' ἑκάστῳ τῶν ῥυθμίζεσθαι δυναμένων . . . Τῶν δὲ ῥυθμιζομένων ἕκαστον οὔτε κινεῖται συνεχῶς οὔτε ἠρεμεῖ , ἀλλ '
καὶ σχῆμα ἐκλήθη : ὅ τε ῥυθμὸς ὡσαύτως οὐδενὶ τῶν ῥυθμιζομένων ἐστὶ τὸ αὐτό , ἀλλὰ τῶν διατιθέντων πως τὸ
7026197 συντεθεις
ὁ γ συνεχὴς προσσωρευθεὶς καὶ ἐξαπλωθείς γε εἰς μονάδα καὶ συντεθεὶς τὸν Ϛ ἀποδίδωσι δεύτερον ἐνεργείᾳ τρίγωνον καὶ προσέτι σχηματογραφεῖ
δ ὁ ἀπὸ τοῦ αβ τετράγωνος , ὁ δὲ εη συντεθεὶς ἐκ δύο ἐπιπέδων ἀριθμῶν τῶν ἐκ τῶν αβ βγ
6690816 συνθετοι
κράσεων ἐννέα διαφοροὶ , τέσσαρες μὲν ἁπλαῖ , τέσσαρες δὲ σύνθετοι , καὶ πρὸς τούτοις ἡ εὔκρατος . καὶ τῶν
σῴζειν τὰς ἀναλογίας . Τῶν ῥυθμῶν τοίνυν οἱ μέν εἰσι σύνθετοι , οἱ δὲ ἀσύνθετοι , οἱ δὲ μικτοί ,
6674780 πολλαπλασιασεις
ὑποδιαίρεσιν ἂν πειραθείης συγχωρήσας ἀνελεῖν , εἶτα ἀνελὼν ἐπενέγκοις , πολλαπλασιάσεις τὸν λόγον δριμέως λέγων οὕτως εἰ μὲν τόδε ἐποίησας
σμγ . Ὡσαύτως καὶ εἴτε τὸν κύβον ἐφ ' ἑαυτὸν πολλαπλασιάσεις , εἴτε τὴν πλευρὰν αὐτοῦ ἐπὶ τὸν δυναμόκυβον ,
6579878 δυαδων
μονάδες ὡς ὅλον ταῖς δυσὶ δυάσιν , ἢ ἑκατέρα τῶν δυάδων ταῖς τέσσαρσι μονάσι καθάπαξ οὐκ ἴσαι . καὶ πάλιν
δὲ προστάγμασι τούτοις πάλιν ἀπὸ ἰσότητος πρῶτον ἐκ μονάδων εἶτα δυάδων εἶτα τριάδων καὶ ἐφεξῆς : πρῶτον ἐκ πρώτου καὶ
6523426 ἀσυνθετων
Γίνεται δὲ καὶ σχήματα τοῦ αὐτοῦ μεγέθους ἐκ τῶν αὐτῶν ἀσυνθέτων συγκείμενα καὶ ἀριθμοῦ , εἰ ἡ τάξις αὐτῶν ἀλλοίωσιν
καὶ διὰ τί οὐχ ἁπλῶς δείκνυται , ὅτι ἐκ τοσούτων ἀσυνθέτων ἕκαστον τῶν γενῶν συνέστηκεν ὅσα ἐστὶν ἐν τῷ διὰ
6520719 ὑποτριπλασιος
, καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ ὁ ὑποτριπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημιόλιος καὶ ὁ ὑπεπίτριτος
κ τὸ τρίτον αὐτῆς : ἀπὸ γὰρ τοῦ τρία ὁ ὑποτριπλάσιος παρωνόμασται . καὶ ποιῶ τὰ λ ἐπὶ τὰ κ
6514232 ἀσυνθετου
ἂν αὐτὸς ὢν τυγχάνῃ ἀπὸ μονάδος ἢ τοῦ πρώτου καὶ ἀσυνθέτου . τῷ μὲν γὰρ καθ ' ἕκαστον πρώτῳ πολλαπλασίῳ
παραμέσης καὶ ὑπάτης . ἔστι δέ τινα κοινὰ συνθέτου καὶ ἀσυνθέτου διαστήματα , τὰ ἀπὸ ἡμιτονίου μέχρι διτόνου . τὸ
6509495 ἐφαρμοζων
ἡ ἑξάπους καὶ ἑαυτήν : πᾶς γὰρ ἀριθμὸς ὡς ἑαυτῷ ἐφαρμόζων μετρητική ἐστιν ἑαυτοῦ . ἀλλὰ καὶ τὴν δωδεκάποδα μετρεῖ
τις εἶναι , οὐκ ἀδύνατόν τι ἀκολουθήσει . Καὶ ἔσται ἐφαρμόζων ὁ λόγος καὶ τῷ ἀναγκαίῳ καὶ τῷ ὑπάρχοντι :
6491211 ͵ακδ
συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε
ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη
6480448 τονιαια
ΖΔ , τὴν δὲ τῶν ΒΗ τῇ τῶν ΑΖ , τονιαία μὲν ἔσται καὶ ἑκατέρα τῶν ΔΒ καὶ ΖΔ ,
λοιπῶν , ἕως ἂν περιτραπῶσιν ἐπὶ τὸ λέγειν οἵων ἡ τονιαία δύο . ἔπειτα οὐδ ' οὕτως τὰς ὑπεροχὰς ὁρίζουσι
6435067 Ϟων
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς
6415739 παρωνυμῳ
ἀναλογεῖ τῇ ἐπιστήμῃ , ἡ δὲ τῇ πίστει καὶ τῇ παρωνύμῳ δόξῃ . ἀβουλήτως οὖν οἱ ῥήτορες καὶ οἱ τύραννοι
τὴν γένεσιν αὐτὸς ἔσχε : διόπερ συμβαίνει αὐτῷ πρὸς τῷ παρωνύμῳ μέρει ἔτι καὶ ἑτερώνυμον ἢ ἑτερώνυμα κεκτῆσθαι , τὸ
6413534 ὁποσοιουν
: ἤλπιζον γὰρ καὶ τοὺς μὴ προειδότας , εἰ καὶ ὁποσοιοῦν τολμήσειαν , ἐκ τοῦ παραχρῆμα ἔχοντάς γε ὅπλα ἐθελήσειν
ὁ ΑΕ : ὅπερ ἔδει δεῖξαι . Ἐὰν περισσοὶ ἀριθμοὶ ὁποσοιοῦν συντεθῶσιν , τὸ δὲ πλῆθος αὐτῶν ἄρτιον ᾖ ,
6377036 διαιρετος
εἴς τι μεταβεβληκὸς ἐν χρόνῳ μεταβέβληκεν , ὁ δὲ χρόνος διαιρετός . εἰ γὰρ ἐν τῷ νῦν , ἐν μὲν
κινεῖται διάστημα . εἰ τοίνυν καὶ οὗτος ὁ χρόνος εἴη διαιρετός , ἐν ᾧ κινεῖταί τι κατὰ ἀμεροῦς καὶ ἐλαχίστου
6372238 Ἀριθμος
, καθ ' ἣν ἕκαστον τῶν ὄντων ἓν λέγεται . Ἀριθμὸς δὲ τὸ ἐκ μονάδων συγκείμενον πλῆθος . Μέρος ἐστὶν
μερῶν ἐπιπέδῳ σὺν τῷ ἀπὸ τοῦ προειρημένου μέρους τετραγώνῳ . Ἀριθμὸς γὰρ ὁ αβ διῃρήσθω εἰς δύο ἀριθμοὺς τοὺς αγ
6366689 ἐπιπεδοι
. βʹ Ἐὰν ἀριθμὸς εἰς δύο ἀριθμοὺς διαιρεθῇ , δύο ἐπίπεδοι ἀριθμοὶ οἱ γενόμενοι ἔκ τε τοῦ ὅλου καὶ ἑκατέρου
βέλεσιν αἱ βελοστάσεις κατασκευάζονται , αἱ μὲν [ ὀρυκταὶ ] ἐπίπεδοι [ καὶ κατώρυχοι ] , αἱ δὲ ὑπόγειοι πρὸς
6361107 μετρηθηναι
νῦν δὲ τῶν Λιβύων , ἣν δὴ μυθεύονται ῥινῷ βοὸς μετρηθῆναι . Ἐφεξῆς δὲ ἡ μικροτέρα Σύρτις τὸν ἄγαν ταχέα
οὗ ἐλάττονα οὐχ οἷόν τε ὑπὸ τῶν δοθέντων δύο ἀριθμῶν μετρηθῆναι , οἷός ἐστιν ὁ ιε : τούτου γὰρ ἐλάττονα
6359521 τετραχορδων
πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ
οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν
6345549 πολλαπλασιου
ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου
: ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον
6335781 ἐκτεθεντων
καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς
τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α ,
6321509 ὑπολογος
ἀναλογίαν σώζων γεωμετρικήν , πρόλογος μὲν πρὸς τὸν ἐλάττονα , ὑπόλογος δὲ πρὸς τὸν μείζονα , οὐδέποτε δὲ πλείονες :
' ἑκάτερα αὐτοῦ ἀποκρίνηται , πρὸς μὲν τὸν μείζονα ὡς ὑπόλογος , πρὸς δὲ τὸν ἐλάσσονα ὡς πρόλογος , συνημμένη
6297031 ἐπογδοων
ἐπογδόῳ , τὸ δ ' ἐπίτριτον διὰ τεσσάρων ἐκ δυεῖν ἐπογδόων καὶ τοῦ διεσιαίου λείμματος : καταπυκνωτέον αὐτὰ τοῖς ἐπογδόοις
ἴσῳ δὲ ὑπερεχομένην . ἡμιολίων δὲ διαστάσεων καὶ ἐπιτρίτων καὶ ἐπογδόων γενομένων ἐκ τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν
6295075 συνθετος
ἁπλῆ τίς ἐστι κατηγορία , ἡ δὲ τῶν πρός τι σύνθετος , ῥᾷον δὲ τὰ ἁπλᾶ μανθάνομεν τῶν πολυσχεδῶν ;
καὶ ὁ τῇδε ἵππος ἐκ τῶν τῇδε φύσεων ἀνομοίων οὐσῶν σύνθετος ᾖ . πάντα γὰρ ταῦτα κωμῳδοῦντός ἐστι μᾶλλον ἢ
6294659 ἀσυνθετοι
καὶ οἱ λοιποί . λέγονται οὕτως ἐκεῖνοι μὲν πρῶτοι καὶ ἀσύνθετοι , ἐπειδὴ ὑπὸ μόνης τῆν μονάδος μετροῦνται , ἐπεὶ
ὡσαύτως καὶ ὁ λθ καὶ ὅμως οὐκ εἰσὶ πρὸς ἀλλήλους ἀσύνθετοι , πρὸς δὲ ἑαυτοὺς σύνθετοι : ἀμφότεροι γὰρ ὑπὸ
6285994 ἡμιολιων
μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου
μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος :
6283980 ἐπιδιμερης
. ἰδοὺ γεγόνασιν ἐπιδιμερεῖς : ὁ γὰρ κε τοῦ ιε ἐπιδιμερής : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ μέρη :
πάλιν ὡς ἐν ἐπιμερέσι κατὰ τὴν οἰκειότητα τῆς δυάδος ὁ ἐπιδιμερής . εἰ δὲ οἱ πρῶτοι ἐν τριπλασίῳ λόγῳ ,
6260564 ὑποδιπλασιος
, ἐπὶ μὲν τῶν περιττῶν ἐκθέσεων ὁ μέσος τῶν ἄκρων ὑποδιπλάσιος ἦν , ἐπὶ δὲ τῶν ἀρτίων ἴσοι οἱ μέσοι
σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ ὁ ὑποτριπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημιόλιος
6255745 συμπεπλεγμενοι
γεννικόν , ὀπτὰ δελφάκια ἁλίπαστα τρία . Ἕτεροι δὲ θεοῖσι συμπεπλεγμένοι μετὰ Καράβου σύνεισιν , ὃς μόνος βροτῶν δύναται καταπιεῖν
Σωπάτρου . Ἰστέον ὥς εἰσι καὶ ἕτεροι στοχασμοὶ , οἳ συμπεπλεγμένοι καλοῦνται καὶ αὐτοὶ , διὰ τὸ ἑτέραις στάσεσιν ἐπιπλέκεσθαι
6252545 διπλασιαζομενων
ὅπερ ἔδει δεῖξαι . Ἐὰν ἀριθμὸς μήτε τῶν ἀπὸ δυάδος διπλασιαζομένων ᾖ μήτε τὸν ἥμισυν ἔχῃ περισσόν , ἀρτιάκις τε
τέτταρες ἔσονται ἢ ἄλλο τι πλῆθος τῶν ἀφ ' ἑνὸς διπλασιαζομένων : τοσαῦτα δὲ καὶ τὰ εἴδη . ἔστι δ
6247068 Ϟοι
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ .
6234959 Λεπτος
μελιχρὸν οἶνον τρικύαθον κελέβην ἔχουσα . Διονύσιος δ ' ὁ Λεπτὸς ἐξηγούμενος Θεοδωρίδα τὸ εἰς τὸν Ἔρωτα μέλος τὴν κελέβην
. Ὑμήν : δέρματος πτέρυξ , ἡ λεγομένη τζίπα . Λεπτὸς ὑμὴν , ὃν διατείνει εἰς τύπον ἀρμένου , τοὺς
6226583 μελῳδουμενων
μέσον κοινός , διάζευξις δ ' ὅταν δύο τετραχόρδων ἑξῆς μελῳδουμένων ὁμοίων κατὰ σχῆμα τόνος ᾖ ἀνὰ μέσον . ὅτι
τὸν δὲ τόνον ἐπόγδοον . τῶν δὴ παρὰ τοῖς κιθαρῳδοῖς μελῳδουμένων τετραχόρδων πεποιήσθω πρῶτον τὸ ἀπὸ νήτης μέχρι παραμέσης διὰ
6215460 δωδεκακις
. καὶ ὅτι ἐν ταῖς ἰσημερίαις μόνος τῶν ἄλλων ζῴων δωδεκάκις τῆς ἡμέρας κράζει καθ ' ἑκάστην ὥραν . Θυμὸν
παραχωρήσεις , πεπραγματευμένας δὲ ἔχομεν γραμμικῶς τὰς τῆς σελήνης , δωδεκάκις ἑκάστην τῶν ἐκεῖ παραθέσεων ποιήσαντες διὰ τὸ τὴν μεγίστην
6207998 δωριος
βάρος . εἰ μὲν γὰρ μὴ δυνηθείημεν ἀνιέναι περαιτέρω , δώριος ἔσται διὰ τὸ τὸν πρῶτον ἀκουστὸν φθόγγον δωρίου προσλαμβανομένῳ
συστήματι , ὡς ὑπατοειδὴς μεσοειδὴς νητοειδής : τόνῳ , ὡς δώριος φρύγιος : τρόπῳ νομικῷ διθυραμβικῷ : ἤθει , ὥς
6195657 μετρουντα
μετρῶν , ἀλλ ' ὡς μετρούμενος : οὐ γὰρ τὰ μετροῦντα μόνα ποσά , ἀλλὰ καὶ τὰ μετρούμενα , ὡς
Ἐπεί , κἄν τις ἐξεύρῃ ὅπως , οὐ χρόνον εὑρήσει μετροῦντα , ἀλλὰ τὸν τοσόνδε χρόνον : τοῦτο δὲ οὐ
6185737 νοουνται
. ἰστέον δὲ ὅτι ἐπὶ τῶν τριῶν ὁρισμῶν τρεῖς σχέσεις νοοῦνται : οἱ μὲν γὰρ δύο πρῶτοι τὴν ἀπὸ τοῦ
ἔχει καὶ αὐτὸ λόγον , πλὴν ὡς συνεχῶν ποσῶν τμημάτων νοοῦνται καὶ οὐχ ὡς διῃρημέναι μονάδες . Τοῦτο ἴδιον τῶν
6174071 ἀνακεκραμενων
ϲυνελθόντων εἰϲ ἕνα τῶν δύο παροξυϲμῶν ἢ εὐθέωϲ ἐξ ἀρχῆϲ ἀνακεκραμένων ἀλλήλοιϲ ἀμφοτέρων . ὅταν μὲν οὖν ὁ τριταῖοϲ ἐπικρατῇ
ἕνα καιρὸν τῶν δύο παροξυσμῶν , ἢ εὐθέως ἐξ ἀρχῆς ἀνακεκραμένων ἀλλήλοις ἀμφοτέρων . ὅταν μὲν οὖν ὁ τριταῖος ἐπικρατῇ
6160776 γεννησουσιν
πενταγώνοις οἱ τρίγωνοι προστιθοῖντο τῇ αὐτῇ τάξει , τοὺς εὐτάκτους γεννήσουσιν ἑξαγώνους καὶ πάλιν ἐκείνοις οἱ αὐτοὶ προσπλεκόμενοι τοὺς ἐν
, δεικνύτωσαν , πῶς ἀλλήλας καταλήψονται ἢ πῶς συμπλακήσονται καὶ γεννήσουσιν ἕτερον . ὅτι μὲν οὖν ἀναιρεῖ κίνησιν μᾶλλον τὸ
6159878 ἐπιμερης
τοὺς παρέξοντας ἀφ ' ἑαυτῶν τὰ μέρη , καθὰ ὁ ἐπιμερὴς κέκληται , οἷον ἐπιδιμερῶν τὸν πέντε πρὸς τρία ,
, ἐπιέβδομος καὶ εἰς ἄπειρον . γʹ . κατὰ γένος ἐπιμερὴς δὲ ὁ μετρούμενος ὑπὸ ἑτέρου ἅπαξ , καὶ περισσεύει
6152087 τριπλασιεπιτριτος
καὶ ἀνάλογον , καὶ ἀπ ' ἄλλης ἀρχῆς τριπλασιεφήμισυς , τριπλασιεπίτριτος , τριπλασιεπιτέταρτος , τριπλασιεπίπεμπτος , καὶ πάλιν ἄνωθεν τετραπλασιεφήμισυς
τὸν τῶν γʹ καὶ τὸ τρίτον αὐτοῦ , καὶ λέγεται τριπλασιεπίτριτος . παραπλησίως δὲ θεωρείσθωσαν καὶ οἱ λοιποὶ πολλαπλασιεπιμόριοι .
6148119 συγκρινομενων
τοῦτον : ἀριθμὸς ὁ ἔχων ἐν ἑαυτῷ ὅλον τε τὸν συγκρινομένων καὶ μέρος αὐτοῦ τρίτον πρὸς τῷ ὅλῳ . ὑποδείγματα
ἐπεὶ καὶ Δαναώτατος ὑπερτίθεται παρὰ Ἀριστοφάνει , τῶν κυρίων οὐ συγκρινομένων . εἰ δὲ καθὸ ὀξύνεται , ὄνομα , καὶ
6147455 σωρειαν
: διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί
μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν
6144458 πολλαπλασιεπιμοριος
ἐν τῷ προειρημένῳ λόγῳ ἐλάσσων πρὸς τὸν μείζονα ἐξεταζόμενος . πολλαπλασιεπιμόριος δέ ἐστι λόγος , ὅταν ὁ μείζων ὅρος δὶς
ἐλάσσονος μέρος : οἷον ὁ τῶν κϚʹ τοῦ τῶν ηʹ πολλαπλασιεπιμόριος λέγεται , ἐπειδήπερ ὁ ηʹ τρὶς καταμετρήσας τὸν κϚʹ
6139211 περισσακις
; εἰ γὰρ μετρήσει αὐτὸν περισσάκις , ἔσται ὁ Α περισσάκις περισσός , πᾶς δὲ περισσάκις περισσὸς ἥμισυ οὐκ ἔχει
τε γὰρ ἀρτίου ἀρτιάκις μετρεῖται καὶ ὁ αὐτὸς ὑπὸ ἀρτίου περισσάκις , οὐδετέρῳ δὲ τῶν προτέρων τοῦθ ' ἅμα συμβέβηκεν
6138825 χοριαμβος
ιʹ χοριαμβικὸν ἑφθημιμερές . αʹ χορίαμβος δίμετρος ἀκατάληκτος . βʹ χορίαμβος δίμετρος καταληκτικός . γʹ ἴαμβος πενθημιμερής . δʹ ἀπὸ
χοριαμβικὸν † δίμετρον . τὸ ιʹ χοριαμβικὸν ἑφθημιμερές . αʹ χορίαμβος δίμετρος ἀκατάληκτος . βʹ χορίαμβος δίμετρος καταληκτικός . γʹ
6132705 τετραχορδα
τῶν σνϚ πρὸς τὰ σμγ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους λόγους ἐν πρώτοις ἀριθμοῖς τούτοις :
ἀπὸ προσλαμβανομένου ἐπὶ νήτην συνημμένων . ὑπάρχει δὲ ἐν αὐτῷ τετράχορδα τρία συνημμένα τάδε : ὑπάτων μέσων συνημμένων , καὶ
6132159 ὀνισκου
δὲ καταγωγίδα οὐκ εἶχε νευρίνην , ἀλλ ' ἔχοντος τοῦ ὀνίσκου τὰς ὑπεροχὰς τὰς ἐξ ἑκατέρου μέρους ἀπειργασμένας πενταγώνους πεποιημένας
, ἐν ᾧ κριοκοπεῖ , ἐφελκόμενος αὐτὴν ἐκ τοῦ κάτω ὀνίσκου κειμένου . Βυρσοῦται δὲ κύκλῳ σὺν ταῖς ἁψῖσι τὴν
6128108 ἀντιστομος
εὐωνύμῳ , τοὺς δὲ οὐραγοὺς ἔσω τεταγμένους . ἡ δὲ ἀντίστομος διφαλαγγία τοὺς μὲν ἡγεμόνας ἔχει μέσους τεταγμένους , τοὺς
ἀμφίστομος , καὶ ἐν πορείαις πῶς λέγεται διφαλαγγία ἀμφίστομος καὶ ἀντίστομος καὶ ἑτερόστομος καὶ ὁμοιόστομος . Ἀμφίστομος μὲν οὖν φάλαγξ
6121628 ἐπιτριμερης
, πενταπλάσιος δὲ ὁ τῶν ἄκρων . κἂν τετραπλάσιος , ἐπιτριμερὴς τετάρτων , ἑπταπλάσιος δὲ ὁ τῶν ἄκρων καὶ ἑξῆς
μετὰ δὲ τοῦτον ὁ τρία πρὸς τῷ ὅλῳ ἔχων κληθήσεται ἐπιτριμερὴς εἰδικῶς , καὶ μετὰ τοῦτον ἐπιτετραμερής , εἶτα ἐπιπενταμερής
6111690 ἀσυνακτος
, ὡς ἐπελογισάμην , ἀδιάκριτος ἔσται καὶ ὁ κατὰ διάρτησιν ἀσύνακτος λόγος . καὶ γὰρ ὁ λέγων κατὰ διάρτησιν ἀσύνακτον
ὁ δὲ ἐκ συνημμένου καὶ τοῦ λήγοντος τὸ ἡγούμενον συνάγων ἀσύνακτος , ὡς ὁ προειρημένος , παρὸ καὶ ἀληθῶν ὄντων
6111585 μεριει
ἀφαιρέτης τῶν χρόνων γενήσεται , ἢ καὶ τὰ ἐλάχιστα ἔτη μεριεῖ . ἔστι δὲ Ἡλίου μὲν ζῴδια τὰ ἀρρενικά ,
ἀγαθοδαιμονῶν ἢ καὶ ἐπί τινος χρηματιστικοῦ τόπου , τὰ τέλεια μεριεῖ . οὐκ ἄρα ἀφελεῖ τις ἀπὸ τῆς ὥρας ἢ
6110025 συντεθεντων
μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν
ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν
6076897 διπλασιεπιτριτος
ὁ ε τοῦ β διπλασιεφημιόλιος , ὁ ζ τοῦ γ διπλασιεπίτριτος , ὁ θ τοῦ δ διπλασιεπιτέταρτος , ὁ ια
τοῦ μείζονος ἐπιμερὴς ἤτοι τρισεπιτέταρτος , ἀπὸ δὲ τοῦ ἐλάσσονος διπλασιεπίτριτος , ὡς ἐκ τοῦ ιϚ , ιβ , θ
6076070 εη
ἴσοι ἀλλήλοις εἰσίν : ἴσος ἄρα ἐστὶν ὁ δ τῷ εη . καί ἐστιν ὁ μὲν δ ὁ ἐκ τῶν
: ταῦτα ἴσα Μο ιγ : καὶ γίνεται ὁ ʂ εη / . ἐπὶ τὰς ὑποστάσεις : ἔταξα τὴν τοῦ
6065370 ἀρτιων
καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους ,
δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα
6063833 ἡμιολιος
ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος .
τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ
6062154 υλβ
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ
6061361 πενταπλασιος
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν
6060159 ἐννατα
θ καὶ θ ↑ ἐννάτων , καὶ γίνεται τὰ θ ἔννατα τῆς λείψεως τοῦ Ϟοῦ Ϟὸς εἷς , ↑ τῶν
τὸ ἔτος , εἰς ἐκεῖνον τὸν τόπον ἔνθα ἐπερατώθη τὰ ἔννατα . περὶ δὲ τῶν κατὰ μῆνα καὶ τῶν καθ
6058949 ἁρμονικη
, ἀφ ' ὧν λαμβάνεται πᾶσα μεσότης , ἀριθμητική , ἁρμονική , γεωμετρική . τούτων ἡ μὲν ἴσῳ ἀριθμῷ ὑπερέχει
τὸ ποιὸν ἀντὶ τοῦ περὶ τοὺς ὅρους . ἡ μέντοι ἁρμονική , ὡς περὶ ἑκάτερον ἔχουσα , διὰ τοῦτο τῶν
6052838 ἑξαχη
ἔξω ἕνα εἴασε καὶ ἄσχιστον , τὸν δὲ ἐντὸς σχίσας ἑξαχῆ ἐποίησεν ἑπτὰ κύκλους ἀνίσους , διπλασίονι καὶ τριπλασίονι λόγῳ
ἀπὸ τῶν εἰς ως γινόμενα διὰ τοῦ Η γράφονται οἷον ἑξαχῆ ἀπὸ τοῦ ἑξαχῶς . Τὰ πάσχοντα ἐπέκτασιν διὰ τοῦ
6046331 σμγ
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ
6044589 ἀσυνθετος
ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ
ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν
6042965 ͵αρνβ
λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε
' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ
6025197 ἀτακτοϲ
δυϲωδῶν : κατὰ δὲ τὸ ἴδιον κίνηϲιϲ ὅλου τοῦ ϲώματοϲ ἄτακτοϲ , ὡϲ καὶ κατὰ κοιλίαν τινὰ φέρεϲθαι ἀνοίκεια ,
φύϲιν , ὅ τε ἀνώμαλοϲ καὶ ὁ τεταγμένοϲ καὶ ὁ ἄτακτοϲ . ταῦτα τὰ γένη τῶν ϲφυγμῶν ἅπαντα καὶ αἱ
6015376 ἀσυνθετον
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις
6010103 ἐντατων
, ὧν θατέ - ρου κρουσθέντος ἐπί τινος ὀργάνου τῶν ἐντατῶν καὶ ὁ λοιπὸς κατά τινα οἰκειότητα καὶ συμπάθειαν συνηχεῖ
ἐπὶ τῆς ἀρτηριακῆς ἡμῶν φωνῆς εἴτε ἐπὶ τῆς τῶν ὀργάνων ἐντατῶν τε καὶ ἐμπνευστῶν καὶ κρουστῶν ποιούμεθα τὸν λόγον κατὰ
6007669 ͵βμη
] ὑπερέχεται δὲ ͵αψκη . ιζʹ ͵αϠμδ σιϚ . ιηʹ ͵βμη ρδ : ἐπίτριτος τῶ ιεʹ : ὑπερέχει γὰρ αὐτοῦ
χιλιάρχης . αἱ δὲ δύο χιλιαρχίαι μεραρχία καλεῖται , ἀνδρῶν ͵βμη , καὶ ὁ τοῦ μέρους τούτου ἡγούμενος καλεῖται μεράρχης
6006340 φοϚ
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς
6003488 εἰδικως
σῴαν ἔχων τὴν φρόνησιν καὶ ταῖς ἀρεταῖς ἁπάσαις κοσμούμενος , εἰδικῶς δ ' ἂν λέγοιτο σώφρων ὁ τοῖς κατὰ γεῦσιν
ἐπὸς γάρ ἐστιν ἀπὸ τοῦ ἐπεῖναι κατὰ τὴν ἀποτομήν . εἰδικῶς μέντοι Ὅμηρος οἶδεν ὀπόν τινα λεγόμενον , ὡς ὅταν
5996123 ὑπερτελεις
οἱ ἴσοι τοῖς ἑαυτῶν μέρεσι ὡς οὗτος ὁ ἕξ , ὑπερτελεῖς δὲ ὡς ὁ δυοκαίδεκα : τούτου γὰρ συντεθέντων τῶν
τῶν γὰρ ἀριθμῶν οἱ μέν εἰσι τέλειοι , οἱ δὲ ὑπερτελεῖς , οἱ δὲ ἐλλειπεῖς . καὶ ἔοικεν ὁ μὲν
5995794 σκθʹ
ἐλλείπει διαστολὴν μίαν ἢ καὶ δύο ἢ καὶ πλείους . σκθʹ . Παρεμπίπτων σφυγμός ἐστιν ὅταν μεταξὺ δυοῖν πληγῶν κατὰ
. ὁμοίως ἐπεὶ τρίτης συζυγίας ἐστὶ τὰ τνʹ , ἀφέλω σκθʹ , λείπω ρκαʹ καὶ ἴσχω τὸν τέταρτον . ὁμοῦ
5992928 ἀριθμηται
πρότερόν τε καὶ ὕστερον ἐν κινήσει , ὅταν διορίζηται καὶ ἀριθμῆται , διορίζεται δὲ οὐκ ἄλλως , ἢ ὅταν δύο
, ὅταν διαλαμβάνηται ὡς ἄλλου καὶ ἄλλου , τουτέστιν ὅταν ἀριθμῆται : ὁ γὰρ ἀριθμὸς οὐχ ἑνὸς οὐδὲ ταὐτοῦ παντάπασίν
5987052 ἁμιολιος
υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ
τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας
5986069 ἑτερομηκους
, ἀλλ ' ἰσοκρατῶς ἀμφότεροι πλευρικοί εἰσιν ἀριθμοὶ τοῦ Ϛʹ ἑτερομήκους ἐκ τοῦ δὶς τρία ἢ ἐκ τοῦ τρὶς βʹ
ἐπὶ τοῦ τετραγώνου καὶ τοῦ ῥόμβου , ἐπὶ δὲ τοῦ ἑτερομήκους καὶ τοῦ ῥομβοειδοῦς τὰ χωρία μόνον . καὶ ὅλως
5985345 τριακοστος
μέσα ἡσδηποτοῦν ἑξάδος ὡς ἐπὶ τῆς δευτέρας δεδήλωται ἀπαρτηθῇ ὁ τριακοστὸς ἀριθμός , οὐκέτι προσθήσομεν τὸν ιδʹ , ἀλλὰ πάλιν
. ἐπὶ τοίνυν τοῦ παρόντος δόξα αὐτῷ ἐστιν ὁ Ἀλκιμέδων τριακοστὸς νικητὴς ἀναδειχθείς . λέγεται γὰρ σὺν τούτῳ ἀλεῖψαι τριάκοντα
5976695 ἐγγειων
πόδες . πέντε δὲ καὶ ζώων γένη , ἐμπύρων ἐναερίων ἐγγείων ἐνύδρων ἀμφιβίων . ὅτι καὶ ἀνεικίαν προσηγόρευον τὴν πεντάδα
ποιήσει , εὐκτήμονάς τε καὶ φιλογεώργους , γαιούχους τε γενομένους ἐγγείων καὶ θεμελίων κτήτορας ἀποδείκνυσιν : ἐπὶ δὲ τῶν νυκτερινῶν
5971306 μετρειται
ἴσον καὶ μεμετρημένον ὀργυιᾷ . * περιβάλλεται : εἰκάζεται , μετρεῖται ἔχει εἰκάζεται * ὅσσον : πλάτος αἰγανέη δὲ τὸ
ἀπὸ τῆς πυγμῆς : ἐπεὶ μὴ ὥσπερ ὁ πῆχυς προτεταμένους μετρεῖται δακτύλους , οὕτω καὶ ὁ πυγὼν , ἀλλὰ συνεστρωμμένη
5965409 σκολιωτερα
μᾶλλον εἰς βάθος καὶ πάχος , δι ' ὃ καὶ σκολιώτερα καὶ ὀζωδέστερα καὶ τὸ ὅλον στερεώτερα καὶ πυκνότερα φύεται
ἀπορίᾳ πίστεως ἄλλης ἑκατέρῳ διδόμενοι ἐν τῷ παραχρῆμα ἴσχυον . σκολιώτερα δὲ τούτων ἐστὶ καὶ ἃ μετὰ ταῦτα τίθησιν :
5964580 ἀναλωθησεται
, οὕτω καὶ ἐπὶ πάντων κἂν ἐκφεύγῃ τὴν αἴσθησιν πάντως ἀναλωθήσεταί τι ἐν τῇ τομῇ . δόρυ γοῦν ἢ κάλαμον
, οὕτω καὶ ἐπὶ πάντων κἂν ἐκφεύγῃ τὴν αἴσθησιν πάντως ἀναλωθήσεταί τι ἐν τῇ τομῇ . δόρυ γοῦν ἢ κάλαμον
5964158 ἡμερινων
κλῆρον τῆς Τύχης ἀριθμεῖν δεήσει , καθὼς προείρηται , ἐπὶ ἡμερινῶν γενέσεων ἀπὸ μοίρας Ἡλίου ἕως μοίρας Σελήνης τὰς πάσας
οἰκοδεσπότην τοῦ οἴκου ἐν ᾧ ἐστιν ὁ Ἥλιος ἐπὶ τῶν ἡμερινῶν γενέσεων καὶ ἀπ ' αὐτοῦ ἀρίθμει τὰ ζῴδια ἕως
5958945 μελῳδειται
ἀσύνθετον οὔτε πλείω ἑνὸς ἡμιτόνια κατὰ τὸ ἑξῆς ἐν τούτῳ μελῳδεῖται τῷ γένει : οὔτε μὴν κατὰ χρῶμα : πάλιν
δὲ παρυπάτης καὶ λιχανοῦ τῷ λιχανοῦ καὶ μέσης καὶ ἴσον μελῳδεῖται καὶ ἄνισον ἀμφοτέρως : ἴσον μὲν ἐν τῷ συντονωτέρῳ
5953303 ὁποιουουν
ὅπερ ἔδει δεῖξαι [ καὶ ἔτι τῆς βάσεως καὶ ἑνὸς ὁποιουοῦν τῶν τμημάτων ἡ πρὸς τῷ τμήματι πλευρὰ μέση ἀνάλογόν
. Εἰ δὲ ἓν ἕκαστον αὐτῶν ἐστι , συντεθέντος ἑνὸς ὁποιουοῦν ᾑτινιοῦν συζυγίᾳ οὐ τρία γίγνεται τὰ πάντα ; Ναί
5951148 Τεταχθω
γπλ . τῆς ὑπεροχῆς καὶ τῶν δοθεισῶν Μο ι . Τετάχθω ἡ μὲν ὑπεροχὴ αὐτῶν Μο β , ὁ δὲ
συγκείμενος ἐκ τῶν ἀπ ' αὐτῶν τετραγώνων ποιῇ τετράγωνον . Τετάχθω δὴ τῶν ζητουμένων ὁ μὲν ΔΥ α , ὁ
5950306 τεθησεται
Ἐν τῷ αὐτῷ δὲ γένει τούτῳ δύο ἡμιτονιαῖα ἑξῆς οὐ τεθήσεται . τιθέσθω γὰρ πρῶτον ἐπὶ τὸ βαρὺ τοῦ ὑπάρχοντος
σημεῖον προσαγορεύουσιν . ὅτι δὲ τοῦτο οὕτως ἔχει , παράδειγμα τεθήσεται , ὅ τινες μὲν Ὀρφέως , τινὲς δὲ τῆς
5945858 ἀρτιακις
, καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει
ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς
5944872 σνϚ
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨
5942696 ιϚ
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς
5940319 βατιδας
ἐπιτρίψειεν ἄν ; καὶ τὸ γλωττοκομεῖον βαλανεύεται . γαλεοὺς καὶ βατίδας ὅσα τε τῶν γενῶν ἐν ὀξυλιπάρῳ τρίμματι σκευάζεται .
ἔλλοπα καλούμενον τοῦτόν φησιν εἶναι τὸν ἀκκιπήσιον , γαλεοὺς καὶ βατίδας ὅσα τε τῶν γενῶν ἐν ὀξυλιπάρῳ τρίμματι σκευάζεται ,
5939552 μετρουμενος
οἱ Γ Δ Ε , ὧν ἕκαστος ἐλάσσων μὲν ἑκατοντάδος μετρούμενος δὲ ὑπὸ δεκάδος , καὶ ἄλλοι πάλιν ὁσοιδηποτοῦν ἀριθμοὶ
μετρούμενοι κοινῷ μέτρῳ . Σύνθετος ἀριθμός ἐστιν ὁ ἀριθμῷ τινι μετρούμενος . Σύνθετοι δὲ πρὸς ἀλλήλους ἀριθμοί εἰσιν οἱ ἀριθμῷ
5938305 ἐκπερισπασμος
ἐπὶ τὰ εὐώνυμα μέρη , ὁ δὲ ἐπ ' ἀσπίδα ἐκπερισπασμὸς ἀπὸ τῶν ἔμπροσθεν ἐπὶ τὰ δεξιὰ νεύειν . Ἐὰν
ἀπὸ τῶν ἔμπροσθεν νεύειν κατόπιν , ὁ δὲ ἐπὶ δόρυ ἐκπερισπασμὸς ἀπὸ τῶν ἔμπροσθεν ἐπὶ τὰ εὐώνυμα μέρη , ὁ
5933797 στοιχος
εὐώνυμον , τὸ δὲ μέσον ὀμφαλός , τὸ δὲ βάθος στοῖχος καλεῖται . καὶ τὸ μὲν ἐφεξῆς εἶναι κατὰ μῆκος
τὰ τῶν τυρῶν ἀγγεῖα καὶ τὰ τῶν λαχάνων καὶ ὁ στοῖχος τῶν κωπῶν , ἐπεὶ πτεροῖς ἐοίκασιν . τάρρωμα :
5930032 πληθυντικος
ἀριθμοὶ πόσοι ; [ γ . ἑνικός , δυϊκός , πληθυντικός ] [ ] . ἑνικὸς τί [ ἐστιν ]
τρεῖς [ ἑνικός ] , [ δυϊκός ] , [ πληθυντικός ] ? . [ πτώσεις ] ? πέντε ὀρθή
5929719 πεπληγμενοιϲ
οὐχ ηὗρον , τὰ δὲ παρακολουθοῦντα τοῖϲ ὑπ ' αὐτῶν πεπληγμένοιϲ καὶ τὰϲ θεραπείαϲ , ἃϲ ηὗρον , ἀναγράψομαι .
τοῖϲ ἐπὶ μυγαλῆϲ εἰρημένοιϲ . τοῖϲ δὲ ὑπὸ τῆϲ ϲαλαμάνδραϲ πεπληγμένοιϲ ϲυμβαίνει περιωδυνία | ϲφοδρὰ καὶ ἐϲχάρωϲιϲ . καὶ ἐπὶ
5929092 γλυκωνειον
δακτύλου καὶ συλλαβῆς : τὸ ιβʹ ἀντισπαστικὸν δίμετρον τὸ καλούμενον γλυκώνειον , ἐκ διτροχαίου καὶ διιάμβου : τὸ ιγʹ ἀντισπαστικὸν
δʹ εʹ ὅμοια ἑφθημιμερῆ ἐξ ἐπιτρίτων : τὸ Ϛʹ ἀντισπαστικὸν γλυκώνειον : τὸ ζʹ ὅμοιον ὑπερκατάληκτον : τὸ ηʹ παιωνικὸν
5924033 τετραπλασιος
: διὸ καὶ οὐ δύναται εἶναι ὁ θ τοῦ δ τετραπλάσιος , ὡς ὁ ιϚ τοῦ δ καὶ ὁ λϚ
δὲ ὦσι δύο ἀριθμοὶ ὁ μὲν ἕτερος αὐτῶν τοῦ αὐτοῦ τετραπλάσιος , ὁ δ ' ἕτερος διπλάσιος , ὁ τετραπλάσιος
5920151 θεολογος
ταῦτα τὰ πρὸ τῶν πολλῶν γένη καὶ εἴδη καταγίνεται ὁ θεολόγος φιλόσοφος . ἢ ἐν τοῖς πολλοῖς , οἷον τὰ
λυσιτελὲς πρὸ τῆς ἰδίας ἀσφαλείας τιθεμένη . ‖ Ἐπισφραγίζεται ὁ θεολόγος τὸν γάμον τῶν ὁσίων διὰ τοὺς ἀκρατεῖς : οὗτοι
5915649 ἐπιτετραμερης
πρῶτος λόγος τρίτων , ἐπιτριμερὴς δὲ ὁ δεύτερος τετάρτων καὶ ἐπιτετραμερὴς ὁ τρίτος πέμπτων καὶ ἑξῆς ὁμοίως . Αἱ δὲ
: ἐπιδιμερὴς γὰρ ἡ πρώτη , εἶτ ' ἐπιτριμερὴς καὶ ἐπιτετραμερὴς καὶ ἑξῆς ἀκολούθως : αἱ δὲ πολλαπλασιεπιμόριοι ἀντιπεπονθότως δὶς
5910466 ἀριθμητικως
μαθηματικῶς ἐπιχειρεῖν , οἷον περὶ τῶν τεττάρων στοιχείων γεωμετρικῶς ἢ ἀριθμητικῶς ἢ ἁρμονικῶς , καὶ περὶ τῶν ἄλλων ὡσαύτως .
γʹ τῷ δʹ : καὶ οὕτω διῃρημένα μὲν ἀνάλογον ἔχει ἀριθμητικῶς : ἡ αὐτὴ γὰρ ὑπεροχὴ τοῦ δʹ πρὸς τὸ
5907254 ἀποστροφα
καὶ κακοποιοὶ ἐπιθεωρήσωσιν . ὁμοίως δὲ καὶ τὰ φῶτα ἀλλήλων ἀπόστροφα ἀλλοφύλους ἢ ἀλλοεθνεῖς τοὺς γονεῖς ποιοῦσιν . ὁ Ἥλιος
καὶ ὀκτὼ καὶ δεκαδύο τὸν ἀριθμόν , λέγεται δὲ καὶ ἀπόστροφα πρὸς ἄλληλα τὰ πρὸς τήνδε τὴν διάστασιν τὸν ἀριθμὸν

Back