῶν οὐδετέρῳ προεχώρει , ἐπειδὴ μετὰ πολλῆς ἐπιμελείας καὶ φρουρᾶς διῃτῶντο | ||
ἐνεῖναι ὑπαινιττό - μενος , ἀλλ ' ὅμως δύο ποιήσας οὐδετέρῳ χρῆται ἐν ταῖς ἀρχαῖς : οὔτε τὸ κατὰ διαίρεσιν |
ιβʹ , ιαʹ καὶ λοιπὰ Ϛʹ : ταῦτα δωδεκάκις γίνονται οβʹ , καὶ ἑκάστου ἐκκρουσθέντος κύκλου ἀνὰ αʹ , γίνονται | ||
' ἑαυτά , καὶ γίνεται παʹ : ηʹ θʹ ξδʹ οβʹ παʹ : εἶτα πάλιν τούτων ἕκαστον ληφθήτω τρίς , |
πέντε ὡς ἐν πλείοσιν ἐλάσσονα , καὶ ἐν τοῖς πέντε περισχεθήσεται τὰ τέσσαρα καὶ ἐν τοῖς τέτταρσι τὰ τρία καὶ | ||
. εἰ δὲ ὅλα ὅλων ἅπτεται , σημεῖα ἐν σημείοις περισχεθήσεται καὶ τὸν αὐτὸν ἐφέξει τόπον . εἰ δὲ τὸν |
τοῦ ὁρίζοντος καὶ τοῦ ζῳδιακοῦ καὶ τὰς ἐν τῷ δʹ σελιδίῳ τῶν παραλλάξεων μοίρας χωρὶς καὶ ἔτι τοὺς παρακειμένους ἀριθμοὺς | ||
ιη , τῆς διπλῆς ἀποχῆς . ταύταις δὲ παράκεινται τρίτῳ σελιδίῳ μοῖρα α μθ , εἰς ἣν θέσιν γίνονται ἀνωμαλίας |
τοῦ λέγεσθαι τὸν οἰκοδόμον ποιητικὸν αἴτιον . ὁμοίως δὲ καὶ συμπλεκόμενα καὶ ἁπλᾶ ὄντα τὰ αἴτια , οἷον Πολύκλειτος καὶ | ||
. καὶ εἰ μὲν εἴποι τις ὅτι ταῦτα μόνα ἀλλήλοις συμπλεκόμενα τὸν λόγον αὐτοτελῆ ποιοῦσι , τὰ δὲ ἄλλα οὔ |
εἶναι δύο ταῦτα πάθη κατὰ τὸν Ἀριστοτέλην , οὕτως δὲ γενικὰ ὥστε διαιρεῖσθαι τὸ μὲν πάθος εἰς δύο πάθη , | ||
ἐθέλοι τὰ εἴδη τῶν κδʹ στοχῶν ἓξ ἔχειν καὶ μόνον γενικὰ , καθαρὸν , πλάγιον , ἶσον , κέντρον , |